Responsive image
博碩士論文 etd-0623115-165547 詳細資訊
Title page for etd-0623115-165547
論文名稱
Title
低面積及低複雜度HomePlug AV 系統之超大型積體電路架構實現
Implementing an Area Efficiency and Low Complexity VLSI Design for the HomePlug AV System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-23
關鍵字
Keywords
擾碼器、快速傅立葉轉換、正交振幅調變、交錯器、渦輪碼、正交分頻多工技術、電力線通訊
Interleaver, Scramble, Turbo Code, OFDM, PLC, FFT, QAM
統計
Statistics
本論文已被瀏覽 5665 次,被下載 36
The thesis/dissertation has been browsed 5665 times, has been downloaded 36 times.
中文摘要
電力線通訊(Power Line Communication, PLC)為當今主要的有線網路之一,其想法為將原本用來傳輸能量的電力線,利用正交分頻多工(Orthogonal Frequency-Division Multiplexing, OFDM)的調變方式將資訊載到電力線,而在無線通訊非常普遍的今日,電力線還是具有不可取代的特性,因其不再需要重新佈線,且絕大部分的地區皆具有電力,而電子設備又可與電力線緊密的結合在一塊,因此造就了其涵蓋率非常寬廣的特性。
本篇論文研究的方向為電力線通訊中的HomePlug AV標準規格,在系統架構上HomePlug AV共包含Scramble、Turbo Code、Interleaver、QAM、FFT、Preamble等元件,其中使用Turbo Code來進行錯誤碼更正其編碼率為1/2,並選擇SOVA演算法來進行解碼,再利用1024 QAM來調變子載波,最後經由3072點快速傅立葉轉換來產生輸出訊號,本論文所提出的3072點 IFFT/FFT架構,可使得IFFT-3072元件節省約38.43%的面積使用量,而FFT-3072元件可節省約29.55%的面積使用量,同步機制使用Preamble來傳遞同步訊號,並透過Timing Recover演算法來檢測是否有封包的傳入。
本論文之HomePlug AV系統架構,使用國家晶片中心提供之TN90GUTM製程設計完成,實現之傳送端與接收端的面積分別為833,430 μm2與1,354,824 μm2,最高資料傳送速率可達139.46Mbps,可滿足高品質數位家庭影音系統之需求,並利用低複雜度與低面積的實作方式,來降低設計電路時所遭遇的困難,且電路架構已通過國家晶片中心Cell-Base Design Flow與Xilinx FPGA雙重驗證,並確保其效能與功能性是正確無誤的。
Abstract
Power Line Communications(PLC) is one of the main existing wired communications technology. Power Line Communications use the Orthogonal Frequency Division Multiplexing (OFDM) technology to transmit data on power line. Therefore, it has many advantages, such as low-cost wire; there is no need to create a new power line.
This thesis implements the HomePlug AV technology standard to design a power line communication system. The architecture of HomePlug AV system includes Scramble, Turbo Code, Interleaver, QAM, FFT, Preamble, etc. Turbo Code is used to perform error correction and the code rate is 1/2. Soft-Output Viterbi algorithm (SOVA) is used to decode the Turbo Code. QAM-1024 is applied to the modulated subcarrier. Finally, the fast Fourier transform (FFT) generates the transmitted data to the power line. In this thesis, the proposed 3072-point IFFT / FFT architecture that makes the IFFT-3072 save about 38.43% area utilization, and FFT-3072 save about 29.55% area utilization. The Preamble is used to transmit the synchronous signals. The timing recover algorithm will detect whether there is an incoming packet.
The HomePlug AV architecture which uses the Chip Implementation Center TN90GUTM process design is completed. The proposed low complexity and low area use the 833,430 μm2 and 1,354,824 μm2 area in the TX and RX, respectively. The maximum data transfer rate is 139.46 Mbps which can satisfy the High-quality digital home audio system. The circuit architecture has been through the Chip Implementation Center Cell-Base Design Flow and Xilinx FPGA Verification.
目次 Table of Contents
第一章 簡介 1
1.1 研究動機 1
1.2 論文架構 2
第二章 通訊系統介紹 3
2.1 單載波與多載波的傳輸方式 3
2.2 正交分頻多工調變方式 5
2.3 HomePlug AV規格介紹 6
第三章 HomePlug AV系統架構規劃 9
3.1 Scrambler / DeScrambler 9
3.2 Turbo Encoder 10
3.3 Turbo Decoder 13
3.4 Interleaver/DeInterleaver 18
3.5 QAM/DeQAM 20
3.6 IFFT/FFT 21
3.7 Preamble / Timing Recover 29
3.8 Cyclic Prefix 31
3.9 系統工作頻率 32
第四章 HomePlug AV系統架構實現 33
4.1 Scrambler / DeScrambler架構實現 33
4.2 Turbo Encoder架構實現 34
4.3 Turbo Decoder架構實現 36
4.4 Interleaver/ DeInterleaver架構實現 42
4.5 QAM-1024/ DeQAM-1024架構實現 44
4.6 IFFT-3072架構實現 46
4.7 FFT-3072架構實現 56
4.8 Preamble架構實現 58
4.9 Timing Recover架構實現 59
4.10 HomePlug AV系統架構整合 61
第五章 HomePlug AV系統驗證及模擬 63
5.1 Scramble/DeScramble驗證及模擬 64
5.2 Turbo Encoder/Turbo Decoder驗證及模擬 65
5.3 Interleaver/DeInterleaver驗證及模擬 66
5.4 QAM/DeQAM驗證及模擬 68
5.5 IFFT/FFT驗證及模擬 69
5.6 Preamble/Timing Recover驗證及模擬 71
5.7 HomePlug AV系統驗證及模擬 73
5.8 HomePlug AV系統實現規格 75
5.9 Xilinx FPGA驗證 76
第六章 結論 78
第七章 參考文獻 79
參考文獻 References
[1] 佟學儉, 羅濤, OFDM移動通信技術原理與應用, 人民郵電出版社, 2003
[2] 史治國, 基於Xilinx FPGA的OFDM 通訊系統基帶設計, 浙江大學出版社, 2009.
[3] HomePlug AV Specification, HomePlug Powerline Alliance.
[4] Haniph A. Latchman, Srinivas Katar, Larry Yonge, Sherman Gavette, Homeplug AV and IEEE 1901: A Handbook for PLC Designers and Users, pp. 32-60, 2013.
[5] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:Turbo codes,” IEEE Trans. Commun. Vol. 44, pp. 1261-1271, Oct 1996.
[6] A. J. Viterbi, “Convolutional codes and their performance in communication systems,” IEEE Trans. Commun., vol COM-19, Oct 1971.
[7] Z. Wang, H. Suzuki, and K. K. Parhi, “VLSI implementation issues of Turbo decoder design for wireless applications,” In proc, SiPS’99, pp. 503-512, Oct 1999.
[8] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara. “Soft-Input Soft-Output Maximun A Posterior(MAP) Module to Decode Parallel and Serial Concatenated Codes,” Jet Propulsion Lab TDA Progress Report, Vol. 42-27, Nov 1996.
[9] J. Hagenauer and P. Hoeher, "A Viterbi algorithm with soft-decision outputs and its applications", Proc. Global Communications, pp.1680 -1686 1989.
[10] Yueh-Hsiu Lee, “ On Interleavers for Turbo Codes”, National Tsing Hua University, Electrical Engineering, Master thesis, 2000.
[11] Jonqyin (Russell) Sun, "Linear diversity analysis for QAM in Rician fading channels", IEEE WOCC, 2014

[12] Wei-Cheng Sun, “Transmission Modeling with Sumulink and FPGA implementation of 3072-point FFT for the HomePlug AV system”, National Sun Yat-sen University, Communication Engineering, Master thesis, 2011.
[13] Ping-Chun Wang, “Design and Implementation of Variable-Length Fast Fourier Transform Processor in OFDM Systems”, National Central University, Communication Engineering, Master thesis, 2007.
[14] J.E. Volder, “The CORDIC Trigonometric Computing Technique, “ IRE Transactions. Electron. Computers, Vol. EC-8, no. 3, pp. 330-334, Sept 1959.
[15] Cheng-Han Lee, “Design, Analysis and Applications of Hybrid CORDIC Processor Architectures”, National Sun Yat-sen University, Computer Science and Engineering, Master thesis, 2010.
[16] Yong-tao Ma, Kai-hua Liu, Chung-guang Sun, and etc., “Simulation of Power Line Communication System Based on OFDM HomePlug AV” Tianjin University, Electronic Information Engineering, 2008.
[17] Ching-Huei Zheng, “A Baseband Digital Signal Processor for HomePlug AV Applications”, National Tsing Hua University, Electrical Engineering, Master thesis, 2006.
[18] C. Berrou, P. Adde, E. Angui, and etc., “A low complexity soft-output Viterbi decoder architecture, “ in Proc. IEEE ICC’93, pp. 737-740, May 1993.
[19] Algnabi, Yazan Samir, "Novel architecture of pipeline Radix 22 SDF FFT Based on digit-slicing technique." Semiconductor Electronics (ICSE), 2012 10th IEEE International Conference on. IEEE, 2012.
[20] You-Yun Chen, “Design of AGC-CR Equalization for PLC System”, National Central University, Electrical Engineering, Master thesis, 2008.

[21] L. Schwoerer, “VLSI suitable synchronization algorithms and architecture for IEEE 802.11a Physical Layer”, ISCAS, Vol. 5, pp.721-724, May 2002.
[22] 鈦思科技, 通訊系統設計與模擬 使用MATLAB/Simulink. 臺北市: 鈦思科技股份有限公司, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code