Responsive image
博碩士論文 etd-0623118-160530 詳細資訊
Title page for etd-0623118-160530
論文名稱
Title
溶液製程製作鉬氧化物摻雜石墨烯陽極緩衝層應用於反置式有機太陽能電池
Solution-process of molybdenum oxide doped graphene as anode buffer layer in inverted organic solar cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-16
繳交日期
Date of Submission
2018-07-23
關鍵字
Keywords
PEDOT:PSS、緩衝層、鉬氧化物、奈米顆粒、溶液製程、石墨烯
buffer layer, molybdenum oxide, nanoparticle, graphene, PEDOT : PSS, solution process
統計
Statistics
本論文已被瀏覽 5653 次,被下載 0
The thesis/dissertation has been browsed 5653 times, has been downloaded 0 times.
中文摘要
本實驗將不同體積百分濃度的石墨烯溶液摻入鉬氧化物奈米顆粒溶液 (MoOx NPs),並應用於反置式有機太陽能電池的陽極緩衝層。為了探討此製程對元件之作用,摻入些許型號為PH1000的PEDOT : PSS導電高分子使陽極緩衝溶液可用於旋轉塗佈製程。
首先將市售鉬粉溶於溶劑內用雙氧水充分氧化,配製成濃度為0.02M的MoOx NPs溶液用於後續研究。石墨烯溶液分別為5% 、10%和15%的體積百分比加入MoOx NPs : PEDOT : PSS溶液,應用於元件中。元件結構為ITO/ZnO/PCBM:P3HT/陽極緩衝層/Ag。
透過比較不同陽極緩衝層的元件,蒸鍍製程與0%、5%、10%與15%的石墨烯摻雜溶液製程,在太陽能模擬器AM1.5G 100 mWcm-2 光源照射下,元件效率分別為2.3%、2.8%、3.0%、2.6%與2.58%,短路電流分別為5.86 mAcm-2 、 6.15 mAcm-2 、 9.64 mAcm-2、 8.89 mAcm-2與8.11 mAcm-2。
由結果可知,5%石墨烯摻雜元件表現最好。在接觸上,PEDOT:PSS與主動層有良好接觸,MoOx NPs與金屬電極有良好接觸,使溶液製程的陽極緩衝層易於傳輸電洞,而石墨烯作為PEDOT:PSS與MoOx NPs間載子傳遞橋梁,能進一步提升載子傳遞的效率。電洞在陽極緩衝層能夠更加有效傳遞,導致短路電流明顯提升,進而提升光電轉換效率。
Abstract
In this study, different volume percentage graphene solutions were doped into molybdenum oxide nanoparticle solution (MoOx NPs) and then applied it to the anode buffer layer of the inverted organic solar cells. In order to investigate the effect of this process on the devices, some conductive polymer PEDOT: PSS (PH1000) was used to make the anode buffer solution by spin coating process available.
First, to prepare 0.02 M MoOx NPs solution for later experiment, the commercially available molybdenum powder was dissolved in a solvent and sufficiently oxidized with hydrogen peroxide. The graphene solution was added to the MoOx NPs at 5%, 10% and 15% volume percentage, and then applied them individually to the device. The device structure is ITO/ZnO/PCBM:P3HT/anode buffer layer/Ag.
By comparing devices with different anode buffer layer, evaporation process and 0%, 5%, 10% and 15% graphene doping solution process, were irradiated by the light source from solar simulator in condition of AM1.5G 100 mWcm-2, respectively, the conversion efficiencies were 2.3%, 2.8%, 3.0%, 2.6% and 2.58%, and the short-circuit currents were 5.86 mAcm-2, 6.15 mAcm-2, 9.64 mAcm-2, 8.89 mAcm-2 and 8.11 mAcm-2.
According to the results, the 5% graphene doped device performs best. In the part of contact, PEDOT : PSS has a good contact with the active layer, MoOx NPs have good contact with the metal electrode, and graphene is a bridge between the PEDOT : PSS and the MoOx NPs, so that the holes can be easily transported in the solution process. The holes in the anode buffer layer can be transferred more effective, resulting in a significant increase in the short-circuit current, thereby improving the photoelectric conversion efficiency.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
第一章 序論 1
1-1 前言 1
1-2 太陽能電池的種類與介紹 3
1-3 有機太陽能電池結構與技術發展 5
1-3-1有機太陽能電池單層結構 5
1-3-2有機太陽能電池異質介面 6
1-3-3混和層異質介面 7
1-3-4緩衝層與陽極緩衝層 8
1-4 石墨烯材料特性介紹 9
1-5 文獻回顧 11
1-5 研究動機 14
第二章 基礎理論 16
2-1 能量及電荷轉移機制 16
2-2 有機太陽能電池工作原理 18
2-3 太陽能電池元件等效電路 22
2-3 有機太陽能電池元件操作分析 23
2-3-1開路電壓 (Open Circuit Voltage, VOC) 24
2-3-2 短路電流 (Short Circuit Current, ISC) 24
2-3-3 填充因子 (Fill Factor, FF) 24
2-3-4 功率轉換效率 (Power Conversion Efficiency, PCE) 25
2-3-5串聯電阻 (series resistance, Rs) 25
2-3-6並聯電阻 (shunt resistance, Rsh) 25
第三章 實驗 26
3-1 實驗架構 26
3-2 實驗藥品 28
3-3 製程設備 30
3-4 量測分析儀器與方法 31
3-4-1 太陽光譜模擬測量系統 (Solar Simulator) 31
3-4-2 表面輪廓儀 (Surface Profiler / Alpha-step) 32
3-4-3 X光光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 33
3-5 藥品配製 34
3-6 實驗步驟 35
3-6-1 ITO基版圖形蝕刻 35
3-6-2 反置式有機太陽能電池基礎元件製程 36
3-6-3 反置式有機太陽能電池元件製程 38
第四章 結果與討論 39
4-1 不同環境下MOOX NPS的變化 39
4-2 MOOX NPS 成分分析與元件初步製作比較 41
4-2-1 XPS分析 41
4-2-2 初步元件分析 43
4-2-3 基礎元件壽命分析 45
4-3 陽極緩衝層元件數據優化比較 46
4-4 石墨烯不同摻雜濃度元件比較與穩定性分析 50
第五章 總結 53
參考文獻 55
參考文獻 References
[1] U.S. Energy Information Administration, Short-Term Energy Outlook (STEO), 2018, June, 20.
[2] Kearns, D., & Calvin, M. (1958). Photovoltaic effect and photoconductivity in laminated organic systems. The Journal of chemical physics, 29(4), 950-951.
[3] Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied Physics Letters, 48(2), 183-185.
[4] Yang, C. Y., Reghu, M., Heeger, A. J., & Cao, Y. (1996). Thermal stability of polyaniline networks in conducting polymer blends. Synthetic metals, 79(1), 27-32.
[5] Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 270(5243), 1789-1791.
[6] Shaheen, S. E., Brabec, C. J., Sariciftci, N. S., Padinger, F., Fromherz, T., & Hummelen, J. C. (2001). 2.5% efficient organic plastic solar cells. Applied Physics Letters, 78(6), 841-843.
[7] Bundgaard, E., & Krebs, F. C. (2007). Low band gap polymers for organic photovoltaics. Solar Energy Materials and Solar Cells, 91(11), 954-985.
[8] Kroon, R., Lenes, M., Hummelen, J. C., Blom, P. W., & De Boer, B. (2008). Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polymer Reviews, 48(3), 531-582.
[9] Po, R., Carbonera, C., Bernardi, A., & Camaioni, N. (2011). The role of buffer layers in polymer solar cells. Energy & Environmental Science, 4(2), 285-310.
[10] Chen, L. M., Hong, Z., Li, G., & Yang, Y. (2009). Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells. Advanced Materials, 21(14‐15), 1434-1449.
[11] Ruess, G., & Vogt, F. (1948). Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 78(3-4), 222-242.
[12] Dresselhaus M. S. & Araujo P. T. (2010). Perspectives on the 2010 Nobel Prize in Physics for Graphene.
[13] Baigent, D. R., Greenham, N. C., Grüner, J., Marks, R. N., Friend, R. H., Moratti, S. C., & Holmes, A. B. (1994). Light-emitting diodes fabricated with conjugated polymers—recent progress. Synthetic Metals, 67(1-3), 3-10.
[14] G Glatthaar, M., Niggemann, M., Zimmermann, B., Lewer, P., Riede, M., Hinsch, A., & Luther, J. (2005). Organic solar cells using inverted layer sequence. Thin Solid Films, 491(1-2), 298-300.
[15] Sun, J. Y., Tseng, W. H., Lan, S., Lin, S. H., Yang, P. C., Wu, C. I., & Lin, C. F. (2013). Performance enhancement in inverted polymer photovoltaics with solution-processed MoOX and air-plasma treatment for anode modification. Solar Energy Materials and Solar Cells, 109, 178-184.
[16] Yang, D., Zhou, L., Chen, L., Zhao, B., Zhang, J., & Li, C. (2012). Chemically modified graphene oxides as a hole transport layer in organic solar cells. Chemical Communications, 48(65), 8078-8080.
[17] Moon, B. J., Jang, D., Yi, Y., Lee, H., Kim, S. J., Oh, Y., & Bae, S. (2017). Multi-functional nitrogen self-doped graphene quantum dots for boosting the photovoltaic performance of BHJ solar cells. Nano Energy, 34, 36-46.
[18] Hsu, K. Y. (2017). Master Thesis: Solution process of Molybdenum oxide as anode buffer layer in inverted organic solar cells. National Sun Yat-sen University.
[19] Jasieniak, J. J., Seifter, J., Jo, J., Mates, T., & Heeger, A. J. (2012). A solution‐processed MoOx anode interlayer for use within organic photovoltaic devices. Advanced Functional Materials, 22(12), 2594-2605.
[20] Kumar, V., Wang, X., & Lee, P. S. (2015). Formation of hexagonal-molybdenum trioxide (h-MoO3) nanostructures and their pseudocapacitive behavior. Nanoscale, 7(27), 11777-11786.
[21] Zhang, X., You, F., Zheng, Q., Zhang, Z., Cai, P., Xue, X., & Zhang, J. (2016). Solution-processed MoOx hole injection layer towards efficient organic light-emitting diode. Organic Electronics, 39, 43-49.
[22] Yang, D., Zhou, L., Chen, L., Zhao, B., Zhang, J., & Li, C. (2012). Chemically modified graphene oxides as a hole transport layer in organic solar cells. Chemical Communications, 48(65), 8078-8080.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.244.83
論文開放下載的時間是 校外不公開

Your IP address is 3.143.244.83
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code