Responsive image
博碩士論文 etd-0623115-163614 詳細資訊
Title page for etd-0623115-163614
論文名稱
Title
低功耗寬頻具有持續追蹤之全數位鎖相迴路研究
Low Power/Wideband With Tracking System All-Digital Phase Locked Loop Research
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-23
關鍵字
Keywords
數位控制振盪器、連續逼近暫存器、數位頻率偵測器、全數位鎖相迴路、低工耗
low power, digitally controlled oscillator, successive approximation register, digital frequency detector, all digital phase-locked loop
統計
Statistics
本論文已被瀏覽 5762 次,被下載 33
The thesis/dissertation has been browsed 5762 times, has been downloaded 33 times.
中文摘要
此全數位鎖相迴路(All-Digital Phase-Locked Loop,ADPLL)使用TSMC 90nm製程,採用數位頻率偵測器(Digital Frequency Detector,DFD)和連續逼近暫存器(Successive Approximation Register,SAR)來控制數位控制振盪器(Digitally Controlled Oscillator,DCO)以及一些控制單元(Control Unit)所組成。在全數位鎖相迴路裡,設計數位控制振盪器會是一個關鍵,它將影響整個全數位鎖相迴路的效能。而這部分採用交錯型遲滯延遲元件和控制負載電容的方式,分成6位元粗調和5位元細調來提高頻率的精準度,並且讓數位控制振盪器節省電源,達到降低功耗和面積。另外,在使用傳統式的連續逼近暫存器,將因為在製程、電壓和溫度變異的環境中無法對電路做持續追蹤而造成電路的不正確,而為了避免全數位鎖相迴路死鎖的問題,因此會使用改良式連續逼近暫存器來克服所面臨的問題,讓整個鎖相迴路在鎖定之後能夠持續對電路做追蹤。此全數位鎖相迴路電路的工作電壓為1V,鎖相迴路的輸入參考頻率為20MHz,工作頻率範圍為201MHz~1.19GHz,在500MHz操作下之功率消耗為0.266mW,時脈抖動模擬分別在500MHz為101.1ps和1GHz為39.9ps。
Abstract
This All-Digital phase-locked loop uses TSMC90nm process. It uses digital frequency detector and successive approximation register to control the digitally controlled oscillator as well as some control units. Digitally controlled oscillator is the key component of performance. The performance of digitally controlled oscillator affects the performance of the whole circuit. The part of digitally controlled oscillator uses the interlaced hysteresis delay cell and digitally controlled varactors. It is divided into the coarse-tuning stages and the fine-tuning stages are 6-bit and 5-bit period control code respectively. The digitally controlled oscillator has low power consumption, small area and high resolution. In addition, the ADPLL will go unlocked in the face of process, voltage, and temperature (PVT) variations when it uses a conventional successive approximation register. We will use an improved successive approximation register to overcome the problem of dead lock. By this design, the ADPLL can be monitored continuously. The supply voltage is 1 V. The reference frequency is 20 MHz. The output frequency can achieve from 201 MHz to 1.19 GHz. The power consumption is 0.266 mW at 500 MHz. The simulation of the jitter is 101.1 ps at 500MHz and 39.9 ps at 1 GHz.
目次 Table of Contents
第1章 緒論 1
1.1 研究動機 1
1.2 論文組織架構 2
第2章 鎖相迴路基本觀念 3
2.1 鎖相迴路種類簡介 3
2.2 鎖相迴路基本架構 3
2.3 類比式鎖相迴路 5
2.4 數位式鎖相迴路 7
2.5 全數位式鎖相迴路 10
2.6 數位控制振盪器 12
第3章 全數位式鎖相迴路之設計 16
3.1 系統架構 16
3.2 數位頻率偵測器 17
3.3 控制單元 21
3.3-1 連續逼近暫存器 21
3.3-2 連續逼近暫存器具有持續追蹤機制 23
3.4 數位控制振盪器 25
3.4-1 延遲元件 27
3.4-2 突波預防單元 29
3.5 除頻器 31
第4章 模擬結果 32
4.1 數位頻率偵測器模擬 32
4.2 連續逼近暫存器模擬 33
4.3 連續逼近暫存器具有持續追蹤模擬 34
4.4 數位控制振盪器模擬 35
4.5 全數位鎖相迴路模擬 39
4.6 時脈抖動模擬(peak-to-peak jitter) 40
4.7 電路規格與比較 41
第5章 結論與未來研究 43
5.1 結論 43
5.2 未來研究 43
參考文獻 44
參考文獻 References
[1] R. E. Best, “Phase Locked Loop: Design, Simulation, and Application,” 3rd ed., McGraw-Hill, New York 1997.
[2] C. C. Cheng, “The analysis and design of all digital phase-locked loop(ADPLL), National Chiao-Tung University,” M.S. Thesis, 2001.
[3] R. Staszewski and P. Balsara, “All-digital frequency synthesizer in deep-submicron CMOS,” Wiley, 2006.
[4] A. Musa, D. Wei, T. Siriburanon, M. Miyahara, K. Okada, and A. Matsuzawa, “A Compact, Low-Power and Low-Jitter Dual-Loop Injection Locked PLL Using All-Digital PVT Calibration,” IEEE Journal of Solid-State Circuits, vol. 49, no. 1, pp. 50-60, January 2014.
[5] L. Fanori, A. Liscidini, and R. Castello, “Capacitive Degeneration in LC-Tank Oscillator for DCO Fine-Frequency Tuning,” IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2737-2745, December 2010.
[6] P. L. Chen, C. C. Chung, and C. Y. Lee, “A portable digitally controlled oscillator using novel varactors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 5, pp. 233-237, May 2005.
[7] C. C. Chung, D. Sheng, C. L. Chang, W. D. Ho, Y. D. Lin, and F. N. Lu, “An All-Digital Large-N Audio Frequency Synthesizer for HDMI Applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, pp. 424-428, July 2012.
[8] C. C. Chung, C. Y. Ko, and S. E. Shen, “Built-in Self-Calibration Circuit for Monotonic Digitally Controlled Oscillator Design in 65-nm CMOS Technology,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 58, no. 3, pp. 149-153, March 2011.
[9] M. Maymandi-Nejad, and M. Sachdev, “A monotonic digitally controlled delay element,” IEEE Journal of Solid-State Circuits, vol. 40, no. 11, pp. 2212-2219, November 2005.
[10] I. Novof, J. Austin, R. Kelkar, D. Strayer, S. Wyatt, “Fully integrated CMOS phase-locked loop with 15 to 240 MHz locking range and ±50 ps jitter,” IEEE J. Solid-State Circuits, vol. 30, pp. 1259-1266, Nov. 1995.
[11] 劉深淵,楊清淵,鎖相迴路,滄海書局,2010。
[12] P. L. Chen, “A low power multiphase all-digital phase locked loop with reusing SAR,” International Conference on Green Circuits and Systems (ICGCS), pp. 695-698, June 2010.
[13] J. S. Wang, Y. M. Wang, C. Y. Cheng, and Y. C. Liu, “An improved SAR controller for DLL applications,” IEEE International Symposium on Circuits and Systems (ISCAS), 4 pp.-3901, May 2006.
[14] C. Y. Yu, C. C. Chung, C. J. Yu, and C. Y. Lee, “A Low-Power DCO Using Interlaced Hysteresis Delay Cells,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 10, pp. 673-677, October 2012.
[15] K. H. Choi, J. B. Shin, J. Y. Sim, and H. J. Park, “An interpolating digitally controlled oscillator for a wide-range all-digital PLL,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 9, pp. 2055–2063, Sep. 2009.
[16] H. J. Hsu, C. C. Tu, and S. Y. Huang, “A high-resolution all-digital phase-locked loop with its application to built-in speed grading for memory,” in Proc. IEEE Int. Symp. VLSI Design Automation and Test (VLSI-DAT), pp. 267–270, April 2008.
[17] H. J. Hsu, and S. Y. Huang, “A Low-Jitter ADPLL via a Suppressive Digital Filter and an Interpolation-Based Locking Scheme,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 1, pp. 165-170, January 2011.
[18] C. C. Chung, and C. Y. Ko, “A Fast Phase Tracking ADPLL for Video Pixel Clock Generation in 65 nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 46, no. 10, pp. 2300-2311, October 2011.
[19] W. Liu, W. Li, P. Ren, C. Lin, S. Zhang, and Y. Wang, “A PVT Tolerant 10 to 500 MHz All-Digital Phase-Locked Loop With Coupled TDC and DCO,” IEEE Journal of Solid-State Circuits, vol. 45, no. 2, pp. 314-321, February 2010.
[20] C. T. Wu, W. C. Shen, W. Wang, and A. Y. Wu, “A Two-Cycle Lock-In Time ADPLL Design Based on a Frequency Estimation Algorithm,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 6, pp. 430-434, June 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code