Responsive image
博碩士論文 etd-0623116-000718 詳細資訊
Title page for etd-0623116-000718
論文名稱
Title
一、泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於燃油樣品中微量元素分析之應用 二、單粒子感應耦合電漿質譜儀於銀奈米粒子與銀離子之分析
一、Determination of trace element in fuels by using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry 二、Determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-19
繳交日期
Date of Submission
2016-07-23
關鍵字
Keywords
感應耦合電漿質譜儀、微量元素分析、奈米粒子檢測、電熱式揮發
ETV-ICP-MS, SP-ICP-MS, multi-elemental analysis, silver nanoparticle
統計
Statistics
本論文已被瀏覽 5721 次,被下載 121
The thesis/dissertation has been browsed 5721 times, has been downloaded 121 times.
中文摘要
第一部分的研究將以泥漿取樣法結合USS-ETV-DRC-ICP-MS直接對於燃油樣品中之硫、砷、鎘、汞、鉛元素的含量進行分析,研究中對於乳化樣品的配製、添加之修飾劑、無機酸、界面活性劑對於分析物訊號的影響、儀器操作條件以及多原子離子之光譜干擾等參數進行探討,由實驗結果發現以Pd做為修飾劑能夠提升分析物之熱穩定性,在樣品中添加Tartaric acid與HNO3則能夠有效的改善訊號的分岔,Triton X-100能夠使燃油樣品均勻地乳化,因此選擇1 μg Pd、0.5% m/v Tartaric acid、1% m/v Triton X-100與0.5% v/v HNO3作為最適化條件,熱解溫度為380℃,揮發溫度為2100℃。使用ICP-MS進行分析常受限於光譜干擾造成定量的準確度不佳,因此可搭配動態反應管(Dynamic reaction cell,DRC)來減輕光譜干擾,如本研究中的32S+嚴重受到16O16O+離子的光譜干擾,因此採用O2作為反應氣體去除此干擾,並對於氣體流速、Rpq等參數進行探討,此外藉由在樣品中添加不同濃度的干擾物,偵測分析元素之訊號面積與同位素比例的變化,確定本研究之方法不會受到光譜干擾影響,最後將此最適化條件應用於燃油樣品中微量元素之定量分析。
單粒子感應耦合電漿質譜儀(Single particle ICP-MS)是一種用於檢測、鑑定與量化奈米粒子的新興技術,此技術能夠提供元素組成、粒徑、粒子濃度等資訊外,尚可同時對金屬離子進行檢測,第二部分的研究為單粒子感應耦合電漿質譜儀於銀離子與銀奈米粒子之分析,研究中對於取樣數目進行優化後,選擇取樣數目為24000進行實驗,探討不同濃度之銀離子及不同粒徑大小之銀奈米粒子與訊號之關係、粒子濃度與訊號產生頻率之關係,展示了此方法同時偵測奈米粒子與金屬離子之可行性,研究中發現儀器背景雜訊需在巨集中設定適當的Minimum Noise Threshold來消除,透過傳統霧化器及酸消化的方式對於實驗結果進行驗證,最後將此技術應用於環境水樣品中奈米粒子的檢測,未來希望能夠進一步應用於不同樣品及不同元素奈米粒子的分析。
Abstract
The first research, the determination of S, As, Cd, Hg and Pb in fuels by USS-ETV-ICP-MS was described. Palladium and tartaric acid was used as the modifier to enhance the ion signals. In the experiment procedure, the operation conditions, sample concentration, DRC system conditions and spectral interference were studied. Vaporization temperature and ash temperature was set as 2100oC and 380oC. Oxygen was used in the dynamic reaction cell to convert 32S+ to 32S16O+, that can reduce the interference causing by 16O16O+. Finally, the method has been applied to determine S, As, Cd, Hg and Pb in SDF-3X, a sulfur standard solution in diesel fuel and three different kinds of fuels by using standard addition method and ARIDUS-DRC-ICP-MS method. After digestion, compare with the quantitative results obtained from the conventional pneumatic nebulizer to verify the feasibility. The method detection limit estimated from standard addition curves was 39, 0.07, 0.10, 0.07, 0.07 ng g-1 for S, As, Cd, Hg and Pb respectively.
The second research, determination of dissolved silver(I) and silver nanoparticles based on single particle detection by ICP-MS was studied. ICP-MS is unique in its ability to provide information on nanoparticle size, size distribution, elemental composition, and number concentration in a single, rapid analysis. In the experiment procedure, the influences of number of readings were studied. In order to get enough pulse signals, 24000 readings were chosen. The study found that we should set the Minimum Noise Threshold to eliminate the instrument background noise. Through pneumatic nebulizers and acid digestion, we can validate the results. Finally, environmental water being added with silver nanoparticles was tested to obtain a similar size distribution and number concentration that demonstrates the feasibility of simultaneously detecting nanoparticles and metal ions.
目次 Table of Contents
目錄
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 x


第一章 泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於燃油樣品中微量元素分析之應用
壹、前言 1
一、研究背景 1
二、硫、砷、鎘、汞及鉛之個論 3
三、超音波泥漿取樣法結合電熱式揮發樣品輸入系統簡介 4
貳、實驗部分 9
一、 儀器裝置及操作條件 9
二、 試劑藥品及溶液的配製 15
參、結果與討論 20
一、 修飾劑的選擇 20
二、 界面活性劑對分析物訊號的影響 25
三、 酸對分析物訊號的影響 25
四、 樣品稀釋倍數探討 28
五、 裂解溫度及揮發溫度的探討 31
六、 DRC系統之最適化 31
七、 光譜干擾 39
八、 校正曲線 39
九、 定量分析 44
肆、結論 50
伍、參考文獻 51


第二章 單粒子感應耦合電漿質譜儀於銀奈米粒子與銀離子之分析
壹、前言 55
一、研究背景 55
二、單粒子感應耦合電漿質譜儀簡介 57
貳、實驗部分 61
一、 儀器裝置及操作條件 61
二、 試劑藥品及溶液的配置 61
參、結果與討論 65
一、銀奈米粒子與銀離子訊號之探討 65
二、取樣數目之優化探討 65
三、奈米粒子的偵測 69
四、銀離子與銀奈米粒子之檢測 75
五、銀奈米粒子數目濃度之驗證 75
六、環境樣品分析 77
肆、結論 83
伍、參考文獻 84


圖目錄
第一章 泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於燃油樣品中微量元素分析之應用
圖1- 1超音波泥漿取樣器裝置圖 8
圖1- 2 ETV-ICP-MS 系統裝置簡圖 11
圖1- 3薄膜去溶劑系統Aridus儀器構造 14
圖1- 4實驗流程圖 18
圖1- 5修飾劑Pd濃度對分析物訊號之影響 24
圖1- 6修飾劑tartaric acid濃度對分析物訊號之影響 26
圖1- 7界面活性劑Triton X-100濃度對分析物訊號之影響 27
圖1- 8 HNO3濃度對分析物訊號之影響 29
圖1- 9乳濁狀樣品濃度對分析物訊號之影響 30
圖1- 10裂解溫度對分析物訊號的影響 32
圖1- 11設定裂解溫度為280oC分析中油柴油中的硫、砷、鎘、汞及鉛之訊號圖 33
圖1- 12揮發溫度對分析物訊號的影響 34
圖1- 13以O2為反應氣體,改變氣體流速對分析物訊號強度及預估偵測極限之影響 36
圖1- 14以O2為反應氣體,改變Rpq值對分析物訊號強度及預估偵測極限之影響 37
圖1- 15以O2為反應氣體,改變軸場電壓對分析物訊號強度及預估偵測極限之影響 38
圖1- 16以ETV-ICP-MS分析中油柴油中的硫、砷、鎘、汞及鉛之訊號圖 49



第二章 單粒子感應耦合電漿質譜儀於銀奈米粒子及銀離子之分析
圖2-1 奈米粒子通過電漿之示意圖 58
圖2-2 單粒子感應耦合電漿質譜儀之資料處理流程圖 60
圖2-3 實驗流程圖 64
圖2- 4 以SP-ICP-MS偵測107Ag之訊號圖。(a)為分析超純水之訊號圖 (b)為分析2 ng mL-1銀離子水溶液之訊號圖 (c)為分析50 nm銀奈米粒子懸浮液之訊號圖。 66
圖2- 5 50 nm奈米粒子之粒徑分布圖 67
圖2- 6 取樣數目為4000時之粒徑分布圖 67
圖2- 7 以SP-ICP-MS分析不同粒徑奈米粒子建立之校正曲線 70
圖2- 8 以SP-ICP-MS分析不同濃度銀離子建立之校正曲線 71
圖2- 9 以SP-ICP-MS分析數目濃度奈米粒子建立之校正曲線 72
圖2- 10 以SP-ICP-MS分析數目濃度奈米粒子建立之校正曲線 73
圖2- 11 以SP-ICP-MS分析飲用水中銀奈米粒子之原始訊號圖與粒徑分佈圖 78
圖2- 12 以SP-ICP-MS分析自來水中銀奈米粒子之原始訊號圖與粒徑分佈圖 79
圖2- 13 超純水中銀奈米粒子之TEM圖 80
圖2- 14 自來水中銀奈米粒子之TEM圖 81
圖2- 15 (a)以SP-ICP-MS分析湖水中銀奈米粒子之原始訊號圖與粒徑分佈圖 82


表目錄
第一章 泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於燃油樣品中微量元素分析之應用
表1- 1 ICP-MS 系統操作條件 10
表1- 2 ETV升溫程式 12
表1- 3 微波消化步驟設定 19
表1- 4 添加Pd作為修飾劑對分析物訊號之影響 22
表1- 5 添加不同修飾劑對分析物訊號之影響 23
表1- 6 模擬基質中MoO+對分析物訊號及同位素比量測之影響 40
表1- 7 模擬基質中ArCl+對分析物訊號之影響 41
表1- 8 模擬基質中CoO+對分析物訊號之影響 42
表1- 9 水溶液校正曲線法與標準添加法斜率之比較 43
表1- 10 不同樣品標準添加法斜率之比較 45
表1- 11 使用不同方法定量柴油樣品中硫、砷、鎘、汞、鉛之濃度 46

第二章 單粒子感應耦合電漿質譜儀於銀奈米粒子及銀離子之分析
表2- 1 ICP-MS 系統操作條件 62
表2- 2 Reading數目對銀奈米粒子溶液分析結果之影響 68
表2- 3 以標準模式定量奈米粒子懸浮液 76
表2- 4 以SP-ICP-MS同時檢測銀離子與銀奈米粒子 76
表2- 5 銀奈米粒子數目濃度之檢測 76
參考文獻 References
第一章 泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於燃油樣品中微量元素分析之應用
1. 環保法規, 空氣污染防治法第二十七條第二項.
2. 行政院環保署, 專案編號 1027370“酸性沉降對人體健康影響之研 究-2.酸雨對農作物中重金屬生物濃縮影響之研究.
3. 行政院環保署, 專案編號 1027373“酸酸性沉降對人體健康影響之 研究-5.大氣中不同媒介之酸沉降總量推估研究及台灣地區酸沉 降研究之綜合評析.
4. Pereira, J. S. F.; Moraes, D. P.; Antes, F. G.; Diehl, L. O.; Santos, M. F. P.; Guimaraes, R. C. L.; Fonseca, T. C. O.; Dressler, V. L.; Flores, E. M. M., Determination of metals and metalloids in light and heavy crude oil by ICP-MS after digestion by microwave-induced combustion. Microchem. J. 2010, 96, 4-11.
5. Lord, C. J., Determination of Trace-Metals in Crude-Oil by Inductively Coupled Plasma Mass-Spectrometry with Microemulsion Sample Introduction. Anal. Chem. 1991, 63, 1594-1599.
6. Caumette, G.; Lienemann, C. P.; Merdrignac, I.; Paucot, H.; Bouyssiere, B.; Lobinski, R., Sensitivity improvement in ICP MS analysis of fuels and light petroleum matrices using a microflow nebulizer and heated spray chamber sample introduction. Talanta 2009, 80, 1039-1043.
7. Aucelio, R. Q.; Curtius, A. J., Comparative study of electrothermal atomic absorption spectrometric methods for the determination of silver in used lubricating oils. Analyst 2000, 125, 1673-1679.
8. Aucelio, R. Q.; Curtius, A. J.; Welz, B., Sequential determination of Sb and Sn in used lubricating oil by electrothermal atomic absorption spectrometry using Ru as a permanent modifier and microemulsion sample introduction. J. Anal. At. Spectrom. 2000, 15, 1389-1393.
9. Heilmann, J.; Heumann, K., Sulfur trace determination in petroleum products by isotope dilution ICP-MS using direct injection by thermal vaporization (TV-ICP-IDMS). Anal Bioanal Chem 2009, 393, 393-397.
10. Yu, L. L.; Kelly, W. R.; Fassett, J. D.; Vocke, R. D., Determination of sulfur in fossil fuels by isotope dilution electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2001, 16, 140-145.
11. Http://www.cpjh.ttct.edu.tw.
12. Division of Toxicology and Environmental Medicine, Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services. Detailed data table for the 2011 priority list of hazardous substances that will be the subject of toxicological profiles.
13. Simpson, L. A.; Thomsen, M; Alloway, B. J.; Parker, A., A dynamic reaction cell (DRC) solution to oxide-based interferences in inductively coupled plasma mass spectrometry (ICP-MS) analysis of the noble metals. J. Anal. At. Spectrom. 2001, 16, 1375-1380.
14. Tanner, S. D.; Baranov, V. I.; Bandura, D. R., Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim. Acta Part B, 2002, 57, 1361-1452.
15. Silva, A. F.; Welz, B.; de Loos-Vollebregt, M. T. C., Evaluation of pyrolysis curves for volatile elements in aqueous standards and carbon-containing matrices in electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim. Acta, Part B 2008, 63, 755-762.
16. Volynsky, A. B.; de Loos-Vollebregt, M. T. C., Vaporization of Pb, As and Ga alone and in the presence of Pd modifier studied by electrothermal vaporization-inductively coupled mass spectrometry. Spectrochim. Acta, Part B 2005, 60, 1432-1441.
17. Pinto, F. G.; Lepri, F. G.; Saint'Pierre, T. D.; da Silva, J. B. B.; Costa, L. M.; Curtius, A. J., DIRECT DETERMINATION OF Dy, Sm, Eu, Tm, AND Yb IN GEOLOGICAL SAMPLES BY SLURRY ELECTROTHERMAL VAPORIZATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY. Anal. Lett. 2010, 43, 949-959.
18. Okamoto, Y.; Kanda, K.; Kishiwada, S.; Fujiwara, T., Determination of phosphorous and sulfur in environmental samples by electrothermal vaporization inductively coupled plasma atomic emission spectrometry. Appl Spectrosc 2004, 58, 105-110.
19. Gregoire, D. C., Determination of Boron Isotope Ratios in Geological-Materials by Inductively Coupled Plasma Mass-Spectrometry. Anal. Chem. 1987, 59, 2479-2484.
20. Shiquan, T. T. K., Inductively coupled plasma atomic emission spectrometric determination of cadmium in biological and environmental materials using electrothermal vaporization after in situ alkylation Anal. Chim. Acta 1995, 310.
21. Vothbeach, L. M.; Shrader, D. E., Investigations of a Reduced Palladium Chemical Modifier for Graphite-Furnace Atomic-Absorption Spectrometry. J. Anal. At. Spectrom. 1987, 2, 45-50.
22. Bulska, E.; Jedral, W., Application of Palladium-Plating and Rhodium-Plating of the Graphite-Furnace in Electrothermal Atomic-Absorption Spectrometry. J. Anal. At. Spectrom. 1995, 10, 49-53.
23. Volynsky, A.; Tikhomirov, S.; Elagin, A., Proposed Mechanism for the Action of Palladium and Nickel Modifiers in Electrothermal Atomic-Absorption Spectrometry. Analyst 1991, 116, 145-148.
24. Chen, Z. L.; Sun, Q.; Xi, Y. F.; Owens, G., Speciation of metal-EDTA complexes by flow injection analysis with electrospray ionization mass spectrometry and ion chromatography with inductively coupled plasma mass spectrometry. J. Sep. Sci. 2008, 31, 3796-3802.
25. Chen, C. C.; Jiang, S. J.; Sahayam, A. C., Determination of trace elements in medicinal activated charcoal using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry with low vaporization temperature. Talanta 2015, 131, 585-589.
26. Grindlay, G.; Mora, J.; Gras, L.; de Loos-Vollebregt, M. T. C., Ultratrace determination of Pb, Se and As in wine samples by electrothermal vaporization inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2009, 652, 154-160.
27. Burguera, M.; Burguera, J. L.; Rondon, C.; Garcia, M. I.; de Pena, Y. P.; Villasmil, L. M., Determination of bismuth in biological tissues by electrothermal atomic absorption spectrometry using platinum and tartaric acid as chemical modifier. J. Anal. At. Spectrom. 2001, 16, 1190-1195.
28. Li, P. C.; Jiang, S. J., Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Cd and Pb in plastics. Anal Bioanal Chem 2006, 385, 1092-1097.
29. Li, Y. C.; Jiang, S. J., Determination of Cu, Zn, Cd and Pb in fish samples by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Anal. Chim. Acta 1998, 359, 205-212.
30. 台灣中油股份有限公司, 石油產品規範.

第二章 單粒子感應耦合電漿質譜儀於銀奈米粒子與銀離子之分析
1. Ray, P. C.; Yu, H. T.; Fu, P. P., Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs. J Environ Sci Heal C 2009, 27, 1-35.
2. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J., The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346-2353.
3. Kittler, S.; Greulich, C.; Diendorf, J.; Koller, M.; Epple, M., Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions. Chem. Mater. 2010, 22, 4548-4554.
4. Bar-Ilan, O.; Albrecht, R. M.; Fako, V. E.; Furgeson, D. Y., Toxicity Assessments of Multisized Gold and Silver Nanoparticles in Zebrafish Embryos. Small 2009, 5, 1897-1910.
5. Ratte, H. T., Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem. 1999, 18, 89-108.
6. Quadros, M. E.; Marr, L. C., Environmental and Human Health Risks of Aerosolized Silver Nanoparticles. J Air Waste Manage 2010, 60, 770-781.
7. Mavrocordatos, D. P., D.; Leppard, G. G. In Environmental Colloids and Particles; John Wiley & Sons, Ltd.: Chichester, U.K., 2007; pp 345-404.
8. Hassellov, M.; Readman, J. W.; Ranville, J. F.; Tiede, K., Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 2008, 17, 344-361.
9. Tiede, K.; Boxall, A. B. A.; Tiede, D.; Tear, S. P.; David, H.; Lewis, J., A robust size-characterisation methodology for studying nanoparticle behaviour in 'real' environmental samples, using hydrodynamic chromatography coupled to ICP-MS. J. Anal. At. Spectrom. 2009, 24, 964-972.
10. Franze, B.; Engelhard, C., Fast Separation, Characterization, and Speciation of Gold and Silver Nanoparticles and Their Ionic Counterparts with Micellar Electrokinetic Chromatography Coupled to ICP-MS. Anal. Chem. 2014, 86, 5713-5720.
11. Degueldre, C.; Favarger, P. Y., Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloid Surface A 2003, 217, 137-142.
12. Ramos, K.; Gomez-Gomez, M. M.; Camara, C.; Ramos, L., Silver speciation and characterization of nanoparticles released from plastic food containers by single particle ICPMS. Talanta 2016, 151, 83-90.
13. Dan, Y. B.; Zhang, W. L.; Xue, R. M.; Ma, X. M.; Stephan, C.; Shi, H. L., Characterization of Gold Nanoparticle Uptake by Tomato Plants Using Enzymatic Extraction Followed by Single-Particle Inductively Coupled Plasma-Mass Spectrometry Analysis. Environmental Science & Technology 2015, 49, 3007-3014.
14. Wei, G. T.; Liu, F. K., Separation of nanometer gold particles by size exclusion chromatography. J. Chromatogr. A 1999, 836, 253-260.
15. Helfrich, A.; Bruchert, W.; Bettmer, J., Size characterisation of Au nanoparticles by ICP-MS coupling techniques. J. Anal. At. Spectrom. 2006, 21, 431-434.
16. Romer, I.; White, T. A.; Baalousha, M.; Chipman, K.; Viant, M. R.; Lead, J. R., Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J. Chromatogr. A 2011, 1218, 4226-4233.
17. Poda, A. R.; Bednar, A. J.; Kennedy, A. J.; Harmon, A.; Hull, M.; Mitrano, D. M.; Ranville, J. F.; Steevens, J., Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J. Chromatogr. A 2011, 1218, 4219-4225.
18. Nischwitz, V.; Goenaga-Infante, H., Improved sample preparation and quality control for the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow fractionation on-line with inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2012, 27, 1084-1092.
19. Franze, B.; Strenge, I.; Engelhard, C., Single particle inductively coupled plasma mass spectrometry: evaluation of three different pneumatic and piezo-based sample introduction systems for the characterization of silver nanoparticles. J. Anal. At. Spectrom. 2012, 27, 1074-1083.
20. Pace, H. E.; Rogers, N. J.; Jarolimek, C.; Coleman, V. A.; Higgins, C. P.; Ranville, J. F., Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83, 9361-9369.
21. Echegoyen, Y.; Nerin, C., Nanoparticle release from nano-silver antimicrobial food containers. Food Chem. Toxicol. 2013, 62, 16-22.
22. Reed, R. B.; Faust, J. J.; Yang, Y.; Doudrick, K.; Capco, D. G.; Hristovski, K.; Westerhoff, P., Characterization of Nanomaterials in Metal Colloid-Containing Dietary Supplement Drinks and Assessment of Their Potential Interactions after Ingestions. Acs Sustain Chem Eng 2014, 2, 1616-1624.
23. Mitrano, D. M.; Lesher, E. K.; Bednar, A.; Monserud, J.; Higgins, C. P.; Ranville, J. F., Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ. Toxicol. Chem. 2012, 31, 115-121.
24. Tuoriniemi, J.; Cornelis, G.; Hassellov, M., Size Discrimination and Detection Capabilities of Single-Particle ICPMS for Environmental Analysis of
Silver Nanoparticles. Anal. Chem. 2012, 84, 3965-3972.
25. Hadioui, M.; Merdzan, V.; Wilkinson, K. J., Detection and Characterization of ZnO Nanoparticles in Surface and Waste Waters Using Single Particle ICPMS. Environmental Science & Technology 2015, 49, 6141-6148.
26. Peters, R.; Herrera-Rivera, Z.; Undas, A.; van der Lee, M.; Marvin, H.; Bouwmeester, H.; Weigel, S., Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. J. Anal. At. Spectrom. 2015, 30, 1274-1285.
27. Jenkins, S. V.; Qu, H. O.; Mudalige, T.; Ingle, T. M.; Wang, R. R.; Wang, F.; Howard, P. C.; Chen, J. Y.; Zhang, Y. B., Rapid determination of plasmonic nanoparticle agglomeration status in blood. Biomaterials 2015, 51, 226-237.
28. Miyashita, S.; Groombridge, A. S.; Fujii, S.; Takatsu, A.; Chiba, K.; Inagaki, K., Time-resolved ICP-MS Measurement: a New Method for Elemental and Multiparametric Analysis of Single Cells. Anal. Sci. 2014, 30, 219-224.
29. Laborda, F.; Jimenez-Lamana, J.; Bolea, E.; Castillo, J. R., Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2011, 26, 1362-1371.
30. Von der Kammer, F.; Ferguson, P. L.; Holden, P. A.; Masion, A.; Rogers, K. R.; Klaine, S. J.; Koelmans, A. A.; Horne, N.; Unrine, J. M., Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32-49.
31. Gallego-Urrea, J. A.; Tuoriniemi, J.; Hassellov, M., Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. Trac-Trend Anal Chem 2011, 30, 473-483.
32. Farre, M.; Sanchis, J.; Barcelo, D., Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trac-Trend Anal Chem 2011, 30, 517-527.
33. Yang, Y.; Long, C. L.; Yang, Z. G.; Li, H. P.; Wang, Q., Characterization and Determination of Silver Nanoparticle Using Single Particle-Inductively Coupled Plasma-Mass Spectrometry. Chinese J Anal Chem 2014, 42, 1553-1559.
34. Li, X.; Lenhart, J. J., Aggregation and Dissolution of Silver Nanoparticles in Natural Surface Water. Environmental Science & Technology 2012, 46, 5378-5386.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code