Responsive image
博碩士論文 etd-0623115-153249 詳細資訊
Title page for etd-0623115-153249
論文名稱
Title
複合金屬氧化物奈米結構應用於二氧化碳氣體感測器之研究
Study of Metal Oxides Nanocomposite for Carbon Dioxide Sensing Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-17
繳交日期
Date of Submission
2015-07-29
關鍵字
Keywords
二氧化錫、水熱法、滴塗法、氧化鋅、二氧化碳、氣體感測器
carbon dioxide, dip coating method, hydrothermal method, a gas sensor, zinc oxide, tin oxide
統計
Statistics
本論文已被瀏覽 5674 次,被下載 47
The thesis/dissertation has been browsed 5674 times, has been downloaded 47 times.
中文摘要
本論文討論複合材料應用於二氧化碳氣體感測器的研製。複合材料一直是受矚目的研究,本研究使用氧化鋅與二氧化錫製作奈米複合結構。先以濺鍍法或滴塗法於矽基板上成長氧化鋅種晶層,再以水熱合成法於種晶層上成長氧化鋅奈米柱狀結構。接著進行二次水熱法於氧化鋅奈米柱上成長二氧化錫奈米粒子,最後再以退火去除中間產物得到氧化鋅-二氧化錫複合堆疊結構。
  吾人透過調整不同水熱法化學溶液濃度、不同種晶層製備方式來研究奈米複合材料排列及分佈情況。複合感測層與矽基板形成PN二極體,以蒸鍍法於感測層表面與矽基板背面鍍上鋁電極作為金屬接觸,完成Al/ZnO-SnO2/Si/Al之二極體感測元件。
  實驗結果發現,以滴塗法種晶層所成長的氧化鋅奈米柱具有花狀放射排列。此元件在二氧化碳濃度為2500 ppm時的靈敏度為250%,是平面型PN接面元件的3倍。而結合氧化鋅奈米花與二氧化錫奈米粒子的元件之靈敏度更是提升到356%。反應時間及回復時間分別為12秒及32秒,因此複合奈米材料能大幅改善二氧化碳氣體感測器的效能。對於應用於室內空氣品質管理與溫室氣體偵測均有相當大的助益。
Abstract
In this thesis, we investigated the nanocomposite material applying to carbon dioxide (CO2) gas sensor. Composite materials have always been popular research topics. We utilized the zinc oxide(ZnO) and tin oxide (SnO2) to form the nanocomposite. Firstly, we used sputtering or dip coating method to deposit zinc oxide as a seed layer on the p-Si substrate. ZnO nanorods structure was grown on the seed layer by hydrothermal method. Next, the SnO2 particles was synthesized on the top of ZnO nanorods by changing the chemical solution. Finally, an annealing step is used to remove the residual intermediate for obtaining the ZnO-SnO2 nanocomposite.
The morphology and distribution of the nanocomposite has been characterized by adjusting the mixing concentration of the hydrothermal solution. Different fabrication methods of the seed layer have also been analyzed. PN junctions are formed by the p-type Si substrate and the nanocomposite (sensing layer). The aluminum (Al) electrodes were deposited on the top and the bottom of the pn junctions to complete the Al/ZnO-SnO2/Si/Al sensing devices.
Based on the experimental results, the ZnO nanorods grown on the seed layer of dip coating method have radially flower-like distribution. The device with this structure has a sensitivity of 250% under 2500 ppm CO2. It is 3 times of the planar device without nanostructure. Beside, combining the ZnO flower-like nanorods and the SnO2 particles, the device with nanocomposite has a sensitivity raised to 353%. The response and recovery times are 12 s and 32 s, respectively. Therefore, the nanocomposite can substantially enhance the performance of the CO2 sensor. It can promote the applications to the indoor air quality management and the greenhouse gas detection.
目次 Table of Contents
致謝 ii
摘要 iii
Abstract iv
第一章: 概論 1
1-1前言 : 1
1-2氣體感測器 : 1
1-3二氧化碳介紹 2
1-4奈米結構簡介 : 3
1-5材料介紹: 3
1-5-1氧化鋅(ZnO) : 3
1-5-2二氧化錫(SnO2): 4
1-6論文架構 4
第二章 理論基礎 6
2-1感測器的工作原理: 6
2-2二氧化碳的吸附機制: 7
2-3元件基礎理論: 8
2-4 複合材料的理論應用於氣體感測器之上 10
2-5水熱法的原理 11
2-5-1 氧化鋅奈米柱的成長機制 11
2-5-2 二氧化錫奈米粒子的成長機制 12
2-5-3 氧化鋅上成長二氧化錫粒子的方法 13
2-6 溶液滴塗法 14
2-7 濺鍍理論 14
2-7-1濺射現象 14
2-7-2輝光放電 15
2-7-3沉積現象 15
第三章 實驗步驟與量測儀器 17
3-1 成長系統 17
3-1-1 射頻濺鍍系統(Ratio Sputtering System) 17
3-1-2 真空熱蒸鍍系統(Thermal Vacuum Evaporation System) 18
3-2 薄膜分析量測儀器 19
3-2-1 掃描式電子顯微鏡(FE-SEM) 19
3-2-2氣體感測量測系統 20
3-2-5 KEITHLEY 2400半導體參數分析儀 20
3-2-4 Bede D1 HR-XRD單晶薄膜繞射儀 20
3-3 製程步驟與成長參數 21
3-3-1 矽基板清洗流程 21
3-3-2使用濺鍍系統成長金屬氧化層 21
3-3-3 氧化鋅奈米柱水熱成長流程 21
3-3-4 二氧化錫粒子水熱成長流程 22
3-3-5 滴塗法成長氧化鋅種子層: 23
3-3-6 ZnO/ SnO2 複合材料的成長方式 : 23
3-3-7 退火系統: 24
3-3-8 使用熱蒸著系統成長電極: 24
3-3-9 量測實驗: 24
3-4 元件結構: 25
第四章 結果與討論 26
4-1不同氧化層對元件的影響(單層薄膜) 26
4-1-1 電流特性分析 26
4-1-2 氣敏特性 27
4-2 氧化鋅奈米柱 28
4-2-1 不同的莫爾濃度成長的氧化鋅奈米柱 28
4-2-2 : 不同莫爾濃度比對於氣敏特性的影響 28
4-2-3 滴塗法種子層成長氧化鋅奈米柱 29
4-3 成長二氧化錫粒子 30
4-2-1 在二氧化錫種子層上成長二氧化錫粒子 30
4-2-2 不同種子層成長二氧化錫的比較 31
4-4 氧化鋅-二氧化錫結構 31
4-3-1 有無二氧化錫種子層對ZnO/ SnO2奈米結構的影響 32
4-3-2 滴塗法氧化鋅奈米柱應用在ZnO/ SnO2奈米結構上 33
第五章 總結 34
5-1 實驗結果歸納: 35
5-2 未來展望 36
參考文獻 36
附表 44
表1-1 氣體對人體危害之指標濃度 44
表1-2 SnO2 的XRD峰值表 45
表4-1氧化鋅薄膜二極體以及二氧化錫薄膜二極體對於CO22500ppm下的氣體靈敏度比較表 45
表4-2 水熱莫爾濃度對於氧化鋅/矽氣體感測器之比較表 46
表4-3 水熱二氧化錫(SnO2)的實驗相關表格 46
表4-4 本實驗所有元件的靈敏度統整 46
表4-5 與其他論文的比較 47
附圖 48
圖1-1 氧化鋅的晶體結構 48
圖1-2 二氧化錫的結構圖 48
圖2-1 氧空缺在金屬氧化物中的示意圖 49
圖2-2 氣體吸附於晶粒表面產生空乏區的示意圖 49
圖2-3 CO2吸附在PN接面上時能障的變化 50
圖2-4 SnO2-ZnO的能障 50
圖2-5 氧化鋅奈米柱的成長機制 51
圖2-6 O.Lupan團隊以水熱法成長的SnO2結晶 51
圖2-7表面濺射原理示意圖 52
圖2-8輝光放電示意圖 52
圖2-9薄膜沉積步驟 53
圖3-1 射頻濺鍍系統之簡易模型 54
圖3-2 量測系統 54
圖3-3 水熱法成長氧化鋅的裝置 55
圖3-4 水熱法成長二氧化錫時條配PH值的示意圖 55
圖4-1 常溫下ZnO/Si結構跟SnO2/Si之IV曲線比較圖 56
圖4-2 氧化鋅薄膜(100nm)在100~250℃之間電流對氣體濃度的變化響應圖 57
圖4-3 (左)氧化鋅薄膜於150℃、100ppm下的響應曲線、(右)電壓與靈敏度的關係圖(-5v之絕對值電流) 57
圖4-3 二氧化錫薄膜(100nm)在100~250℃之間電流對氣體濃度的變化響應圖 58
圖4-4 (左) 二氧化錫薄膜於150℃、100ppm下的響應曲線、(右)二氧化錫薄膜之電壓與靈敏度的關係圖 58
圖4-5 二氧化錫/矽 接面與 氧化鋅/矽 接面之能帶示意圖 59
圖4-6 二氧化錫/矽 接面與 氧化鋅/矽 溫度與靈敏度的關係(2500ppm下) 59
圖4-7 莫爾濃度(0.05M)成長的氧化鋅奈米柱 60
圖4-8 莫爾濃度(0.07M)成長的氧化鋅奈米柱 61
圖4-9 莫爾濃度(0.1M)成長的氧化鋅奈米柱 62
圖4-10 氧化鋅奈米柱(莫爾濃度比=0.05M)在100~250℃之間電流對氣體濃度 63
圖4-11 150℃下,逆偏壓時靈敏度與電壓的關係圖,可以看出靈敏度隨氣體濃度變化而穎明顯的差別(0.05M) 63
圖4-12 氧化鋅奈米柱(莫爾濃度比=0.07M)在100~250℃之間電流對氣體濃度的變化響應圖 64
圖4-13 150℃下,逆偏壓時靈敏度與電壓的關係圖(0.07M) 64
圖4-14 : 氧化鋅奈米柱(莫爾濃度比=0.1M)在100~250℃之間電流對氣體濃度的變化響應圖 65
圖4-15 150℃下,逆偏壓時靈敏度與電壓的關係圖(0.1M) 65
圖4-16 莫爾濃度與靈敏度的關係 66
圖4-17 氧化鋅奈米柱的響應時間(100ppm、0.07M、150℃)以及連續響應 66
圖4-18 以滴塗法滴塗(1ml)的醋酸鋅水溶液形成的種子層 67
圖4-19 以滴塗法滴塗(1ml)的種子層成長的氧化鋅奈米柱 67
圖4-20 以滴塗法滴塗(2ml)的醋酸鋅水溶液形成的種子層 68
圖4-21 以滴塗法滴塗(2ml)的種子層成長的氧化鋅奈米柱 69
圖4-22圖以滴塗法種子層成長氧化鋅奈米柱的機制 70
圖4-23 常溫下,1ml之滴塗法種子層成長之氧化鋅奈米柱之I-V曲線 70
圖4-24 2ml之滴塗法種子層成長之氧化鋅奈米柱(莫爾濃度=0.07M)在100~250℃之間電流對氣體濃度的變化響應圖 71
圖4-25 150℃下,逆偏壓時靈敏度與電壓的關係圖(0.07M) 71
圖4-26 150℃下,100ppm時滴塗法氧化鋅奈米柱的響應曲線 72
圖4-27 以不同種子層成長二氧化錫粒子 72
圖4-28 以0.03g的四氯化錫成長在SnO2種子層二氧化錫微粒子 73
圖4-29 以0.12g的四氯化錫成長在SnO2種子層二氧化錫微粒子 74
圖4-30 以0.03g的四氯化錫成長在ZnO種子層二氧化錫微粒子 75
圖4-31 以0.12g的四氯化錫成長在ZnO種子層二氧化錫微粒子 76
圖4-32 以0.12g的四氯化錫成長在SnO2種子層二氧化錫微粒子之XRD圖 76
圖4-33 以0.03g四氯化錫成長的二氧化錫奈米粒子成長在二氧化錫種子層 之不同二氧化碳濃度下的IV曲線 77
圖4-35 以0.03g四氯化錫成長的二氧化錫奈米粒子成長在二氧化錫種子層上之靈敏度與電壓的關係圖 78
圖4-36 以0.12g四氯化錫成長的二氧化錫奈米粒子成長在二氧化錫種子層之不同二氧化碳濃度下的IV曲線 79
圖4-37 以0.12g四氯化錫成長的二氧化錫奈米粒子成長在二氧化錫種子層上之靈敏度與電壓的關係圖 79
圖4-38 以0.12g四氯化錫成長的二氧化錫奈米粒子成長在ZnO種子層上之不同二氧化碳濃度下的IV曲線 80
圖4-39 (左圖)以0.12g四氯化錫成長的二氧化錫奈米粒子成長在ZnO種子層上之靈敏度與電壓的關係圖 80
圖4-40 堆疊式複合型金屬氧化物之P-N二極體元件之結構 80
圖4-41 堆疊式複合型金屬氧化物之P-N二極體元件結構之能帶 81
圖4-42 以0.12g的四氯化錫成長在ZnO奈米線上之二氧化錫微粒子 82
圖4-43 以0.12g的四氯化錫成長二氧化錫微粒子在ZnO奈米線上側面圖 83
圖4-44 以0.12g的四氯化錫成長二氧化錫微粒子在ZnO奈米線上之不同二氧化碳濃度下的IV曲線 83
圖4-45 150℃下,以0.12g的四氯化錫成長二氧化錫微粒子在ZnO奈米線上之逆偏壓時靈敏度與電壓的關係圖 84
圖4-46 以0.12g的四氯化錫成長二氧化錫微粒子在ZnO奈米線上在150℃下、100ppm下的響應圖 84
圖4-47 (上)以0.12g的四氯化錫成長二氧化錫微粒子在ZnO奈米線上之XRD圖 85
圖4-48 以0.12g的四氯化錫成長二氧化錫微粒子在鍍有SnO2種子層的ZnO奈米線上 86
圖4-49 以0.12g的四氯化錫成長二氧化錫微粒子在鍍有SnO2種子層的ZnO奈米線上之不同二氧化碳濃度下的IV曲線 87
圖4-50 150℃下,以0.12g的四氯化錫成長二氧化錫微粒子在鍍有SnO2種子層的ZnO奈米線上之逆偏壓時靈敏度與電壓的關係圖 87
圖4-51 當二氧化碳通入時ZnO/SnO2接面裸露在外能帶圖 88
圖4-52 當二氧化碳通入時ZnO奈米柱SnO2粒子緊緊覆蓋的能帶圖 88
圖4-53 以0.12g的四氯化錫成長二氧化錫微粒子於滴塗法種子層成長之ZnO奈米線上之元件 89
圖4-54 以0.12g的四氯化錫成長二氧化錫微粒子於滴塗法ZnO種子層成長之ZnO奈米線上之側面圖 90
圖4-55 以0.12g的四氯化錫成長二氧化錫微粒子在滴塗法ZnO種子層成長的ZnO奈米線上之不同二氧化碳濃度下的IV曲線 90
圖4-56 150℃下,以0.12g的四氯化錫成長在滴塗法ZnO種子層成長之ZnO奈米線上附著二氧化錫微粒子之逆偏壓時靈敏度與電壓的關係圖 91
圖4-57 150℃下,以0.12g的四氯化錫成長在滴塗法ZnO種子層成長之ZnO奈米線上附著二氧化錫微粒子之響應圖(電流-秒) 91
參考文獻 References
[1]. a Kyoto Protocol to the United Nations Framework Convention on Climate Change". UN Treaty Database. Retrieved 27 November 2014.
[2]. R.R. Desai, D. Lakshminarayana, P.B. Patel, C.J. Panchal “Indium sesquitelluride (In2Te3) thin film gas sensor for detection of carbon dioxide “Sens. Actuat. B, 107 (2005), p. 523
[3]. 蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場”, 材料與社會,第150期六月1999
[4]. A. Marsal, G. Dezanneau, A. Cornet, J.R. Morante”A new CO2 gas sensing material Sens.” Actuat. B, 95 (2003), p. 266
[5]. 九年義務教育課本《化學》九年級第一學期,上海教育出版社,2007年8月第2版,ISBN 978-7-5320-8481-4/G•8506 第109、112頁
[6]. 教育部數位教學入口網-溫室效應
[7]. ”奈米科技及應用之產業分析與投資機會",經濟部投資業務,2008
[8]. X.L. Yuana, L. Lazzarinib, G. Salviatib, M. Zhab, T. Sekiguchia”Cathodoluminescence characterization of SnO2 nanoribbons grown by vapor transport technique” Materials Science in Semiconductor Processing ,Volume 9, Issues 1–3, February–June 2006, Pages 331–336
[9]. Ling-min Yua, Chang-chun Zhua ”Field emission characteristics study for ZnO/Ag and ZnO/CNTs composites produced by DC electrophoresis” Applied Surface ScienceVolume 255, Issue 20, 30 July 2009, Pages 8359–8362
[10]. Yoichi Tohmon, Hiroyasu Mizuno, Yoshimichi Ohki, Kotoku Sasagane, Kaya Nagasawa, and Yoshimasa Hama” Correlation of the 5.0- and 7.6-eV absorption bands in SiO2 with oxygen vacancy”Phys. Rev. B 39, 1337 – Published 15 January 1989
[11]. Frank J. Feigl*, W. Beall Fowler*t and Kwok L. Yipt” OXYGEN VACANCY MODEL FOR THE E~CENTER IN Si02” Physics Department, Lehigh University, Bethlehem, Penn. 18015, U.S.A.(Recetved 9 October 1973 by A.J. Chynoweth)
[12]. H.Windischmann and P.Mark,”A model for operation of a thin film SnOx conductance-modulation carbon monoxide sensor”Journal of the electrochemical society Vol.126,No4.pp.627-633 (1979)
[13]. Julian W. Gardner,Vijay K. Varadan,Osama O. Awadelkarim” Microsensors, MEMS, and Smart Devices”Wiley. ISBN: 978-0-471-86109-6(2001)
[14]. A Wireless, “Passive Carbon Nanotube-Based Gas Sensor”Keat Ghee Ong, Kefeng Zeng, and Craig A. Grimes, Member, IEEE
[15]. Tatsumi Ishihara, Kazuhiro Kometani, Yukako Mizuhara andYusaku Takita” Mixed Oxide Capacitor of CuO—BaTiO3 as a New Type CO2 Gas Sensor” Journal of the American Ceramic Society Volume 75, Issue 3, pages 613–618, March 1992
[16]. Biplob Mondal , Borat Basumatari, Jayoti Das, Chirosree Roychaudhury, Hiranmay Saha, Nillohit Mukherjee” ZnO–SnO2 based composite type gas sensor for selective hydrogen sensing” Sensors and Actuators B: Chemical Volume 194, April 2014, Pages 389–396
[17]. Tatsumi Ishihara†, Kazuhiro Kometani, Yukako Mizuhara andYusaku Takita,” Mixed Oxide Capacitor of CuO—BaTiO3 as a New Type CO2 Gas Sensor” Journal of the American Ceramic Society,Volume 75, Issue 3, pages 613–618, March 1992
[18]. A. Prim, E. Pellicer, E. Rossinyol, F. Peiró, A. Cornet andJ. R. Morante ,"A Novel Mesoporous CaO-Loaded In2O3 Material for CO2 Sensing" ,Advanced Functional Materials Volume 17, Issue 15, pages 2957–2963, October, 2007
[19]. Chi-Ju Chianga, Kang-Ting Tsaib, Yi-Huan Leea ,” In situ fabrication of conducting polymer composite film as a chemical resistive CO2 gas sensor”, Microelectronic Engineering,Volume 111, November 2013, Pages 409–415
[20]. Leite, E. R.; Giraldi, T. R.; Pontes, F. M.; Longo, E.; Beltran, A.; Andres, J.” Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature “; Applied Physics Letters (2003), 83 (8), 1566-1568CODEN: APPLAB; ISSN:0003-6951. (American Institute of Physics)
[21]. Vayssieres, Lionel; Graetzel, Michael ,Angewandte Chemie” Highly ordered SnO2 nanorod arrays from controlled aqueous growth” International Edition (2004), 43 (28), 3666-3670CODEN: ACIEF5; ISSN:1433-7851. (Wiley-VCH Verlag GmbH & Co. KGaA)
[22]. Xiaofang Liu , Javed Iqbal , Zhangben Wu , Bo He and Ronghai Yu “Structure and Room-Temperature Ferromagnetism of Zn-Doped SnO2 Nanorods Prepared by Solvothermal Method” ;State Key Lab of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China ;J. Phys. Chem. C, 2010, 114 (11), pp 4790–4796
[23]. Donglin Guo, Chenguo Hu “First-principles study on the electronic structure and optical properties for SnO2 with oxygen vacancy”, Applied Surface Science ,Volume 258, Issue 18, 1 July 2012, Pages 6987–6992
[24]. Waghuley, S A , “Synthesis,characterization and CO2 gas sensing response SnO2/Al2O3 double layer sensor “Dec-2011 , IJPAP Vol.49(12) [December 2011], India , p816-819
[25]. Rossler, U. Landolt-Bornstein, New Series, Group III. Vol. 17B, 22, 41B. Springer, Heidelberg. 1999.
[26]. N.V. Hieu, N.D. Chien”Low-temperature growth and ethanol-sensing characteristics of quasi-one-dimensional ZnO nanostructures” Physica B, 403 (2008), pp. 50–56
[27]. O. Lupan, G. Chai, L. 0Chow” Fabrication of ZnO nanorod-based hydrogen gas nanosensor” Microelectron. J., 38 (2007), pp. 1211–121
[28]. F. Anderson S. Lima, , Igor F. Vasconcelos, M. Lira-Cantu , Ceramics International “Electrochemically synthesized mesoporous thin films of ZnO for highly efficient dye sensitized solar cells”,;Volume 41, Issue 8, September 2015, Pages 9314–9320
[29]. B. Bott, T.A. Jones, B. Mann “The detection and measurement of CO using ZnO single crystals” Sensors and Actuators;Volume 5, Issue 1, January 1984, Pages 65–73;
[30]. Jae-Hong Lim, Chang-Ku Kang, Kyoung-Kook Kim, Il-Kyu Park, Dae-Kue Hwang, and Seong-Ju Park Adv. “UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering” Mater. 2006, 18, 2720–2724
[31]. Dae-Kue Hwang, Soon-Hyung Kang, Jae-Hong Lim, Eun-Jeong Yang, Jin-Yong Oh, Jin-Ho Yang, and Seong-Ju Parka ” P-ZnO/n-GaN heterostructure ZnO light-emitting diodes “APPLIED PHYSICS LETTERS,p86, 222101(2005);
[32]. “The Hydrolysis of Cations”, Krieger Pub., Florida,USA , 1986. Base, Jr. C.F., Mesmer, R.E.
[33]. Ye Sun, Gareth M. Fuge, Michael N.R. Ashfold "Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods"Chemical Physics Letters , Volume 396, Issues 1–3, 21 September 2004, Pages 21–26
[34]. O. Lupan, L. Chow, G. Chai, H. Heinrich, S. Park, A. Schulte ”Growth of tetragonal SnO2 microcubes and their characterization” Journal of Crystal Growth,Volume 311, Issue 1, 15 December 2008, Pages 152–155
[35]. Ya-Li Wang , Min Guo , Mei Zhang and Xi-Dong Wang ” Hydrothermal preparation and photoelectrochemical performance of size-controlled SnO2 nanorod arrays” The Royal Society of Chemistry 2010,12, 4024-4027
[36]. Yung-Chiun Her , Jer-Yau Wu , Yan-Ru Lin , Song-Yeu Tsai  “Low-temperature growth and blue luminescence of SnO2 nanoblades “ APPLIED PHYSICS LETTERS 89, 043115 ,2006
[37]. Chih-Cheng Lin, Yuan-Yao Li ”Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dehydrate”Materials Chemistry and Physics ,Volume 113, Issue 1, 15 January 2009, Pages 334–337
[38]. Jixuan Zhang §, Hao Gong , Handong Sun and Hong Jin Fan , Chuanwei Cheng , Bo Liu , Huiying Yang , Weiwei Zhou , Li Sun , Rui Chen , Siu Fung Yu “Hierarchical Assembly of ZnO Nanostructures on SnO2 Backbone Nanowires: Low-Temperature Hydrothermal Preparation and Optical Properties”; Copyright , 2009 American Chemical Society
[39]. Pohle, R.; Tawil, A.; Mrotzek, C.; Fleischer, M. “CO2 sensing by work function readout of ZnO based screen printed films”Solid-State Sensors, Actuators and Microsystems, 2013 ,Transducers & Eurosensors XXVII: The 17th International Conference on, Issue Date: 16-20 ,June 2013
[40]. Yinglei Tao, Ming Fu, Ailun Zhao, Dawei He, Yongsheng Wang “The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method “Journal of Alloys and Compounds , Volume 489, Issue 1, 7 January 2010, Pages 99–102
[41]. Yunfeng Li, Yanjie Hu, Hao Jiang, Xiaoyu Hou and Chunzhong Li ” Construction of core–shell Fe2O3/ SnO2 nanohybrids for gas sensors by a simple flame-assisted spray process” The Royal Society of Chemistry , Received 1st July 2013, Accepted 3rd September 2013
[42]. 賴耿陽,“IC 製程之濺射技術”,復漢出版社 1997年。
[43]. 王福貞,聞立時,“表面沉積技術”,機械工業出版社,pp.114-204。
[44]. 莊達人,”VLSI製造技術”,高立圖書股份有限公司,1995年。
[45]. Sambhaji S. Bhande, Rajaram S. Mane, Anil V. Ghule, Sung-Hwan Han “A bismuth oxide nanoplate-based carbon dioxide gas sensor “ Scripta Materialia , Volume 65, Issue 12, December 2011, Pages 1081–1084
[46]. J. Herrána, G. G Mandayoa, N. Pérez, E. Castaño , A. Prim, E. Pellicer, T. Andreu, F. Peiró, A. Cornet, J.R. Morante ,” On the structural characterization of BaTiO3–CuO as CO2 sensing material” , Sensors and Actuators B: Chemical , Volume 133, Issue 1, 28 July 2008, Pages 315–320
[47]. Mashkoor Ahmad, Shi Yingying, Hongyu Sun, Wanci Shen, Jing Zhu “SnO2/ZnO composite structure for the lithium-ion battery electrode “ Journal of Solid State Chemistry , Volume 196, December 2012, Pages 326–331
[48]. Blow, D. Outline of Crystallography for Biologists. Oxford: Oxford University Press. 2002. ISBN 0-19-851051-9
[49]. Patrick Mwinzi Mwathe1, Robinson Musembi,, Mathew Munji1 , Benjamin Odari,Lawrence Munguti1, Alex Alfred Ntilakigwa ,Julius Mwabora, Walter Njoroge1,Bernard Aduda, Boniface Muthoka “ Surface passivation effect on CO2 sensitivity of spray pyrolysis deposited Pd-F: SnO2 thin film gas sensor “; Advances in Materials , 2014; 3(5): 38-44
[50]. Peng KQ, Yan YJ, Gao SP, Zhu J,“Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry” Advanced Materials ,vol 14, 2002 , pp.1164-1167
[51]. Guang Sun, Fengxiao Qi, Saisai Zhang, Yanwei Lia "Synthesis and enhanced gas sensing properties of flower-like SnO2 hierarchical structures decorated with discrete ZnO nanoparticles" Journal of Alloys and Compounds , Volume 617, 25 December 2014, Pages 192–199
[52]. Ki-Woong Chae, Qifeng Zhang , "Low-temperature solution growth of ZnO nanotube arrays" Beilstein J. Nanotechnol. 2010, 1, 128–134.
[53]. Luis Vicente de Andrade Scalvi ” Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films” , Emerson Aparecido Floriano”; ,Materials Research Mat. Res. vol.13 no.4 São Carlos Oct./Dec. 2010
[54]. ARUN PATIL , CHANDRAKANT DIGHAVKAR, RATAN BORSE” Al doped ZnO thick films as CO2 gas sensors” , JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 13, No. 10, October 2011, p. 1331 – 1337
[55]. G.N. Chaudhari, P.R. Padole, S.V. Jagatap, M.J. Pawar, ” CO2 sensing characteristics of Sm1-xBaxCoO3 (x = 0,0.1, 0.15,0.2) nanostructured thick film” , INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2008
[56]. T Krishnakumar, R Jayaprakash, T Prakash, D Sathyaraj,N Donato, S Licoccia ,M Latino ,“CdO-based nanostructures as novel CO2 gas sensors”, A Stassi and G Neri ,2011 Nanotechnology 22 325501
[57]. P. Matheswaran, R. Sathyamoorthy, K. Asokan “Effect of 130 MeV Au ion irradiation on CO2 gas sensing “roperties of In2Te3 thin films” Sensors and Actuators B: Chemical ,Volume 177, February 2013, Pages 8–13
[58]. Shudi Peng, Gaolin Wu, Wei Song, and Qian Wang “Application of Flower-Like ZnO Nanorods Gas Sensor Detecting SF6 Decomposition Products” Journal of Nanomaterials ,Volume 2013 (2013), Article ID 135147, pages 7
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code