Responsive image
博碩士論文 etd-0623115-232754 詳細資訊
Title page for etd-0623115-232754
論文名稱
Title
一些微分算子週期譜的研究及相關課題
Periodic spectrum of some differential operators and related topics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-20
繳交日期
Date of Submission
2015-07-23
關鍵字
Keywords
Prufer 幅角、色散關係、週期譜、鑲嵌、量子圖、Floquet-Bloch 理論、Atkinson 半正則 p-拉普拉斯算子
dispersion relation, tiling, Floquet-Bloch theory, periodic spectrum, quantum graphs, Prufer angle, Atkinson's semi-definite p-Laplacian operator
統計
Statistics
本論文已被瀏覽 5752 次,被下載 242
The thesis/dissertation has been browsed 5752 times, has been downloaded 242 times.
中文摘要
我們研究一些微分算子的週期譜問題,特別是在無窮多邊形圖上的 Schr"{o}dinger 算子。利用 Floquet-Bloch 理論,我們可以推導及分析由二維長方形構成的週期量子圖之色散關係並推廣到 $n$ 維立方體週期量子圖上。微分算子的譜是由解析簇,或稱 Bloch 簇,所得到。此外,在平面上廣為人知的 11 種阿基米德鑲嵌中,我們選擇其中兩種:截角正方形鑲嵌 (頂點組態為(4,$8^2$)) 及小斜方截半六邊形鑲嵌 (頂點組態為(3,4,6,4)) 來研究,利用系統化的特徵函數方法,一樣可以推導出分別由這兩種鑲嵌組成的量子圖之色散關係。這些鑲嵌的色散關係出乎意料地簡單,讓後續的分析變得可行。

實數線上 Schr"{o}dinger 算子的週期譜研究傳統上是利用 Hill 判別式。Binding 和 Volkmer 近期利用 Pr"{u}fer 幅角巧妙地給出另一種證明。我們將該結果推廣應用於 Atkinson 半正則 $p$-拉普拉斯算子問題。
Abstract
We study the periodic spectrum of some differential operators, in particular the Schr"{o}dinger operator acting on infinite polygonal graphs. Using Floquet-Bloch theory, we derive and analyze on the dispersion relations of the periodic quantum graph generated by 2-dimensional rectangles, and also $n$-cubes. The analytic variety, also called Bloch variety, gives the spectrum of the differential operators. Furthermore, it is well known that there are 11 types of Archimedean tilings in the plane. We take two of them, the truncated square tiling ((4,$8^2$) in vertex configuration) and the rhombi-trihexagonal tiling ((3,4,6,4) in vertex configuration). Through a systematic characteristic function method, we are able to derive the dispersion relations for the graphs formed by these tilings. We note that these dispersion relations are surprisingly simple, making it possible for further analysis.

Traditionally the periodic spectrum of the Schr"{o}dinger operator on $mathbb{R}$ is studied using Hill's discriminant. Recently, Binging and Volkmer gave an alternative proof with a clever argument using the Pr"{u}fer angle. We generalize their result to the Atkinson's semidefinite $p$-Laplacian operator.
目次 Table of Contents
Contents
1 Introduction 1
1.1 Periodic quantum graphs . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Quantum graph of Archimedean tilings . . . . . . . . . . . . . . . . . 8
1.3 Periodic and antiperiodic eigenvalues . . . . . . . . . . . . . . . . . . 11
1.4 Chapter summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Dispersion relation for periodic n-cubic quantum graphs 14
2.1 Dispersion relation for periodic rectangular graphs . . . . . . . . . . . 14
2.2 Dispersion relation for periodic cubic graphs . . . . . . . . . . . . . . 19
2.3 Dispersion relation for periodic n-cubic graphs . . . . . . . . . . . . . 24
3 Periodic quantum graphs from Archimedean tilings 34
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Dispersion relation for truncated square tiling . . . . . . . . . . . . . 35
3.3 Dispersion relation for rhombi-trihexagonal tiling . . . . . . . . . . . 42
4 Eigenvalues on periodic and antiperiodic p-Laplacian eigenvalue
problems 48
Appendix A Archimedean tiling 55
A.1 Proof of Fyodorov Theorem . . . . . . . . . . . . . . . . . . . . . . . 55
A.2 Proof on Archimedean tilings . . . . . . . . . . . . . . . . . . . . . . 57
Appendix B Computation of some characteristic functions 60
B.1 Characteristic functions for truncated square tiling . . . . . . . . . . 60
B.2 Characteristic functions for rhombi-trihexagonal tiling . . . . . . . . . 62
Appendix C Floquet-Bloch theory 63
List of Figures
1.1 Fundamental domain of general periodic hexagonal graphs . . . . . . 4
2.1 Fundamental domain of periodic rectangular graphs . . . . . . . . . . 14
2.2 Floquet-Bloch conditions on periodic rectangular graphs . . . . . . . 15
2.3 Fundamental domain of periodic cubic graphs . . . . . . . . . . . . . 20
2.4 Floquet-Bloch conditions on periodic cubic graphs . . . . . . . . . . . 21
2.5 Characteristic function for S . . . . . . . . . . . . . . . . . . . . . . . 32
3.1 Fundamental domain of truncated square tiling . . . . . . . . . . . . 35
3.2 Floquet-Bloch conditions on truncated square tiling . . . . . . . . . . 36
3.3 Fundamental domain of rhombi-trihexagonal tiling . . . . . . . . . . . 42
3.4 Floquet-Bloch conditions on rhombi-trihexagonal tiling . . . . . . . . 43
A.1 17 choices for regular polygons to tting around a vertex on a plane . 57
List of Tables
A.1 Table of 11 Archimedean tilings . . . . . . . . . . . . . . . . . . . . . 59
參考文獻 References
[1] C. Amovilli, F. E. Leys, and N. H. March, Electronic energy spectrum of two-
Dimensional solids and a chain of C atoms from a quantum network model, J.
Math. Chem., 36 (2004), 93-112.
[2] F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press,
New York, 1964.
[3] G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Amer. Math.
Soc., Providence, 2012.
[4] P. Binding, L. Boulton, and P. Browne, A Prufer angle approach to singular
Sturm-Liouville problems with Mol canov potentials, J. Comput. Appl. Math.,
208 (2007), 226-234.
[5] P. Binding and P. Browne, Generalized Prufer angle and variational methods
for p-Laplacian eigenvalue problems on the half-line, Proc. Edinburgh Math.
Soc. (2), 51 (2008), 565-579.
[6] P. Binding, P. Browne, and I. Karabash, Sturm-Liouville problems for the p-
Laplacian on a half-line, Proc. Edinburgh Math. Soc. (2), 53 (2010), 271-291.
66
[7] P. Binding and P. Drabek, Sturm-Liouville theory for the p-Laplacian, Studia
Scientiarum Mathematicarum Hungarica, 40 (2003), 373-396.
[8] P. Binding and H. Volkmer, A Prufer angle approach to the periodic Sturm-
Liouville problem, Amer. Math. Monthly, 119 (2012) 477-484.
[9] P. Binding and H. Volkmer, A Prufer angle to semide nite Sturm-Liouville
problems with coupling boundary conditions, J. Di . Eq., 255 (2013), 761-778.
[10] C. Chen, C. K. Law, W. C. Lian, and W. C. Wang, Optimal upper bounds for
the eigenvalue ratios of one-dimensional p-Laplacian, Proc. Amer. Math. Soc.,
141 (2012), 883-893.
[11] Y. H. Cheng, C. K. Law, W. C. Lian, and W. C. Wang, An inverse nodal
problem and Ambarzumyan problem for the periodic p-Laplacian operator with
integrable potentials, Taiwanese J. Math., to appear (2015).
[12] E. B. Davies, Spectral Theory and Di erential Operators, Cambridge University
Press, Cambridge, 1995.
[13] M. Eastham, The Spectral Theory of Periodic Di erential Equations, Scottish
Academiac Press, Edinburgh and London, 1973.
[14] P. Exner, J. P. Keating, P. Kuchment, T. Sunada and A. Teplyaev, Analysis
on Graphs and Its Applications, Proceedings of a Isaac Newton Institute
programme, Janunary 8-June 29, 2007, Proc. Symp. Pure Math. 77, American
Mathematical Society, R. I., 2008.
67
[15] B. Grunbaum and G. Shephard, Tilings and Patterns, W. H. Freeman and
Company, New York, 1987.
[16] Y. L. Huang and C. K. Law, Eigenvalue ratios for the regular Sturm-Liouville
system, Proc. Amer. Math. Soc., 124 (1996), 1427-1436.
[17] E. Korotyaev and I. Lobanov, Schrodinger operators on zigzag nanotubes, Ann.
Henri Poincar e, 8 (2007), 1151-1176.
[18] E. Korotyaev and N. Saburova, Schrodinger operators on periodic discrete
graphs, J. Math. Anal. Appl., 420 (2014), 576-611.
[19] P. Kuchment, Floquet Theory for Partial Di erential Equations, Birkhause Verlag,
Basel, (1993).
[20] P. Kuchment and O. Post, On the spectra of carbon nano-structures, Comm.
Math. Phys., 275 (2007), 805-826.
[21] C. K. Law and V. Pivovarchik, Characteristic functions of quantum graphs, J.
Phys. A, 42 (2009), 12 pp.
[22] C. K. Law, T. E. Wang and Y. C. Luo, The spectrum of Schrodinger operators
acting on periodic hexagonal graphs, preprint.
[23] C. K. Law and E. Yanagida, A solution to an Ambarzumyan problem on trees,
Kodai Math. J., 35 (2012), 358-373.
[24] C. K. Law, W. Z. Wang, and W. C. Wang, Sturm-Liouville properties for
Atkinsons's semide nite p-Laplacian eigenvalue problems, submitted.
[25] P. D. Lax, Functional Analysis, Wiley, New York, (2002).
68
[26] F. E. Leys, C. Amovilli and N. H. March, Topology, connectivity, and electronic
structure of C and B cages and the corresponding nanotubes, J. Chem. Inf.
Comput. Sci., 44 (2004), 122-135.
[27] V. Pivovarchik and N. Rozhenko, Inverse Sturm-Liouville proble on equilateral
regular tree, Appl. Anal. , 92 (2013), 784-798.
[28] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis
of Operators, Academic Press, New York, (1978).
[29] T. E. Wang, Direct and inverse spectral problems on quantum graphs, Unpublished
PhD. Thesis, National Sun Yat-sen University, Kaohsiung, (2012).
[30] Wikipedia, Euclidean tilings of regular polygons. Retrieved from
https://en.wikipedia.org/wiki/Euclidean tilings_of_regular_polygons
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code