Responsive image
博碩士論文 etd-0623116-165924 詳細資訊
Title page for etd-0623116-165924
論文名稱
Title
可圖案轉移之氧化石墨烯光柵薄膜的實現與應用
Thin and transferrable graphene oxide grating and its applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-22
繳交日期
Date of Submission
2016-07-25
關鍵字
Keywords
布拉格光柵、矽光學、紫外光臭氧蝕刻機、石墨烯披覆於矽波導、全像術
UV-Ozone cleaner, Holography, Silicon photonics, Bragg grating, Silicon graphene Bragg gratings
統計
Statistics
本論文已被瀏覽 5712 次,被下載 33
The thesis/dissertation has been browsed 5712 times, has been downloaded 33 times.
中文摘要
實現氧化石墨烯布拉格光柵(Graphene oxide grating, GO-grating)披覆於矽波導上,提供高靈敏與精確的光譜響應為本論文主要研究目標。以往布拉格光柵結合高折射率差SOI的晶片設計,由於在矽波導側壁的光柵製程技術解析度要求非常高,需使用電子束直寫或先進步進機製作,且製作出的光柵仍會有平滑失真情形,造成光柵耦合係數不易控制,而高折射差的SOI平台亦不易達到窄頻寬效果(<1 nm)。
本論文提出了一個新穎異質整合製程,利用全像術高解析度光柵整合於SOI波導成功實現次波長氧化石墨烯光柵結構,為了因應未來產業端量產化,更展示此技術製作出大面積氧化石墨烯光柵的能力,為了驗證均勻性,利用原子力顯微鏡(AFM)確認其厚度最大誤差約為7.3 nm,光學特性方面,利用光學繞射系統量測其繞射效率與繞射週期平均誤差分別為2x10-4 ± 1.43x10-4與0.685 nm,不僅如此,製作完成的GO-grating厚度,亦能藉由Ozone descum精準控制薄膜厚度最薄可達4 nm。為了能將GO-grating實現於各種基板(如軟板、凹凸表面以及各式半導體晶片),我們利用PMMA協助轉移GO-grating技術,將GO-grating轉移至矽波導上,因GO折射率僅為1.58左右,因此易於製作窄線寬反射器,且製作出的GO-grating披覆於矽波導上所產生的sharp其半高寬僅0.37 nm,未來我們將利用GO-grating應用於各種光學領域,如鈣鈦礦太陽能電池、液晶配向、光纖、光柵…等,更進一步實現週期漸變GO-grating於矽波導上,設計成帶通濾波器(bandpass filters),相信利用GO-grating整合的光電元件能在感測與通訊領域有不錯的應用。
Abstract
The difficulty in realizing narrowband (< 1nm) Bragg reflection from high-index-contrast silicon-on-insulator (SOI) waveguide has been released in this thesis by forming a thin graphene oxide grating atop the SOI waveguide. The graphene oxide (GO) gratings can be realized using interference lithography followed by reactive ion etching such that advanced stepper lithography is not required anymore to achieve waveguide grating structures. The patterning of thin GO film over a large sample area can be achieved by our recently-developed mirror-tunable two-beam interference lithography system. The variation in thickness, diffraction efficiency and periodicity of resultant GO gratings are about 7.3 nm, 2x10-4 ± 1.43x10-4, and 0.685 nm, respectively, across the entire 2-inch wafer. The thickness of thin GO film can be accurately controlled by ozone treatment with an etch rate of 0.3 nm/min. As-realized GO grating is then transferred onto the target SOI waveguide using PMMA-assisted transfer method. The refractive index of GO film is characterized to be 1.58. Finally, as-realized hybrid GO/Si waveguide grating enables a narrowband reflection with a bandwidth of only 0.37 nm. Such a narrowband reflection is difficult to achieve by simply applying sidewall gratings on SOI waveguides.
目次 Table of Contents
一、緒論 1
1-1 研究背景 2
1-2 研究動機 4
1-3 文獻回顧 6
1-4 次波長光柵繞射原理 17
1-5 論文架構 20
二、製程技術概要 21
2-1 現有關鍵技術/能力分析 21
2-1-1 技術流程 21
2-1-2 全像術系統 23
2-1-3 氧化石墨烯合成技術 26
2-2 先前製程方法與探討 37
三、新穎製程與實驗結果 42
3-1 製程步驟與方法 42
3-2 實驗結果與討論 45
3-2-1 大週期氧化石墨烯微結構 45
3-2-2 次波長氧化石墨烯次波長光柵結構 47
3-2-3 兩吋大面積Si基板 53
3-2-4 可調厚度光柵結構 58
3-2-5 可轉移氧化石墨烯光柵結構至其它基板 61
四、實現結合積體化矽波導之應用 66
4-1 單層GO-grating披覆於矽波導上 66
4-2 雙層GO-grating披覆於矽波導上 82
五、總結與未來工作 84
5-1結果與討論 84
5-2 未來研究方向 85
參考文獻 88
附錄 92
參考文獻 References
[1] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, no. 5881, pp. 1308, 2008.
[2] F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science, vol. 320, no. 5873, pp. 206-209, 2008.
[3] E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys Rev Lett, vol. 105, no. 9, pp. 097401, 2010.
[4] M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics, vol. 7, no. 1, pp. 53-59, 2012.
[5] A. Grigorenko, and M. P. K. Novoselov, “Graphene plasmonics,” Nat. Photonics, vol. 6, no. 11, pp. 749-758, 2012.
[6] T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nature Photonics, vol. 4, no. 5, pp. 297-301, 2010.
[7] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, and F. Bonaccorso, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano, vol. 4, no. 2, pp. 803-810, 2010.
[8] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nature Photonics, vol. 5, no. 7, pp. 411-415, 2011.
[9] G.-K. Lim, Z.-L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L.-L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nature Photonics, vol. 5, no. 9, pp. 554-560, 2011.
[10] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature, vol. 474, no. 7349, pp. 64-7, 2011.
[11] J. Capmany, D. Domenech, and P. Munoz, “Silicon graphene Bragg gratings,” Opt Express, vol. 22, no. 5, pp. 5283-90, 2014.
[12] J. Tao, X. Yu, B. Hu, A. Dubrovkin, and Q. J. Wang, “Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth,” Opt Lett, vol. 39, no. 2, pp. 271-4, 2014.
[13] W. Xiong, Y. S. Zhou, W. J. Hou, L. J. Jiang, Y. Gao, L. S. Fan, L. Jiang, J. F. Silvain, and Y. F. Lu, “Direct writing of graphene patterns on insulating substrates under ambient conditions,” Sci Rep, vol. 4, pp. 4892, 2014.
[14] H.-B. Jiang, Y.-L. Zhang, D.-D. Han, H. Xia, J. Feng, Q.-D. Chen, Z.-R. Hong, and H.-B. Sun, “Bioinspired Fabrication of Superhydrophobic Graphene Films by Two-Beam Laser Interference,” Advanced Functional Materials, vol. 24, no. 29, pp. 4595-4602, 2014.
[15] J. Ding, K. Du, I. Wathuthanthri, C.-H. Choi, F. T. Fisher, and E.-H. Yang, “Transfer patterning of large-area graphene nanomesh via holographic lithography and plasma etching,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 32, no. 6, pp. 06FF01, 2014.
[16] Z. Xiong, C. Liao, and X. Wang, “Reduced graphene oxide diffraction gratings from duplication of photoinduced azo polymer surface-relief-gratings through soft-lithography,” J. Mater. Chem. C, vol. 3, no. 24, pp. 6224-6231, 2015.
[17] J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung, C.-L. Lee, D.-Y. Kim, J.-M. Yun, Y.-H. Seo, S.-S. Kim, and S.-I. Na, “Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer,” Nano Energy, vol. 12, pp. 96-104, 2015.
[18] B. Sensale-Rodriguez, R. Yan, L. Liu, D. Jena, and H. G. Xing, “Graphene for Reconfigurable Terahertz Optoelectronics,” Proc. IEEE, vol. 101, no. 7, pp. 1705-1716, 2013.
[19] F. Bonnacorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene Photonics and optoelectronics,” Nat. Photonics, vol. 4, no. 9, pp. 611-622, 2010.
[20] Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express, vol. 20, no. 21, pp. 23201-23214, 2012.
[21] N. D. K. Tu, J. Choi, C. R. Park, and H. Kim, “Remarkable Conversion Between n- and p-Type Reduced Graphene Oxide on Varying the Thermal Annealing Temperature,” Chemistry of Materials, vol. 27, no. 21, pp. 7362-7369, 2015.
[22] S. Yavuz, C. Kuru, D. Choi, A. Kargar, S. Jina, and P. R. Bandaru, “Graphene oxide as a p-dopant and an anti-reflection. coating layer, in graphenesilicon solar cells,” Nanoscale, vol. 8, no. 0, pp. 6224-6231, 2016.
[23] B. C. Yao, Y. Wu, A. Q. Zhang, F. Wang, Y. J. Rao, Y. Gong, W. L. Zhang, Z. G. Wang, K. S. Chiang, and M. Sumetsky, “Graphene Bragg gratings on microfiber,” Opt Express, vol. 22, no. 20, pp. 23829-35, 2014.
[24] D. J. C. Herr, W. Mao, I. Wathuthanthri, and C.-H. Choi, “Tunable two-mirror laser interference lithography system for large-area nano-patterning,” vol. 7970, pp. 79701K, 2011.
[25] M. Wissler, “Graphite and carbon powders for electrochemical applications,” Journal of Power Sources, vol. 156, no. 2, pp. 142-150, 2006.
[26] T. Szabó, A. Szeri, and I. Dékány, “Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer,” Carbon, vol. 43, no. 1, pp. 87-94, 2005.
[27] S. Park, and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nat Nanotechnol, vol. 4, no. 4, pp. 217-24, 2009.
[28] Brodie, and B.C, “On the Atomic Weight of Graphite,” Philos. Trans. R. Soc. Lond, vol. 149, pp. 249-259, 1859.
[29] Hummers, W.S, Offeman, and R.E, “Preparation of graphitic oxide,” J. Am. Chem., vol. 80, no. 1339, 1958.
[30] N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-Layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater, vol. 11, pp. 771-778, 1999.
[31] Y.-Y. Yu, B. H. Kang, Y. D. Lee, S. B. Lee, and B.-K. Ju, “Effect of fluorine plasma treatment with chemically reduced graphene oxide thin films as hole transport layer in organic solar cells,” Applied Surface Science, vol. 287, pp. 91-96, 2013.
[32] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, pp. 4806-4814, 2010.
[33] S. Hu, L.-W. Tien, R.-H. Jhang, and C.-H. Chen, “Graphene oxide-based flexible transparent conductive films,” CSL, 2015.
[34] A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of Graphite Oxide Revisited,” J. Phys. Chem. B, vol. 102, pp. 4477-4482, 1998.
[35] H. He, T. Riedl, A. Lerf, and J. Klinowski, “Solid-State NMR Studies of the Structure of Graphite Oxide,” J. Phys. Chem. B, vol. 100, pp. 19954-19958, 1996.
[36] P. Ramesh, S. Bhagyalakshmi, and S. Sampath, “Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide,” J Colloid Interface Sci, vol. 274, no. 1, pp. 95-102, 2004.
[37] J. Li, X. Zeng, T. Ren, and E. van der Heide, “The Preparation of Graphene Oxide and Its Derivatives and Their Application in Bio-Tribological Systems,” Lubricants, vol. 2, no. 3, pp. 137-161, 2014.
[38] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558-1565, 2007.
[39] W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, “New insights into the structure and reduction of graphite oxide,” Nat Chem, vol. 1, no. 5, pp. 403-8, 2009.
[40] M. Li, Q. Liu, Z. Jia, X. Xu, Y. Shi, Y. Cheng, Y. Zheng, T. Xi, and S. Wei, “Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings,” Applied Surface Science, vol. 284, pp. 804-810, 2013.
[41] M. Li, Q. Liu, Z. Jia, X. Xu, Y. Cheng, Y. Zheng, T. Xi, and S. Wei, “Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications,” Carbon, vol. 67, pp. 185-197, 2014.
[42] S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. Wu, S. Chen, and C. Liu, “Graphene-silica composite thin films as transparent conductors,” Nano Lett., vol. 7, pp. 1888-1892, 2007.
[43] S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “]Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon vol. 63, pp. 454-459, 2013.
[44] Y.-T. Hsieh, and Y.-C. Lee, “Direct metal contact printing lithography for patterning sub-micrometer surface structures on a sapphire substrate,” Journal of Micromechanics and Microengineering, vol. 21, no. 1, pp. 015001, 2011.
[45] D. Kostiuk, M. Bodik, P. Siffalovic, M. Jergel, Y. Halahovets, M. Hodas, M. Pelletta, M. Pelach, M. Hulman, Z. Spitalsky, M. Omastova, and E. Majkova, “Reliable determination of the few-layer graphene oxide thickness using Raman spectroscopy,” Journal of Raman Spectroscopy, vol. 47, no. 4, pp. 391-394, 2016.
[46] Y. Mulyana, M. Uenuma, Y. Ishikawa, and Y. Uraoka, “Reversible Oxidation of Graphene Through Ultraviolet/Ozone Treatment and Its Nonthermal Reduction through Ultraviolet Irradiation,” The Journal of Physical Chemistry C, vol. 118, no. 47, pp. 27372-27381, 2014.
[47] R. Swanepoel, “Determining refractive index and thickness of thin films from wavelength measurements only,” Optical Society of America, vol. 2, no. 8, pp. 1339-1343, 1985.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code