Responsive image
博碩士論文 etd-0624103-123118 詳細資訊
Title page for etd-0624103-123118
論文名稱
Title
利用LNG冷能於冷凍冷藏庫與其他節能系統應用研究
The Investigation of Using LNG Cold Energy in the Cold Storage Warehouse and other Energy Conservation Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-04-25
繳交日期
Date of Submission
2003-06-24
關鍵字
Keywords
進氣冷卻、液化天然氣、氣體分離廠、冷凍冷藏庫
LNG, inlet air cooling, liquifier air plane, cold warehouse
統計
Statistics
本論文已被瀏覽 5707 次,被下載 5729
The thesis/dissertation has been browsed 5707 times, has been downloaded 5729 times.
中文摘要
台灣為世界之Liquefied Natural Gas(LNG)主要進口國。基於能源節約與經濟效益,LNG的冷能利用是必須開發的回收能源。本論文之研究大致可分為3大LNG冷能應用方向,包含冷凍冷藏庫之利用、液化空氣之利用與複循環電廠之進氣冷卻效能提升利用。

首先利用energy與exergy之方式分析LNG冷能潛力,發現於不同壓力下此兩種方式有極大之相異結果,由前者得知隨著壓力增加LNG冷能成線性減少,而後者卻成二次曲線之減少。顯示壓力之增加對LNG 冷能之品質造成極大之減少,於80atm LNG冷能為1atm之44%而energy方式無法明確的顯示這結果。

於冷凍冷藏庫之設計分析,energy方式無法表示出因為熱傳而造成功的破壞。而Exergy之分析則完全顯示出不同溫差熱傳所產生之exergy效益的差異,隨著冷凍庫溫度的減少最高exergy效益為30%,顯示高溫差熱傳會導致能源品質的大幅減少。不過越低溫之冷凍庫設計屬需要成本越高。

於氮氣純化之LNG冷能利用EXERGY效率,顯示N2冷卻至越低溫,則效率越高,最高效率於氮氣溫度出口-150℃時,為39%。另外熱經濟分析之結果顯示在-130℃氮氣出口溫度為最佳之設計點。

在現役電廠複循環之進氣冷卻模擬分析中若回到ISO條件則平均可增加7%之發電量約30.42MW、若為10C則平均可增加10.5%之發電量約45.63MW、到7C時則平均可增加12.6%之發電量約54.8MW、最後到4.5C時則平均可增加14.4%之發電量約62.46MW。熱耗率從32C到4.5C可以減少0.98%。
由本論文之研究成果充分顯示出LNG冷能為高品質與高量值的可回收能源,且運用於實際工程系統中具有極高之經濟效益,值得大力投入開發與應用。若能充分的利用LNG冷能則不僅可以達成節約能源而獲得經濟效益,更有助於LNG能源之推廣對我國能源事業做出重大貢獻。
Abstract
Taiwan is the major country of importing LNG. In this paper discussed LNG cold energy recovery used in cold storage warehouse and other energy conservation systems.

In the cold storage warehouse systems that showed the less temperature of cold storage warehouse the more exergy efficiency and the best exergy efficiency is 30%. Base on thermoeconomic analysis there was the optimal operation temperature at -70℃.

In the purifier nitrogen system (PNS), the investigation indicated the best efficient operating temperature at -150℃. But with economic analysis the optimal design temperature of this PNS was -130℃.

And the last energy conservation system was the running power plane. In this research studied the power planes used LNG cold energy as inlet air-cooling systems. According to the investigation that showed the systems increased power output up to 14.4% in the 4.5℃ of inlet air cooling temperature. And these systems also improved the heat rate of power planes about 0.98%.

The conclusions presented that the potentialities of LNG cold energy are huge, and with proper engineering and economic analysis could make these energy conservation systems more feasible.
目次 Table of Contents
第一章、緒論
1-1研究背景與動機 1
1-2文獻回顧 7
1-3研究內容與步驟 9


第二章、理論分析
2-1 LNG冷能理論計算分析 11
2-2 LNG利用於冷凍冷藏庫之理論分析 19
2-3 LNG利用於空氣液化之理論分析 22
2-4 LNG冷能利用於複循環氣渦輪機進氣冷卻
性能提升理論分析 27


第三章 LNG冷能利用於冷藏庫系統之研究分析 31
3-1 國內冷凍食品以及低溫物流發展方向 31
3-2 冷凍冷藏庫之LNG冷能利用設計概念 35
3-3 冷凍冷藏庫運轉性能分析與經濟效益評估 45

第 四 章 LNG冷能利用於氣體分離廠之研究分析 49
4-1 工業級液態氧體產業應用分析 49
4-2 LNG冷能利用之氣體分離系統規劃 60
4-3 LNG冷能利用氣體分離廠之經濟效益分析與評估 66

第五章 複循環電廠之進氣冷卻分析 72
5-1 LNG冷能傳輸之管路系統設計分析 73
5-2 LNG冷能傳輸管路系統分析 79
5-3 複循環發電廠進氣冷卻之性能探討 83
5-3 進氣冷卻系統之冷凍主機性能分析 94
5-4 各式進氣冷卻系統性能分析 99
5-5 現役電廠進氣冷卻之經濟分析 107

第六章 結論 120
參考文獻 123
參考文獻 References
[1]J. Ebeling, R. Balsbaugh. Thermal energy storage and inlet air cooling for combined cycle. 94-GT-310

[2]Y.Hisazumi, Y.Yamasaki and S.Sugiyama. Proposal for a high efficiency LNG Power generation system utilizing waste heat from the combined cycle. Applied Energy. 60(1998) pp.169-182

[3]T. Flower. D. Maes, J. Zachary. Comprehensive review of power augmentation options for simple and combined cycles applications in hot climates. ASME Power-Gen Asia’97.1997
[4]M. De Lusia, C. Lanfranchi and V. Boggio. Benefits of compressor inlet cooling for gas turbine cogeneration plants. J. of Engineering for Gas Turbines and Power. July 1996 Vol. 118 pp.598-603

[5]Y. S. H. Najjar , “Enhancement of performance of Gas Turbine engines by inlet air cooling and cogeneration system”, Applied Thermal Engineering Vol.16 No.2 pp.163-173,1996.

[6]M. A. Ait-Ali, “Optimum Power Boosting Of Gas Turbine Cycles With Compressor Inlet Air Refrigeration”, Transaction of ASME, Vol, 119, January 1997.
[7]A. Agazzani, A.F.Massardo , “A Tool for Thermoeconomic Analysis and Optimization of Gas , Steam, and Combined Plants”, Journal of Engineering for Gas Turbines and Power,Vol.119,p885-892,October 1997.
[8]T.S. Kim, S.T. Ro. Power augmentation of combined cycle power plants using cold energy of liquefied natural gas. Energy 25(2000) pp.841-856
[9] H. Liu, L. You. Characteristics and applications of the cold heat exergy of liquefied natural gas. Energy Conversion & Management. 1999. (40) pp.1515-1525

[10] W. C. Edmister, Applied Hydrocarbon Thermodynamics Volume 1 Gulf Publish company. 1984
[11] hysys reference volume 1, hyprotech Ltd. , 1996
[12]A. Bejan, “Thermal Design and Optimization”, John Willy & Sons inc. 1996
[13]R. F. Barron, “Cryogenic Systems”, Oxford University Press, New York, 1985, p.64-68
[14]”Refrigeration systems and Applications”, ASHRAE Handbook, 1990, P38.1-38.11
[15]A. D. Rao, F. L. Roson, R. A. Geisbrecht, “Power Plane system Configurations for the 21st Century “, ASME TURBO EXPO 2002, GT-2002-30671
[16]J. H. Horlock, “Combined Power Plants-Part, Present and Future” ,Transactions of the ASME ,Vol.117, Oct 1995 ,pp.608-616

[17]D. A. Kolp, W. M. Flye, H. A.Guidotti,”Advantages of Air Conditioning and Supercharging An LM6000 Gas Turbine Inlet”,Journal of Engineering for Gas Turbines and Power,July 1995,pp. 513~527.

[18]G. R. Guinn, ”Evaluation of Combustion Gas Turbine Inlet Air Precooling for Time Varying Annual Climatic Conditions”,1993 ASME COGEN-TURBO,pp. 19~32.
[19]H. Cohen, G. Rogers, H. Saravanamuttoo, “Gas Turbine Theory”, 4th Edition 1996, Longman group
[20]M. S. Soylemez and M. Unsal, ”Optimization insulation thickness for refrigeration applications”,Energy Conversion & Management 40, 1999, pp.13~21
[21]M.B.Arun, M.P. Maiya S. S. Murthy, “Equilibrium low pressure generator temperatures for double-effect series flow absorption refrigeration systems”, Applied Thermal Engineering vol. 20, 2000, pp. 227-242

[22]P. E. Hufford, ”Absorption chillers improve cogeneration energy efficiency” ,ASHRAE Journal, March 1992.

[23]B. Mohaty, G. Paloso Jr, “Enhancing gas Turbine Performance By Intake Air Cooling Using an Absorption Chiller”, Heat Recovery Systems &CHP Vol,1,pp. 41-50, 1995.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code