Responsive image
博碩士論文 etd-0624100-214225 詳細資訊
Title page for etd-0624100-214225
論文名稱
Title
離子強度效應對多環芳香烴化合物與溶解性有機物結合係數
The Influence of Ionic Strength on the Partition Coefficient of Polycyclic Aromatic Hydrocarbons and Dissolved Organic Matter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-09
繳交日期
Date of Submission
2000-06-24
關鍵字
Keywords
溶解性有機物、多環芳香烴化合物、離子強度
ionic strength, DOM, PAHs
統計
Statistics
本論文已被瀏覽 5694 次,被下載 11484
The thesis/dissertation has been browsed 5694 times, has been downloaded 11484 times.
中文摘要
中文摘要

疏水性有機污染物在環境中不易分解,具有毒性與高生物累積性,因此其宿命與傳輸機制一直為學界研究的重點。由於其疏水特性使之易於吸附在顆粒上,使得吸附行為成為影響疏水性有機污染物在環境中傳輸宿命的重要機制,其間除了一般熟知的水-底泥兩相間的吸附現象外,水中的溶解性有機物(稱之為第三相)與疏水性有機污染物間的吸附亦逐漸受到重視。考慮溶解性有機物的存在,無疑地使整個環境中的吸附機制更形複雜,但也更逼近真實世界中疏水性有機物的實際吸附行為。

鑑於目前相關領域中,針對水環境因子離子強度對溶解性有機物與疏水性有機污染物結合反應影響之不明朗情形,本研究以螢光衰減法探討phenanthrene、pyrene兩種PAHs與腐植酸結合係數與離子強度間的關係,研究結果發現結合係數Kdom的變化,主要是肇因於腐植酸在陽離子強度介入後結構及性質發生改變所致。結合係數Kdom隨著離子強度的增加而變化的趨勢,可以本研究所提出的「四階段變化模式」加以描述,在不同的階段中離子強度效應對結合係數的影響均不同,並非為一致的正相關或負相關,因而可以解釋文獻中諸多互為矛盾的結果。

而在進一步研究陰、陽離子種類的影響時,發現陽離子的電荷密度與其影響的變化程度呈正相關,二價鎂離子較一價鉀離子的變化程度為大;陰離子效應則不若陽離子顯著。但如系統中有溴離子等本身為已知衰減子物種的存在,於應用螢光衰減法時是否合理則須有更深入的考量,因此陰離子種類在討論離子強度影響時,仍為一不可忽視之因子。至於腐植酸種類間的差異,如分子大小、官能基數量、極性…等,也與離子強度效應的影響程度息息相關,親水性高的腐植酸系統與較具疏水性者相比之下,其結合係數較不易受離子強度所影響,沒有明顯的階段變化趨勢。而在兩種PAHs的比較上也得到疏水性較高的pyrene在離子強度效應的作用下,其結合係數的變化程度比phenanthrene系統中來的顯著。



Abstract
ABSTRACT

Hydrophobic organic pollutants (HOPs) are in general characterized by high toxicity, long environmental half-life and high bio-accumulation factors. Due to their hydrophobicity, HOPs tend to sorb onto particulates in natural aquatic environment and their degradation pathways and rates are altered with the change of the reaction media and the settlement of these particles. The influence of the dissolved organic matters (DOMs), termed as the third phase, on the sorption partition coefficient is observed because of their interactions with HOPs. This binding (between DOM and HOP) increases apparent solubility and mobility of the HOP and the sorption coefficient of HOP in aquatic system is reduced. On the purpose of obtaining data closer to the real world, many aquatic factors, such as the concentration and types of DOM, pH value and ionic strength, are studied intensively recently.

Nevertheless, it is difficult to clarify the influence of ionic strength because the relationship between binding constant of DOM-HOP and ionic strength is ambiguous in the literature. As such, by applying fluorescence quenching method, we investigate the influence of ionic strength on the partition coefficient (Kdom) of PAHs (phenanthrene、pyrene)-humic acid (HA) system. Results show that the interaction of HA and cations is the primary factor in the variations of the partition coefficient. It is believed that, as cations reacting with specific binding sites on HA, the molecules' configuration of HA is changed and the binding mechanism of PAHs and HA is altered. A "four-stage variation model" is then proposed to explain the relationship between the ionic strength and partition coefficient. Therefore, a non-constant trend of ionic strength effect is resulted and is used to explain the controversial findings in the literature.

Furthermore, Mg++ is found to cause stronger effect than K+ owing to higher charge density. The introduction of Br- would complicate the fluorescence quenching mechanism of phenanthrene-HA system because it's a fluorescence quencher. However, effects of anions on the variation of Kdom are not as significant as cations in our system. The effects of ionic strength on the variation of Kdom for four humic acids are LHA>PHA(Peat humic acid)>SHHA(Summit Hill humic acid)>SRHA. Results from different humic acids indicate that the Suwannee River humic acid (SRHA) is not as sensitive as Leonardite humic acid (LHA) on the ionic strength effect because of lower hydrophobicity. The influence of ionic strength on the variation of Kdom for pyrene-HA system is also amplified because of pyrene's higher hydrophobicity compared with phenanthrene.



目次 Table of Contents
第一章 前言 1
第二章 文獻回顧 4
2-1 溶解性有機物 4
2-1-1何謂溶解性有機物? 4
2-1-2腐植質概述 5
2-2 疏水性有機污染物 9
2-2-1疏水性有機污染物概述 9
2-2-2多環芳香烴化合物 10
2-3 HOPs之吸附行為文獻回顧 13
2-3-1 研究進程 13
2-3-2 水環境因子之影響 15
第三章 實驗材料及方法 18
3-1 實驗材料 18
3-2 實驗方法 19
3-2-1 實驗方法的選用 19
3-2-2 螢光衰減法原理概述 21
3-2-3 校正公式 24
3-3 實驗步驟 25


第四章 結果與討論 27
4-1 螢光衰減理論應用之確立 27
4-2 離子強度效應對PAH-HA結合係數之影響 29
4-2-1不同陽離子種類之影響 29
4-2-2不同腐植酸種類之影響 40
4-2-3不同PAH種類之影響 47
4-2-4不同陰離子種類之影響 52
4-3「四階段變化模式」之綜合比較與應用 60
4-3-1本研究中變化因子於「四階段變化模式」之綜合比較 60
4-3-2「四階段變化模式」於文獻結果之應用 66
4-4「假微胞」假說合理性之探討 68
第五章 結論與建議 77
5-1 結論 77
5-2 建議 80
參考文獻 82
附 錄 89



參考文獻 References
Backhus, D. A. and Gschwend, P. M. (1990) Fluorescent polycyclic aromatic hydrocarbons as probes for studying the impact of colloids on pollutant transport in groundwater. Environ. Sci. Technol. 24, 1214-1223.
Brunk, B. K., Jirka, G. H. and Lion, L. W. (1997) Effects of salinity changes and the formation of dissolved organic matter coatings on the sorption of phenanthrene: Implications for pollutant trapping in estuaries. Environ. Sci. Technol. 31, 119-125.
Carter, C. W. and Suffet, I. H. (1982) Binding of DDT to dissolved humic materials. Environ. Sci. Technol. 16, 735-740.
Chen, S., Inskeep, W. P., Williams, S. A. and Callis, P. R. (1992) Complexation of 1-naphthol by humic and fulvic acids. Soil Sci. Soc. Am. J. 56, 67-73.
Chen, S., Inskeep, W. P., Williams, S. A. and Callis, P. R. (1994) Fluorescence lifetime measurements of fluoranthene, 1-naphthol, and Napropamide in the presence of dissolved humic acid. Environ. Sci. Technol. 28, 1582-1588.
Chin, Y-P and Gschwend, P. M. (1992) Partitioning of polycyclic aromatic hydrocarbons to marine porewater organic colloids. Environ. Sci. Technol. 26, 1621-1626.
Chin, Y-P, Aiken, G. and O’Loughlin, E. (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol. 28, 1853-1858.
Chin, Y-P, Aiken, G. R. and Danielsen, K. M. (1997) Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environ. Sci. Technol. 31, 1630-1635.
Chiou, C. T. (1985) Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors. Environ. Sci. Technol. 19, 57-62.
Chiou, C. T., Malcolm, R. L., Brinton, T. I. and Kile, D. E. (1986) Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol. 20, 502-508.
Chiou, C. T., Peter, L. J. and Freed, V. H. (1979) A physical concept of soil-water equilibria for nonionic organic compounds. Science 206, 831-832.
Chiou, C. T., Porter, P. E. and Schmedding, D. W. (1983) Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ. Sci. Technol. 17, 227-231.
Chiou, C. T., Schmedding, D. W. and Manes, M. (1982) Partitioning of organic compounds in octanol-water systems. Environ. Sci. Technol. 16, 4-10.
Chiou, C. T., Shoup, T. D. and Porter, P. E. (1985) Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions. Org. Geochem. 8, 9-14.
Danielsen, K. M., Chin, Y-P, Buterbaugh, J. S., Gustafson, T. L. and Traina, S. J. (1995) Solubility enhancement and fluorescence quenching of pyrene by humic substances: The effect of dissolved oxygen on quenching processes. Environ. Sci. Technol. 29, 2162-2165.
Davis, J. A. and Gloor, R. (1981) Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight. Environ. Sci. Technol. 15, 1223-1229.
Edwards, N. T. (1983) Polycyclic aromatic hydrocarbons (PAH's) in the terrestrial environment - a review. J. Environ. Qual. 12, 427-441.
Engebretson, R. R. and von Wandruszka, R. (1994) Microorganization in dissolved humic acids. Environ. Sci. Technol. 28, 1934-1941.
Engebretson, R. R. and von Wandruszka, R. (1997) The effect of molecular size on humic acid associations. Organic Geochemistry 26, 759-767.
Engebretson, R. R. and von Wandruszka, R. (1998) Kinetic aspects of cation-enhanced aggregtion in aqueous humic acids. Environ. Sci. Technol. 32, 488-493.
Ephraim, J. H., Pettersson, C., Norden, M. and Allard, B. (1995) Potentiometric titrations of humic substances: do ionic strength effects depend on the molecular weight? Environ. Sci. Technol. 29, 622-628.
Futoma, D. J., Smith, S. R., Smith, T. E. and Tanaka, J. (1981) The analysis of polycyclic aromatic hydrocarbons in water system, CRC Press, Florida.
Gauthier, T. D. Shane, E. C., Guerin, W. F., Seitz, W. R. and Grant, C. L. (1986) Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ. Sci. Technol. 20, 1162-1166.
Gschwend, P. M. and Wu, S. C. (1985) On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants. Environ. Sci. Technol. 19, 90-96.
Herbert, B. E., Bertsch, P. M. and Novak, J. M. (1993) Pyrene sorption by water-soluble organic carbon. Environ. Sci. Technol. 27, 398-403.
Johnson, W. P. and Amy, G. L. (1995) Facilitated transport and enhanced desorption of polycyclic aromatic hydrocarbons by natural organic matter in aquifer sediments. Environ. Sci. Technol. 29, 807-817.
Jones, K. D. and Tiller, C. L. (1999) Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: a comparison of dissolved and clay bound humic. Environ. Sci. Technol. 33, 580-587.
Karickhoff, S. W., Brown, D. S. and Scott, T. A. (1979) Sorption of hydrophobic pollutants on natural sediments. Wat. Res. 13, 241-248.
Koelmans, A. A. and Lijklema, L. (1992) Sorption of 1,2,3,4-tetrachlobenzene to sediments: the application of a simple three phase model. Chemosphere 25, 313-325.
Lakowicz, J. R. (1983) Principles of Fluorescence Spectroscopy, Plenum Press, New York.
Landrum, P. F. Nihart, S. R., Eadie, B. J. and Gardner, W. S. (1984) Reverse-phase separation method for determining pollutant binding to aldrich humic acid and dissolved organic carbon of natural water. Environ. Sci. Technol. 18, 187-192.
Lassen, P., Doulsen, M. E., Frank, S-L and Carlsen, L. (1997) Leaching of selected PAH's and hetero-analoguts from an organic matrix into synthetic ground water. Influence of dissolved humic material. Chemosphere 34, 335-344.
Lee, C-L, Huang, H-T and Kuo, L-J (2000) Experimental validation of an OMS model for the sorption behaviors of PAHs onto aluminum oxide coated with humic acids. J. Environ. Sci. Health A35, 515-536.
Lee, C-L and Kuo, L-J (1999) Quantification of the dissolved organic matter effect on the sorption of hydrophobic organic pollutant: application of an overall mechanistic sorption model. Chemosphere 38, 807-821.
Magee, B. R., Lion, L. W. and Lemley, A. T. (1991) Transport of dissolved organic macromolecules and their effect on the transport of Phenanthrene in porous media. Environ. Sci. Technol. 25, 323-331.
Manunza, B., Deiana, S., Maddau, V., Gessa, C. and Seeber, R. (1995) Stability constants of metal-humate complexes: titration data analyzed by bimodal Gaussian distribution. Soil Sci. Soc. Am. J. 59, 1570-1574.
McCarthy, J. F. and Jimenez, B. D. (1985) Interactions between polycyclic aromatic hydrocarbons and dissolved humic material: binding and dissociation. Environ. Sci. Technol. 19, 1072-1076.
Means, J. C. (1995) Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons. Mar. Chem. 51, 3-16.
Means, J. C. and Wijayaratne, R. (1982) Role of natural colloids in the transport of hydrophobic pollutants. Science 215, 968-970.
Means, J. C., Wood, S. G., Hassett, J. J. and Banwart, W. L. (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. 14, 1524-1528.
Menzie, C. A., Potocki, B. B. and Santodonato, J. (1992) Exposure to carcinogenic PAHs in the environment. Environ. Sci. Technol. 26, 1278-1284.
Miller, M. M., Wasik, S. P., Huang, G-L, Shiu, W-Y and Mackay, D. (1985) Relationships between octanol-water partition coefficient and aqueous solubility. Environ. Sci. Technol. 19, 522-529.
Morra, M. J., Corapcioglu, M. O., Wandruszka, R. V., Marshall, D. B. and Topper, K. (1990) Fluorescene quenching and polarization studies of Naphthalene and 1-Naphthol interaction with humic acid. Soil Sci. Soc. Am. J. 54, 1283-1289.
Murphy, E. M., Zachara, J. M., Smith, S. C., Phillips, J. L. and Wietsma, T. W. (1994) Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environ. Sci. Technol. 28, 1291-1299.
Paolis, F. D. and Kukkonen, J. (1997) Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere 34, 1693-1704.
Parker, C. A. (1968) Photoluminescence of solutions. pp. 222. Elsevier: Amsterdam.
Puchaiski, M. M., Morra, M. J. and Wandruszka, R. V. (1992) Fluorescene quenching of synthetic organic compounds by humic materials. Environ. Sci. Technol. 26, 1787-1792.
Raber, B., Kögel-Knabner, I., Stein, C. and Klem, D. (1998) Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere 36, 79-97.
Ragle, C. S., Engebretson, R. R. and Wandruszka, R. V. (1997) The sequestration of hydrophobic micropollutants by dissolved humic acids. Soil Sci. 162, 106-114.
Rav-acha, Ch. and Rebhun, M. (1992) Binding of organic solutes to dissolved humic substances and its effects on adsorption and transport in the aquatic environment. Wat. Res. 26, 1645-1654.
Rebhun, M., Smedt, F. DE and Rwetabula, J. (1996) Dissolved humic substances for remediation of sites contaminated by organic pollutants. Binding-desorption model predictions. Wat. Res. 30, 2027-2038.
Ricca, G., Federico, L., Astori, C. and Gallo, R. (1993) Structural investigations of humic acid from leonardite by spectroscopic methods and thermal analysis. Geoderma 57, 263-274.
Rutherford, D. W., Chiou, C. T. and Kile, D. E. (1992) Influence of soil organic matter composition on the partition of organic compounds. Environ. Sci. Technol. 26, 336-340.
Schlautman, M. A. and Morgan, J. J. (1993) Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environ. Sci. Technol. 27, 961-969.
Schlautman, M. A. and Morgan, J. J. (1994) Adsorption of aquatic humic substances on collidal-size aluminum oxide particles: influence of solution chemistry. Geochimica et Cosmochimica Acta. 58, 4293-4303.
Schnitzer, M. (1978) Humic substances: chemistry and reactions. In Soil Organic Matter (Edited by Schnitzer M. and Khan S. U.), pp. 1-64. Elsevier Science Publishing Company, New York.
Schulten, H-R and Schnitzer, M. (1997) Chemical Model structures for soil organic matter and soils. Soil Sci. 162, 115-130.
Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 32, 751-767.
Shimizu, Y. and Liljestrand, H. M. (1991) Sorption of polycyclic aromatic hydrocarbons onto natural solids: determination by fluorescence quenching method. Wat. Sci. Technol. 23, 427-436.
Skoog, D. A. and Leary J. J. (1992) Principles of Instrumental analysis, 4nded., Saunders College Publishing.
Sparks, D. L. (1995) Environmental Soil Chemistry, Academic Press, San Diego.
Stevenson, F. J. (1994) Humus Chemistry: genesis, composition, reactions, 2nd ed., John Wiley & Sons, New York.
Tiller, C. L. and Jones, K. D. (1997) Effect of dissolved oxygen and light exposure on determination of Koc values for PAHs using fluorescene quenching. Environ. Sci. Technol. 31, 424-429.
Traina, S. J., Spontak, D. A. and Logan, T. J. (1989) Effects of cations on complexation of Naphthalene by water-soluble organic carbon. Environ. Qual. 18, 221-227.
Voice, T. C. and Weber, W. J., Jr. (1985) Sorbent concentration effects in liquid/solid partitioning. Environ.Sci. Technol. 19, 789-796.
Voice, T. C., Rice, C. P. and Weber, W. J., Jr. (1983) Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems. Environ. Sci. Technol. 17, 513-518.
von Wandruszka, R., Ragle, C. and Engebretson, R. (1997) The role of selected cations in the formation of pseudomicelles in aqueous humic acid. Talanta 44, 805-809.
Wagoner, D. B. and Christman, R. F. (1997) Molar mass and size of Suwannee River natural organic matter using multi-angle laser light scattering. Environ. Sci. Technol. 31, 937-941.
Wershaw, R. L. (1986) A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems. J. Contamin. Hydro. 1, 29-45.
Wershaw, R. L. (1989) Application of a membrane model to the sorptive interactions of humic substances. Environmental Health Perspectives 83, 191-203.
Wershaw, R. L. (1993) Model for humics in soils and sediments. Environ. Sci. Technol. 27, 814-816.
Zhou, J. L. and Rowland, S. J. (1997) Evaluation of the interactions between hydrophobic organic pollutants and suspended particles in estuarine waters. Wat. Res. 31, 1708-1718.
Zhou, J. L., Mantoura, R. C. F. and Harland, B. J. (1995a) Tefluthrin sorption to mineral particles: role of particle organic coatings. Intern. J. Environ. Anal. Chem. 58, 275-285.
Zhou, J. L., Rowland, S. and Mantoura, R. F. C. (1994) The formation of humic coatings on mineral particles under simulated estuarine conditions - a mechanistic study. Wat. Res. 28, 571-579.
Zhou, J. L., Rowland, S. and Mantoura, R. F. C. (1995b) Partition of synthetic pyrethroid insecticides between dissolved and particulate phases. Wat. Res. 29, 1023-1031.
郭利榮 (1999),溶解性有機相對疏水性有機污染物於水體中吸附行為影響之探討,國立中山大學海洋環境及工程研究所碩士論文。
陳鎮東 (1994),海洋化學,國立編譯館,台北市。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code