Responsive image
博碩士論文 etd-0623118-161304 詳細資訊
Title page for etd-0623118-161304
論文名稱
Title
以偏振解析雙光子顯微術分辨食道癌組織
Differentiation of esophageal cancer tissues by polarization-resolved two-photon microscopy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-23
繳交日期
Date of Submission
2018-07-23
關鍵字
Keywords
雙光子激發螢光、二階非線性極化張量、食道癌、二倍頻、圓偏振、線偏振
esophageal cancer, two-photon excited florescence, two-photon microscopy, second harmonic generation, polarization
統計
Statistics
本論文已被瀏覽 5637 次,被下載 24
The thesis/dissertation has been browsed 5637 times, has been downloaded 24 times.
中文摘要
食道癌是全球十大致命的癌症之一,過去幾十年來,雖然衛生環境的改善確實讓胃癌的威脅大幅降低,但飲食習慣的改變卻讓食道癌風險不減反增,其中在亞洲又以食道鱗狀細胞癌的發病率最高。目前主要的內視鏡及切片檢查要在早期發現癌變非常困難,因此食道癌常在晚期才被確診。
為了提高早期食道癌診斷的準確性和預防食道癌的發生,我們的研究專注於偏振解析雙光子顯微術在食道鱗狀細胞癌的應用,由於食道的鱗狀上皮充滿著豐富的膠原蛋白,而過去的研究表明,膠原蛋白分子其三股螺旋結構的異變與癌細胞侵襲程度具有高度的相關性。因此,研究膠原蛋白與食道癌組織在不同階段的結構關係具有其重要意義,其中癌變組織所產生的非線性光學訊號與膠原蛋白分子的二階非線性極化張量為我們主要的研究重點。
除此之外,使用偏振解析雙光子顯微術,不僅在膠原蛋白的結構組織具有優秀的空間解析度,而且透過二倍頻(SHG)與雙光子激發螢光(TPEF)可以分析膠原蛋白在癌細胞浸潤下的變化。由於膠原蛋白分子的二倍頻訊號強度會隨著入射光的偏振狀態而改變,因此我們透過旋轉半波片和四分之一波片調控入射光的偏振狀態來分別求得膠原蛋白分子的二階非線性極化張量X22/X16,以及由分子排列所產生的二倍頻圓二色效應(SHG-CD),在上述結果的幫助下,我們成功地將食道癌分為四個不同階段,這與傳統組織病理學所做的階段劃分完全一致。因此,我們證明了偏振解析二倍頻顯微術除了可以在影像上提供強度與樣本的型貌之外,更可透過張量的計算得到受到癌細胞侵襲後,受損分子的結構資訊。使此研究方法不僅具更精確的食道癌分期鑑別能力,更具有生醫應用上的潛力。
Abstract
Esophageal cancer has fatally attacked human health over the past few decades. It is often diagnosed at a late stage due to how difficult detecting early cancerous changes when using conventional endoscopy and/or biopsy.
In order to improve the accuracy of diagnosis and prevent the occurrence of esophageal cancer in the early phase, a quantitative analytical method used to discriminate among the various types of cancerous esophagus tissues is demanding to provide sufficient accuracy in cancer staging. Previous studies indicate that the structural change in collagen ascribes to misfolding of the triple helices that is highly associated with cancer cell invasion. Thus, it is of great significance to study the structural correlation between collagen fibers and esophageal cancer tissues at varying stages. Here we used polarization-resolved two-photon microscopy, not only the structural organization of collagen fibrils in squamous cell carcinoma was revealed at high spatial resolution but also the ratios of second harmonic generation (SHG) / two-photon excited fluorescence (TPEF), tensor elements of second-order nonlinear susceptibility, X22/X16, and SHG-circular dichroism (SHG-CD) were obtained.
With the aid of the above results, we successfully classified esophageal cancers at four different stages, which complied well with the stage differentiation made by histopathology. This research indicated a reliable and highly accurate inspection of various types of esophageal cancer tissues, showing great potentials in cancer research.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1研究背景 1
1.2食道癌簡介 2
1.3食道癌的診斷標準 3
1.4食道癌的診斷工具 6
1.4.1內視鏡技術 7
1.4.2光學顯微技術 9
1.5近期研究 11
1.6研究動機與目的 14
第二章 理論基礎 15
2.1 非線性光學與二倍頻簡介 15
2.2 膠原蛋白的結構與排列 17
2.3 偏振解析二倍頻顯微術 21
2.3.1 偏振原理 21
2.3.2 膠原蛋白的二階非線性極化率 23
2.3.3 SHG偏振分析理論 25
2.3.4 二倍頻圓二色性 27
2.4 雙光子螢光影像 31
第三章 樣本製備與實驗方法 33
3.1 偏振解析雙光子顯微鏡系統 33
3.2 食道鱗狀細胞癌樣本製備 34
3.3 SHG/TPEF強度比值分析 36
3.4 二階非線性極化率分析 38
3.5 二倍頻圓二色性分析 41
第四章 結果與討論 43
4.1 H&E染色與雙光子影像 43
4.1.1 癌細胞的浸潤範圍與膠原蛋白的型態變化 45
4.1.2 SHG/TPEF強度比值分析 48
4.2膠原蛋白之二階非線性極化率 50
4.3二倍頻圓二色性與膠原蛋白的分子導向 53
第五章 結論與未來展望 55
參考文獻 56
參考文獻 References
[1] Ferlay, J., et al., “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer,” 127(12): p. 2893-2917. (2010)
[2] Zhang, H., et al., “Epidemiologic differences in esophageal cancer between Asian and Western populations,” Chinese Journal of Cancer, 31(6): p. 281-286. (2012)
[3] Sharma, P., et al., “Esophageal cancer and Barrett's esophagus,” 3rd edition. ed. Chichester, West Sussex ; Hoboken, NJ: John Wiley and Sons, Inc. (2015)
[4] Shaheen, N., et al., “Barrett's oesophagus,” The Lancet. 373(9666): p. 850-861.
[5] Reed, M., et al., “Tracheoesophageal fistula,” Chest Surg Clin N Am, 13(2): p. 271-89. (2003)
[6] Lightdale, C., et al., “Positron emission tomography: another useful test for staging esophageal cancer,” JCO 18, 3199-3201 (2000).
[7] Edge, S., et al., “AJCC Cancer Staging Manua,” 7th ed. Springer-Verlag, 103–115. (2009).
[8] Evans, J.A., et al., “The role of endoscopy in Barrett's esophagus and other premalignant conditions of the esophagus,” Gastrointestinal Endoscopy. 76(6): p. 1087-1094.
[9] Ban, S., et al., “Iodine staining for early endoscopic detection of esophageal cancer in alcoholics,” Endoscopy, 30(3): p. 253-7. (1998)
[10] Dawsey, S.M., et al., “Mucosal iodine staining improves endoscopic visualization of squamous dysplasia and squamous cell carcinoma of the esophagus in linxian,” china. Cancer, 83(2): p. 220-231. (1998)
[11] Ide, E., et al., “Narrow-band imaging without magnification for detecting early esophageal squamous cell carcinoma,” World Journal of Gastroenterology : WJG, 17(39): p. 4408-4413. (2011)
[12] Nagami, Y., et al., “Usefulness of Non-Magnifying Narrow-Band Imaging in Screening of Early Esophageal Squamous Cell Carcinoma: A Prospective Comparative Study Using Propensity Score Matching,” Am J Gastroenterol, 109(6): p. 845-854. (2014)
[13] Hamamoto, Y., et al., “Usefulness of narrow-band imaging endoscopy for diagnosis of Barrett’s esophagus,” Journal of Gastroenterology, 39(1): p. 14-20. (2004)
[14] Yoshida, T., et al., “Narrow-band imaging system with magnifying endoscopy for superficial esophageal lesions,” Gastrointestinal Endoscopy, 59(2): p. 288-295. (2004)
[15] Gheorghe, C., et al., “ Narrow-band imaging endoscopy for diagnosis of malignant and premalignant gastrointestinal lesions,” J Gastrointestin Liver Dis, 15(1): p. 77-82. (2006)
[16] Sharma P., et al., “Magnification chromoendoscopy for the detection of intestinal metaplasia and dysplasia in Barrett’s oesophagus,” Gut. 52(1):24–27. (2003)
[17] Kara M., et al., “Detection and classification of the mucosal and vascular patterns (mucosal morphology) in Barrett’s esophagus by using narrow band imaging,” Gastrointest Endosc. 64(2):155–166. (2006)
[18] Kiesslich R., et al., “Diagnosing Helicobacter pylori in vivo by confocal laser endoscopy,” Gastroenterology. 128(7):2119–2123. (2005)
[19] Dunbar K., et al., “Confocal endomicroscopy,” Tech Gastrointest Endosc. 12(2):90–99. (2010)
[20] Guo Y., et al., “Diagnosis of gastric intestinal metaplasia with confocal laser endomicroscopy in vivo: a prospective study,” Endoscopy. 40(7):547–553. (2008)
[21] Trovato C., et al., “Confocal laser endomicroscopy for in vivo diagnosis of Barrett’s esophagus and associated neoplasia: an ongoing prospective study,” Gastrointest Endosc. 67(5):AB97. doi: 10.1016/j.gie. 03.104. (2008)
[22] Kiesslich R., et al., “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin Gastroenterol Hepatol. 4(8):979–987. (2006)
[23] Pohl H., et al., “Miniprobe confocal laser microscopy for the detection of invisible neoplasia in patients with Barrett’s oesophagus,” Gut. 57(12):1648–1653. (2008)
[24] Dunbar K., et al., “Confocal endomicroscopy in Barrett’s esophagus and endoscopically inapparent Barrett’s neoplasia: a prospective randomized double-blind controlled crossover trial,” Gastrointest Endosc. 70(4):645–654. (2009)
[25] Wallace M., et al., “The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract,” Aliment Pharmacol Ther. 31(5):548–552.(2010)
[26] Chen Y., et al., “Review of advanced imaging techniques. Journal of Pathology Informatics,” 3:22. (2012)
[27] Tsai T., et al., “Comparison of tissue architectural changes between radiofrequency ablation and cryospray ablation in Barrett’s esophagus using endoscopic three-dimensional optical coherence tomography,” Gastroenterol Res Pract. ; 684832. (2012)
[28] Tsai T., et al., “Structural markers observed with endoscopic 3-dimensional optical coherence tomography correlating with Barrett’s esophagus radiofrequency ablation treatment response (with videos) ,” Gastrointest Endosc. ;76(6):1104–1112. (2000)
[29] Evans J., et al., “Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus,” Clin Gastroenterol Hepatol. ;4(1):38–43. (2000)
[30] Bouma B., et al., “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,” Gastrointest Endosc.; 51(4 pt 1):467–474. (2000)
[31] Suter M., et al., “Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging,” Gastrointest Endosc. 2008;68(4):745–753.
[32] Zipfel, W., et al., “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat Biotech, 21(11): p. 1369-1377. (2003)
[33] Campion, A., et al., “Surface-enhanced Raman scattering,” Chemical Society Reviews, 27(4): p. 241-250. (1998)
[34] Huang, Z., et al., “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” International Journal of Cancer, 107(6): p. 1047-1052. (2003)
[35] Le Ru, E.C., et al., “Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study,” The Journal of Physical Chemistry C, 111(37): p. 13794-13803. (2007)
[36] Feng, S., et al., “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Applied Physics Letters, 102(4): p. 043702. (2013)
[37] Xu, J., et al., “Multiphoton microscopy for label-free identification of intramural metastasis in human esophageal squamous cell carcinoma,” Biomedical Optics Express, 8(7): p. 3360-3368. (2017)
[38] Liu, N.R., et al., “Distinguishing human normal or cancerous esophagus tissue ex vivo using multiphoton microscopy,” Journal of Optics, 16(2): p. 025301. (2014)
[39] Wong, S., et al., “Evaluation of Barrett Esophagus by Multiphoton Microscopy,” Archives of Pathology & Laboratory Medicine, 138(2): p. 204-212. (2014)
[40] Canelon, S., et al., “β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking Causes In Vitro Changes in Collagen Morphology and Molecular Composition,” PLOS ONE. 11. (2016)
[41] Erikson, A., et al. “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” SPIE. (2017)
[42] Stoller, P., “Polarization-Modulated Second Harmonic Generation in Collagen,” Biophysical Journal 82, 3330-3342. (2002)
[43] Loison, C., et al. “Additive model for the second harmonic generation hyperpolarizability applied to a collagen-mimicking peptide (Pro-Pro-Gly)10,” J. Phys. Chem. A 114(29), 7769–7779 (2010).
[44] Gualtieri, E., et al. “Interpreting nonlinear optics of biopolymer assemblies: Finding a hook,” Chem. Phys. Lett. 465(4-6), 167–174 (2008).
[45] Lee, H., et al. “Chiral imaging of collagen by second-harmonic generation circular dichroism,” Biomed. Opt. Express 4, 909-916 (2013).
[46] Erikson, A., et al. “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002 (2007).
[47] G.-Y. Zhuo, et al. “Fast determination of three-dimensional fibril orientation of type-I collagen via macroscopic chirality, ” Applied Physics Letters 110, 023702 (2017).
[48] J. Xu, et al. “Multiphoton imaging of low grade, high grade intraepithelial neoplasia and intramucosal invasive cancer of esophagus,” Laser Physics Letters. 14, 045402 (2017).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code