Responsive image
博碩士論文 etd-0623118-164715 詳細資訊
Title page for etd-0623118-164715
論文名稱
Title
開發腸道菌葡萄醣醛酸酶專一性抑制劑以降低化療誘發腸道毒性及預防腫瘤生成
Development of Bacterial Beta-glucuronidase-specific Inhibitors to Reduce Chemo-induced Intestinal Toxicity and Prevent Tumorigenesis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-20
繳交日期
Date of Submission
2018-07-23
關鍵字
Keywords
葡萄醣醛酸化、腸道菌葡萄醣醛酸酶、抑制劑、化學預防、化療誘發腹瀉、大腸癌
chemotherapy-induced diarrhea, colorectal cancer, chemoprevention, inhibitor, hepatic glucuronidation, bacterial β-glucuronidase
統計
Statistics
本論文已被瀏覽 5632 次,被下載 0
The thesis/dissertation has been browsed 5632 times, has been downloaded 0 times.
中文摘要
肝臟葡萄醣醛酸化是人體主要的解毒代謝路徑,有毒物質(如化療藥物、致癌劑)藉由和葡萄醣醛酸鍵結而降低毒性。然而,當此類葡萄醣醛酸代謝物經由膽汁進入到腸道後,會被腸道菌所表現的葡萄醣醛酸酶水解而恢復其毒性,因此破壞腸道細胞造成腸道毒性,長久累積將誘發腸道腫瘤生成及病變。因此,開發腸道菌葡萄醣醛酸酶專一性抑制劑降低其活性,將可以避免有毒物質在腸道內的再活化及釋放,進而保護腸道避免化學誘發損傷。在本研究中,我們篩選出哌唑[4,3-c]喹啉衍生物(化合物42),其可作為大腸桿菌葡萄醣醛酸酶專一性抑制劑,有效降低小鼠腸道中腸道菌葡萄醣醛酸酶活性。將化合物42合併化療藥CPT-11治療,可有效降低CPT-11誘發小鼠嚴重腹瀉,並且不影響CPT-11抗癌療效。此外,以化合物42餵食腸道多發性腺瘤小鼠可有效降低致癌劑DMH誘發腸道瘜肉生成。因此,化合物42具有相當之潛力作為化療佐劑及化學預防劑用於預防化學誘發腸道毒性並且預防大腸癌生成。
Abstract
Hepatic glucuronidation is a major route for detoxification. Drugs and carcinogens are conjugated with glucuronic acid to be inactive. However, the inactive glucuronides are reactivated back to active toxins by bacterial β-glucuronidase (βG) in the intestine, thus inducing severe intestinal toxicity and promoting colon carcinogenesis. Therefore, inhibition of bacterial βG activity by a specific βG inhibitor has potential to protect the intestine from drug- or carcinogen-induced damage. Here, we report the characterization of 3-amino-4-(4-fluorophenylamino)-1H-pyrazolo[4,3-c]quinoline (compound 42), a new E. coli βG (eβG)-specific inhibitor that acts in novel a pH-dependent manner. Notably, the oral administration of compound 42 combined with chemotherapeutic CPT-11 treatment prevented CPT-11-induced serious diarrhea while maintaining the antitumor efficacy in tumor-bearing mice. Moreover, administration with compound 42 also reduced the formation of intestinal tumor polyps in carcinogenic 1,2-dimethylhydrazine (DMH)-treated mice. Together, these results indicate that compound 42 effectively prevents drug-induced diarrhea and carcinogen-induced tumorigenesis in the intestine, and thus has potential for use as a chemotherapy adjuvant and a chemoprevention agent to prevent chemical-induced intestinal toxicity and the development of colorectal cancer.
目次 Table of Contents
Table of Contents
誌謝 i
中文摘要 ii
Abstract iii
List of Figures vi
List of Tables vii
Abbreviations viii
Introduction 1
Chapter 1
Screening and characterization of a specific and potent bacterial βG inhibitor 4
1.1 Introduction 4
1.2 Results 5
1.2.1 Screening for eβG-specific inhibitors 5
1.2.2 Inhibition of eβG enzyme activity by pyrazolo[4,3-c]quinolines 11
1.2.3 Inhibition of endogenous eβG activity and toxicity in E. coli 17
1.2.4 Microbial βG activity inhibition in mice intestine 19
1.2.5 Molecular docking of compound 42 to βG enzymes 21
1.2.6 pH-dependent inhibition of eβG by compound 42 24
1.3 Materials and Methods 26
1.3.1 Compounds 26
1.3.2 βG enzyme activity assay 26
1.3.3 Synthesized compounds 27
1.3.4 E. coli βG activity assay 34
1.3.5 E. coli cell viability 35
1.3.6 Image of bacterial βG activity in mice intestine 35
1.3.7 Mice fecal βG activity assay 36
1.3.8 Molecular docking 37
1.3.9 Molecular dynamics simulations 37
1.3.10 Binding free energy calculations 39
1.3.11 pH-dependent βG activity assay 41
1.3.12 Electrostatic potential surface 41
1.4 Discussion 41
Chapter 2
Specific inhibition of bacterial βG activity to suppress chemotherapy-induced diarrhea 45
2.1 Introduction 45
2.2 Results 47
2.2.1 Pharmacokinetics studies of compound 42 47
2.2.2 Suppression of CPT-11-induced intestinal damage by compound 42 51
2.2.3 Effects of compound 42 on CPT-11 treatment in tumor-bearing mice 53
2.3 Materials and Methods 55
2.3.1 Pharmacokinetic study of compound 42 in rats 55
2.3.2 Mice model of CPT-11-induced intestinal damage 55
2.3.3 CPT-11 therapeutic efficacy and diarrhea in tumor-bearing mice 56
2.4 Discussion 57
Chapter 3
Bacterial βG-specific inhibitor as a chemopreventive agent for carcinogen-induced intestinal tumorigenesis 61
3.1 Introduction 61
3.2 Results 64
3.2.1 Microbial βG activity inhibition in the intestine of APCmin/+ mice 64
3.2.2 Chemoprevention efficacy of compound 42 in intestinal tumorigenesis 67
3.2.3 Histopathogical changes in the intestine of APCmin/+ mice 70
3.3 Materials and Methods 73
3.3.1 Carcinogen-induced tumorigenesis models 73
3.3.2 Bacterial βG activity analysis 73
3.3.3 Histological analysis 74
3.4 Discussion 75
Conclusion 79
References 83
Appendices 92
Appendix I: Publications 92
Appendix II: Patents 98
Appendix III: Achievement 99
參考文獻 References
1. Jancova, P.; Anzenbacher, P.; Anzenbacherova, E. Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010, 154, 103-16.
2. Kroemer, H. K.; Klotz, U. Glucuronidation of drugs. A re-evaluation of the pharmacological significance of the conjugates and modulating factors. Clin Pharmacokinet 1992, 23, 292-310.
3. Miners, J. O.; Mackenzie, P. I. Drug glucuronidation in humans. Pharmacol Ther 1991, 51, 347-69.
4. Takasuna, K.; Hagiwara, T.; Watanabe, K.; Onose, S.; Yoshida, S.; Kumazawa, E.; Nagai, E.; Kamataki, T. Optimal antidiarrhea treatment for antitumor agent irinotecan hydrochloride (CPT-11)-induced delayed diarrhea. Cancer Chemother Pharmacol 2006, 58, 494-503.
5. Jain, S.; Drendel, W. B.; Chen, Z. W.; Mathews, F. S.; Sly, W. S.; Grubb, J. H. Structure of human beta-glucuronidase reveals candidate lysosomal targeting and active-site motifs. Nat Struct Biol 1996, 3, 375-81.
6. Wallace, B. D.; Wang, H.; Lane, K. T.; Scott, J. E.; Orans, J.; Koo, J. S.; Venkatesh, M.; Jobin, C.; Yeh, L. A.; Mani, S.; Redinbo, M. R. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 2010, 330, 831-5.
7. Naz, H.; Islam, A.; Waheed, A.; Sly, W. S.; Ahmad, F.; Hassan, I. Human beta-glucuronidase: structure, function, and application in enzyme replacement therapy. Rejuvenation Res 2013, 16, 352-63.
8. Khan, F. I.; Shahbaaz, M.; Bisetty, K.; Waheed, A.; Sly, W. S.; Ahmad, F.; Hassan, M. I. Large scale analysis of the mutational landscape in beta-glucuronidase: A major player of mucopolysaccharidosis type VII. Gene 2016, 576, 36-44.
9. Takasuna, K.; Hagiwara, T.; Hirohashi, M.; Kato, M.; Nomura, M.; Nagai, E.; Yokoi, T.; Kamataki, T. Inhibition of intestinal microflora beta-glucuronidase modifies the distribution of the active metabolite of the antitumor agent, irinotecan hydrochloride (CPT-11) in rats. Cancer Chemother Pharmacol 1998, 42, 280-6.
10. Fittkau, M.; Voigt, W.; Holzhausen, H. J.; Schmoll, H. J. Saccharic acid 1.4-lactone protects against CPT-11-induced mucosa damage in rats. J Cancer Res Clin Oncol 2004, 130, 388-94.
11. Chen, M.; Cheng, K. W.; Chen, Y. J.; Wang, C. H.; Cheng, T. C.; Chang, K. C.; Kao, A. P.; Chuang, K. H. Real-time imaging of intestinal bacterial beta-glucuronidase activity by hydrolysis of a fluorescent probe. Sci Rep 2017, 7, 3142.
12. Wallace, B. D.; Roberts, A. B.; Pollet, R. M.; Ingle, J. D.; Biernat, K. A.; Pellock, S. J.; Venkatesh, M. K.; Guthrie, L.; O'Neal, S. K.; Robinson, S. J.; Dollinger, M.; Figueroa, E.; McShane, S. R.; Cohen, R. D.; Jin, J.; Frye, S. V.; Zamboni, W. C.; Pepe-Ranney, C.; Mani, S.; Kelly, L.; Redinbo, M. R. Structure and Inhibition of Microbiome beta-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity. Chem Biol 2015, 22, 1238-49.
13. Chen, K. C.; Cheng, T. L.; Leu, Y. L.; Prijovich, Z. M.; Chuang, C. H.; Chen, B. M.; Roffler, S. R. Membrane-localized activation of glucuronide prodrugs by beta-glucuronidase enzymes. Cancer Gene Ther 2007, 14, 187-200.
14. Cheng, T. C.; Chuang, K. H.; Roffler, S. R.; Cheng, K. W.; Leu, Y. L.; Chuang, C. H.; Huang, C. C.; Kao, C. H.; Hsieh, Y. C.; Chang, L. S.; Cheng, T. L.; Chen, C. S. Discovery of Specific Inhibitors for Intestinal E. coli beta-Glucuronidase through In Silico Virtual Screening. ScientificWorldJournal 2015, 2015, 740815.
15. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009, 30, 2785-91.
16. Case, D. A. D., T. A.; Cheatham, I., T.E.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Walker, R. C.; Zhang, W.; Merz, K. M.; Roberts, B.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Kolossváry, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Liu, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M.-J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin, M. G.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P. A. AMBER, 11; University of California: San Francisco, 2010. AMBER 11. 2010.
17. Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 2003, 24, 1999-2012.
18. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006, 65, 712-25.
19. Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 2006, 25, 247-60.
20. Jakalian, A.; Jack, D. B.; Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 2002, 23, 1623-41.
21. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.
22. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089-10092.
23. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327-341.
24. Onufriev, A.; Bashford, D.; Case, D. A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Structure, Function, and Bioinformatics 2004, 55, 383-394.
25. Dolinsky, T. J.; Czodrowski, P.; Li, H.; Nielsen, J. E.; Jensen, J. H.; Klebe, G.; Baker, N. A. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 2007, 35, W522-5.
26. Dolinsky, T. J.; Nielsen, J. E.; McCammon, J. A.; Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 2004, 32, W665-7.
27. Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 2001, 98, 10037-41.
28. Roberts, A. B.; Wallace, B. D.; Venkatesh, M. K.; Mani, S.; Redinbo, M. R. Molecular insights into microbial beta-glucuronidase inhibition to abrogate CPT-11 toxicity. Mol Pharmacol 2013, 84, 208-17.
29. Swami, U.; Goel, S.; Mani, S. Therapeutic Targeting of CPT-11 Induced Diarrhea: A Case for Prophylaxis. Current Drug Targets 2013, 14, 777-797.
30. Brandi, G.; Dabard, J.; Raibaud, P.; Di Battista, M.; Bridonneau, C.; Pisi, A. M.; Morselli Labate, A. M.; Pantaleo, M. A.; De Vivo, A.; Biasco, G. Intestinal microflora and digestive toxicity of irinotecan in mice. Clin Cancer Res 2006, 12, 1299-307.
31. Iida, N.; Dzutsev, A.; Stewart, C. A.; Smith, L.; Bouladoux, N.; Weingarten, R. A.; Molina, D. A.; Salcedo, R.; Back, T.; Cramer, S.; Dai, R. M.; Kiu, H.; Cardone, M.; Naik, S.; Patri, A. K.; Wang, E.; Marincola, F. M.; Frank, K. M.; Belkaid, Y.; Trinchieri, G.; Goldszmid, R. S. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013, 342, 967-70.
32. Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillere, R.; Hannani, D.; Enot, D. P.; Pfirschke, C.; Engblom, C.; Pittet, M. J.; Schlitzer, A.; Ginhoux, F.; Apetoh, L.; Chachaty, E.; Woerther, P. L.; Eberl, G.; Berard, M.; Ecobichon, C.; Clermont, D.; Bizet, C.; Gaboriau-Routhiau, V.; Cerf-Bensussan, N.; Opolon, P.; Yessaad, N.; Vivier, E.; Ryffel, B.; Elson, C. O.; Dore, J.; Kroemer, G.; Lepage, P.; Boneca, I. G.; Ghiringhelli, F.; Zitvogel, L. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013, 342, 971-6.
33. Sivan, A.; Corrales, L.; Hubert, N.; Williams, J. B.; Aquino-Michaels, K.; Earley, Z. M.; Benyamin, F. W.; Lei, Y. M.; Jabri, B.; Alegre, M. L.; Chang, E. B.; Gajewski, T. F. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015, 350, 1084-9.
34. Vetizou, M.; Pitt, J. M.; Daillere, R.; Lepage, P.; Waldschmitt, N.; Flament, C.; Rusakiewicz, S.; Routy, B.; Roberti, M. P.; Duong, C. P.; Poirier-Colame, V.; Roux, A.; Becharef, S.; Formenti, S.; Golden, E.; Cording, S.; Eberl, G.; Schlitzer, A.; Ginhoux, F.; Mani, S.; Yamazaki, T.; Jacquelot, N.; Enot, D. P.; Berard, M.; Nigou, J.; Opolon, P.; Eggermont, A.; Woerther, P. L.; Chachaty, E.; Chaput, N.; Robert, C.; Mateus, C.; Kroemer, G.; Raoult, D.; Boneca, I. G.; Carbonnel, F.; Chamaillard, M.; Zitvogel, L. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015, 350, 1079-84.
35. Walko, C. M.; Grande, C. Management of common adverse events in patients treated with sorafenib: nurse and pharmacist perspective. Semin Oncol 2014, 41 Suppl 2, S17-28.
36. Gupta, R.; Ordonez, R. M.; Koenig, S. Global impact of antiretroviral therapy-associated diarrhea. AIDS Patient Care STDS 2012, 26, 711-3.
37. LoGuidice, A.; Wallace, B. D.; Bendel, L.; Redinbo, M. R.; Boelsterli, U. A. Pharmacologic targeting of bacterial beta-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice. J Pharmacol Exp Ther 2012, 341, 447-54.
38. Saitta, K. S.; Zhang, C.; Lee, K. K.; Fujimoto, K.; Redinbo, M. R.; Boelsterli, U. A. Bacterial beta-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: mode of action and pharmacokinetics. Xenobiotica 2014, 44, 28-35.
39. Kim, D. H.; Jin, Y. H. Intestinal bacterial beta-glucuronidase activity of patients with colon cancer. Arch Pharm Res 2001, 24, 564-7.
40. Humblot, C.; Murkovic, M.; Rigottier-Gois, L.; Bensaada, M.; Bouclet, A.; Andrieux, C.; Anba, J.; Rabot, S. Beta-glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline in rats. Carcinogenesis 2007, 28, 2419-25.
41. Rivory, L. P.; Bowles, M. R.; Robert, J.; Pond, S. M. Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase. Biochem Pharmacol 1996, 52, 1103-11.
42. Iyer, L.; King, C. D.; Whitington, P. F.; Green, M. D.; Roy, S. K.; Tephly, T. R.; Coffman, B. L.; Ratain, M. J. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 1998, 101, 847-54.
43. Slatter, J. G.; Schaaf, L. J.; Sams, J. P.; Feenstra, K. L.; Johnson, M. G.; Bombardt, P. A.; Cathcart, K. S.; Verburg, M. T.; Pearson, L. K.; Compton, L. D.; Miller, L. L.; Baker, D. S.; Pesheck, C. V.; Lord, R. S., 3rd. Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients. Drug Metab Dispos 2000, 28, 423-33.
44. Mathijssen, R. H.; van Alphen, R. J.; Verweij, J.; Loos, W. J.; Nooter, K.; Stoter, G.; Sparreboom, A. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 2001, 7, 2182-94.
45. Takasuna, K.; Hagiwara, T.; Hirohashi, M.; Kato, M.; Nomura, M.; Nagai, E.; Yokoi, T.; Kamataki, T. Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res 1996, 56, 3752-7.
46. Kehrer, D. F.; Sparreboom, A.; Verweij, J.; de Bruijn, P.; Nierop, C. A.; van de Schraaf, J.; Ruijgrok, E. J.; de Jonge, M. J. Modulation of irinotecan-induced diarrhea by cotreatment with neomycin in cancer patients. Clin Cancer Res 2001, 7, 1136-41.
47. Maung, K.; Copur, M. S.; Jain, V. K. New strategies for the treatment of chemotherapy-induced diarrhea. Support Cancer Ther 2004, 1, 70-4.
48. Swami, U.; Goel, S.; Mani, S. Therapeutic targeting of CPT-11 induced diarrhea: a case for prophylaxis. Curr Drug Targets 2013, 14, 777-97.
49. Stein, A.; Voigt, W.; Jordan, K. Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther Adv Med Oncol 2010, 2, 51-63.
50. Kong, R.; Liu, T.; Zhu, X.; Ahmad, S.; Williams, A. L.; Phan, A. T.; Zhao, H.; Scott, J. E.; Yeh, L. A.; Wong, S. T. Old drug new use--amoxapine and its metabolites as potent bacterial beta-glucuronidase inhibitors for alleviating cancer drug toxicity. Clin Cancer Res 2014, 20, 3521-30.
51. Trifan, O. C.; Durham, W. F.; Salazar, V. S.; Horton, J.; Levine, B. D.; Zweifel, B. S.; Davis, T. W.; Masferrer, J. L. Cyclooxygenase-2 inhibition with celecoxib enhances antitumor efficacy and reduces diarrhea side effect of CPT-11. Cancer Res 2002, 62, 5778-84.
52. Kaneda, N.; Nagata, H.; Furuta, T.; Yokokura, T. Metabolism and pharmacokinetics of the camptothecin analogue CPT-11 in the mouse. Cancer Res 1990, 50, 1715-20.
53. Sperker, B.; Werner, U.; Murdter, T. E.; Tekkaya, C.; Fritz, P.; Wacke, R.; Adam, U.; Gerken, M.; Drewelow, B.; Kroemer, H. K. Expression and function of beta-glucuronidase in pancreatic cancer: potential role in drug targeting. Naunyn Schmiedebergs Arch Pharmacol 2000, 362, 110-5.
54. Feng, S.; Song, J. D. Determination of beta-glucuronidase in human colorectal carcinoma cell lines. World J Gastroenterol 1997, 3, 251-2.
55. Prijovich, Z. M.; Chen, K. C.; Roffler, S. R. Local enzymatic hydrolysis of an endogenously generated metabolite can enhance CPT-11 anticancer efficacy. Mol Cancer Ther 2009, 8, 940-6.
56. Huang, P. T.; Chen, K. C.; Prijovich, Z. M.; Cheng, T. L.; Leu, Y. L.; Roffler, S. R. Enhancement of CPT-11 antitumor activity by adenovirus-mediated expression of beta-glucuronidase in tumors. Cancer Gene Ther 2011, 18, 381-9.
57. Tobin, P.; Clarke, S.; Seale, J. P.; Lee, S.; Solomon, M.; Aulds, S.; Crawford, M.; Gallagher, J.; Eyers, T.; Rivory, L. The in vitro metabolism of irinotecan (CPT-11) by carboxylesterase and beta-glucuronidase in human colorectal tumours. Br J Clin Pharmacol 2006, 62, 122-9.
58. Dodds, H. M.; Tobin, P. J.; Stewart, C. F.; Cheshire, P.; Hanna, S.; Houghton, P.; Rivory, L. P. The importance of tumor glucuronidase in the activation of irinotecan in a mouse xenograft model. J Pharmacol Exp Ther 2002, 303, 649-55.
59. Cheng, K. W.; Tseng, C. H.; Yang, C. N.; Tzeng, C. C.; Cheng, T. C.; Leu, Y. L.; Chuang, Y. C.; Wang, J. Y.; Lu, Y. C.; Chen, Y. L.; Cheng, T. L. Specific Inhibition of Bacterial beta-Glucuronidase by Pyrazolo[4,3-c]quinoline Derivatives via a pH-Dependent Manner To Suppress Chemotherapy-Induced Intestinal Toxicity. J Med Chem 2017, 60, 9222-9238.
60. Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int 2013, 13, 89.
61. Plawski, A.; Banasiewicz, T.; Borun, P.; Kubaszewski, L.; Krokowicz, P.; Skrzypczak-Zielinska, M.; Lubinski, J. Familial adenomatous polyposis of the colon. Hered Cancer Clin Pract 2013, 11, 15.
62. Tudyka, V. N.; Clark, S. K. Surgical treatment in familial adenomatous polyposis. Ann Gastroenterol 2012, 25, 201-206.
63. Kim, B.; Giardiello, F. M. Chemoprevention in familial adenomatous polyposis. Best Pract Res Clin Gastroenterol 2011, 25, 607-22.
64. Malfatti, M. A.; Ubick, E. A.; Felton, J. S. The impact of glucuronidation on the bioactivation and DNA adduction of the cooked-food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in vivo. Carcinogenesis 2005, 26, 2019-28.
65. Vater, S. T.; Baldwin, D. M.; Warshawsky, D. Hepatic metabolism of 7,12-dimethylbenz(a)anthracene in male, female, and ovariectomized Sprague-Dawley rats. Cancer Res 1991, 51, 492-8.
66. Azcarate-Peril, M. A.; Sikes, M.; Bruno-Barcena, J. M. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol 2011, 301, G401-24.
67. Arthur, J. C.; Jobin, C. The complex interplay between inflammation, the microbiota and colorectal cancer. Gut Microbes 2013, 4, 253-8.
68. Wei, H.; Dong, L.; Wang, T.; Zhang, M.; Hua, W.; Zhang, C.; Pang, X.; Chen, M.; Su, M.; Qiu, Y.; Zhou, M.; Yang, S.; Chen, Z.; Rantalainen, M.; Nicholson, J. K.; Jia, W.; Wu, D.; Zhao, L. Structural shifts of gut microbiota as surrogate endpoints for monitoring host health changes induced by carcinogen exposure. FEMS Microbiol Ecol 2010, 73, 577-86.
69. Zhu, Q.; Jin, Z.; Wu, W.; Gao, R.; Guo, B.; Gao, Z.; Yang, Y.; Qin, H. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer. PLoS One 2014, 9, e90849.
70. Rosenberg, D. W.; Giardina, C.; Tanaka, T. Mouse models for the study of colon carcinogenesis. Carcinogenesis 2009, 30, 183-96.
71. Yamada, Y.; Mori, H. Multistep carcinogenesis of the colon in Apc(Min/+) mouse. Cancer Sci 2007, 98, 6-10.
72. Symonds, E. L.; Fenech, M. A method for non-invasive genotyping of APCmin/+ mice using fecal samples. Biol Proced Online 2012, 14, 1.
73. Nalbantoglu, I.; Blanc, V.; Davidson, N. O. Characterization of Colorectal Cancer Development in Apc (min/+) Mice. Methods Mol Biol 2016, 1422, 309-27.
74. Hassan, M. I.; Waheed, A.; Grubb, J. H.; Klei, H. E.; Korolev, S.; Sly, W. S. High resolution crystal structure of human beta-glucuronidase reveals structural basis of lysosome targeting. PLoS One 2013, 8, e79687.
75. Walaszek, Z. Potential use of D-glucaric acid derivatives in cancer prevention. Cancer Lett 1990, 54, 1-8.
76. Yoshimi, N.; Walaszek, Z.; Mori, H.; Hanausek, M.; Szemraj, J.; Slaga, T. J. Inhibition of azoxymethane-induced rat colon carcinogenesis by potassium hydrogen D-glucarate. Int J Oncol 2000, 16, 43-8.
77. Morita, N.; Walaszek, Z.; Kinjo, T.; Nishimaki, T.; Hanausek, M.; Slaga, T. J.; Mori, H.; Yoshimi, N. Effects of synthetic and natural in vivo inhibitors of beta-glucuronidase on azoxymethane-induced colon carcinogenesis in rats. Mol Med Rep 2008, 1, 741-6.
78. Takada, H.; Hirooka, T.; Hiramatsu, Y.; Yamamoto, M. Effect of beta-glucuronidase inhibitor on azoxymethane-induced colonic carcinogenesis in rats. Cancer Res 1982, 42, 331-34.
79. Akao, T.; Akao, T.; Kobashi, K. Glycyrrhizin stimulates growth of Eubacterium sp. strain GLH, a human intestinal anaerobe. Appl Environ Microbiol 1988, 54, 2027-30.
80. Ling, W. H.; Saxelin, M.; Hanninen, O.; Salminen, S. Enzyme Profile of Lactobacillus Strain GG by a Rapid API ZYM System: A Comparison of Intestinal Bacterial Strains. Microbial Ecology in Health and Disease 2011, 7, 99-104.
81. Beaud, D.; Tailliez, P.; Anba-Mondoloni, J. Genetic characterization of the beta-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology 2005, 151, 2323-30.
82. Yang, W.; Wei, B.; Yan, R. Amoxapine Demonstrates Incomplete Inhibition of beta-Glucuronidase Activity from Human Gut Microbiota. SLAS Discov 2018, 23, 76-83.
83. Little, M. S.; Pellock, S. J.; Walton, W. G.; Tripathy, A.; Redinbo, M. R. Structural basis for the regulation of beta-glucuronidase expression by human gut Enterobacteriaceae. Proc Natl Acad Sci U S A 2018, 115, E152-E161.
84. Young, V. B. The intestinal microbiota in health and disease. Curr Opin Gastroenterol 2012, 28, 63-9.
85. Jandhyala, S. M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J Gastroenterol 2015, 21, 8787-803.
86. Cao, Y.; Wu, K.; Mehta, R.; Drew, D. A.; Song, M.; Lochhead, P.; Nguyen, L. H.; Izard, J.; Fuchs, C. S.; Garrett, W. S.; Huttenhower, C.; Ogino, S.; Giovannucci, E. L.; Chan, A. T. Long-term use of antibiotics and risk of colorectal adenoma. Gut 2018, 67, 672-678.
87. Pool-Zobel, B. L.; Neudecker, C.; Domizlaff, I.; Ji, S.; Schillinger, U.; Rumney, C.; Moretti, M.; Vilarini, I.; Scassellati-Sforzolini, R.; Rowland, I. Lactobacillus- and bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr Cancer 1996, 26, 365-80.
88. Kulkarni, N.; Reddy, B. S. Inhibitory effect of Bifidobacterium longum cultures on the azoxymethane-induced aberrant crypt foci formation and fecal bacterial beta-glucuronidase. Proc Soc Exp Biol Med 1994, 207, 278-83.
89. Rowland, I. R.; Rumney, C. J.; Coutts, J. T.; Lievense, L. C. Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 1998, 19, 281-5.
90. Asha; Gayathri, D. Synergistic impact of Lactobacillus fermentum, Lactobacillus plantarum and vincristine on 1,2-dimethylhydrazine-induced colorectal carcinogenesis in mice. Exp Ther Med 2012, 3, 1049-1054.
91. Verma, A.; Shukla, G. Probiotics Lactobacillus rhamnosus GG, Lactobacillus acidophilus suppresses DMH-induced procarcinogenic fecal enzymes and preneoplastic aberrant crypt foci in early colon carcinogenesis in Sprague Dawley rats. Nutr Cancer 2013, 65, 84-91.
92. Terzic, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and colon cancer. Gastroenterology 2010, 138, 2101-2114 e5.
93. Williams, J. A.; Hyland, R.; Jones, B. C.; Smith, D. A.; Hurst, S.; Goosen, T. C.; Peterkin, V.; Koup, J. R.; Ball, S. E. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 2004, 32, 1201-8.
94. Rowland, A.; Miners, J. O.; Mackenzie, P. I. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol 2013, 45, 1121-32.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code