Responsive image
博碩士論文 etd-0624103-165922 詳細資訊
Title page for etd-0624103-165922
論文名稱
Title
全共軛雜環芳香族硬桿式高分子之發光二極體
Luminescence of Light Emitting Diodes of Fully Conjugated Heterocyclic Aromatic Rigid-rod Polymers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
228
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-05
繳交日期
Date of Submission
2003-06-24
關鍵字
Keywords
光致光、高分子發光二極體、白色發光、雜環芳香族硬桿式高分子、分子改質、物理混摻、電致光、模擬計算、偏極化發光
Heterocyclic aromatic rigid-rod polymer, Polymer light emittingdiode, Electroluminescence, Molecular modification, Computational simulation, Polarized emission, Physical blending, Photoluminescence, White light emission
統計
Statistics
本論文已被瀏覽 5863 次,被下載 4280
The thesis/dissertation has been browsed 5863 times, has been downloaded 4280 times.
中文摘要
Poly-p-phenylenebenzazoles (PBXs) 為一全共軛硬桿式雜環芳香族液晶高分子,這種苯環與雜環基交替的結果,使得此硬桿式高分子具有極優越之熱氧化穩定性與尺寸安定性。PBXs的多功能(multifuntional)特性還包含了極高的機械性質、優越的非線性光學反應、與良好的導電特徵,由於其主鏈為一完全共軛結構,使得PBXs更具有高超的光電特性。近十年來,分子發光二極體因其擁有多樣優越特性而在光電領域被廣泛地研究,本論文將以硬桿式雜環芳香族高分子為發光二極體之材料,作一系列深入且廣泛之研究。
本論文首先介紹了硬桿式高分子薄膜及單層發光二極體的製作過程。硬桿式高分子poly-p-phenylenebenzobisthiazole (PBT)自立膜在從室溫到低溫的光致光光譜實驗中展現了電子與聲子(phonon)交互作用。單層PBT發光二極體在使用鎂金屬作為陰極電子注入極時,其發光起始電壓(threshold voltage)可低達1 V。單層的發光二極體之電致光光譜隨著電功率的改變而產生了可調變的光色。在以PBT為電洞傳導層的多層發光二極體研究中,驗證了雙層結構設計經由大量的電子與電洞之再結合而擁有較高的發光效率,而在三層的結構中因平衡了電子、電洞的傳輸速率而擁有較低的起始電壓。在這系列中,同時驗證了以PBT為電洞傳導層的發光二極體可擁有較高的電致光效率。
基於poly-p-phenylenebenzobisoxazole (PBO)高分子纖維擁有卓越的分子方向性,所以我們利用此特性發展出兩種製作俱有單一方向性之自立膜與發光二極體的方法。經此所製備之PBO自立膜在光致光光譜中,可發現平行和垂直於PBO分子取向上的放光強度相差達五倍,這也驗證了所製備出的自立膜具有優越的方向性。而以此方法製備的單一取向PBO發光二極體相較於無方向性的PBO元件,其起始電壓也由7 V下降至5 V。
分子改質部分探討了非全共軛蜷曲式高分子poly-2,2'-m-phenylene- 5,5'-bibenzimidazole (Pbi)與全共軛硬桿式高分子PBT混摻後的光電特性,由Pbi 與PBT混摻體之吸收光譜中可知其吸收光譜均為Pbi與PBT個別光譜之相加,並無電荷傳遞的交互作用,而摻混體自立膜之光致光及電致光光譜會隨著Pbi混摻比例的增加而往藍光位移,此現象歸因於PBT的硬桿式分子鍊構型或聚集體取向因Pbi的加入而產生變化,其發光二極體的起始電壓也隨著PBT的混摻比例增加而從14 V降低到 4 V。另一分子改良之研究為6F-PBO-OH-co- 6F-PBO-di(OC10H21) 共聚合物,其光致光光譜隨著不同比例之共聚體而展現出從綠光到藍光之可調變光色,並且從Commission Internationale de l’Eclairage (C. I. E.)光色標準中驗證了此共聚合物俱有發白光之電致光效應。
分子改質的最後一個研究主題為探討不同原子取代之硬桿式高分子對其吸收及放射光譜的影響,利用計算模擬來瞭解每個原子對吸收光譜的貢獻。經由實驗得知,擁有分子內氫鍵的PBO-OH比PBO有較大的史多克光譜位移(Stoke’s shift),乃因其電子在激發態時有能量轉移,而此能量的損失導致了光致光光譜往長波長位移。此外,PBO與PBT有相同之主鍊共線性,然PBO更俱有較好的分子共平面性,此結構本應提供了更佳之電子非區域性(delocalization),但因為PBO上之氧原子的高陰電性影響了π電子雲的非區域性,導致PBO吸收光譜有藍位移的現象。最後,以凝態物理的模擬方式來計算硬桿式高分子上不同之取代原子對吸收光譜的影響,計算數據與實驗結果吻合。

Abstract
Poly-p-phenylenebenzazoles (PBXs) are heterocyclic aromatic rigid-rod liquid-crystalline polymers with fully conjugated backbone having excellent thermo-oxidative, as well as dimensional stabilities. PBXs are considered to be multifunctional polymers of superior mechanical tenacity, non-linear optical response, and electrical properties. The fully conjugated PBX polymers are deemed to have excellent opto-electronic properties. In the last decade, molecular light emitting diodes (LEDs) have been investigated intensively for having distinct advantages as an advanced opto-electronic technology.
This dissertation leads to rigid-rod polymer thin-films and mono-layer devices fabricated from acidic solutions. Photoluminescence (PL) spectra for poly-p-phenylenebenzobisthiazole (PBT) freestanding film were measured over a temperature range of 67 K to 300 K showing distinct electron-phonon interaction. Using an Mg cathode, the mono-layer PBT LEDs displayed a diodic electric response with a threshold voltage as low as 1 V. A blue shift in the maximum emission wavelength of the electroluminescence (EL) spectra was also observed with increasing electrical injection energy. For the multi-layer LEDs based on PBT using the same electrodes, the p-type/n-type bi-layer structure showing the most enhanced EL emission, and the tri-layer heterojunction had the least threshold voltage using the same electrodes. Our results indicated that the heterojunction architecture could be applied to balance charge carriers for increasing EL intensity. Meanwhile, the investigation also revealed the advantage in using the extra PBT layer for increasing both EL emission intensity and injection efficiency by lowering its threshold voltage.
Two schemes for making uniaxial freestanding films and LED devices for polarized optical absorption and emission were processed from uniaxial poly-p-phenylenebenzobisoxazole (PBO) fiber. The PL of the uniaxial PBO films demonstrated an emission intensity ratio I∥/I⊥as high as 5. Anisotropically processed mono-layered PBO LED showed a markedly decreased threshold voltage from 7 V of the isotropic PBO device to 5 V. The polarization effects in optical absorption, PL and EL emissions were acquired and correlated with the uniaxial orientation of the rigid-rod PBO polymer.
The molecular modification investigated the opto-electronic properties of poly-2,2'-m-phenylene-5,5'-bibenzimidazole (Pbi) with PBT physical blends, and monolithic 6F-PBO-OH-co-6F-PBO-di(OC10H21) copolymers. Partially conjugated polymer Pbi and fully conjugated polymer PBT were mixed for luminescence study. Their absorption spectra showed superposition of individual absorption response indicating no inter-molecular energy transfer. However, the PL and the EL emission demonstrated a blue shift with increasing Pbi content. This was attributed to the rigid-rod configuration or the aggregation of PBT perturbed by mixing with coil-like Pbi. It was recognized that the backbone of the fully conjugated rigid-rod PBT was collinear having more charge delocalization than that of not fully conjugated coil-like Pbi. The diode threshold voltage of the physical blends varied from 4 V to 14 V with decreasing PBT content. Another molecular modification was changing the composition of 6F-PBO copolymers. Their PL emission exhibited excellent chromatic tuning range from green to blue emission. The Commission Internationale de l’Eclairage (C. I. E.) coordinates of the copolymer EL emission were from (0.25, 0.53) to (0.24, 0.31) covering a wide visible range and demonstrating a white light emission.
Atomic substitution of the rigid-rod polymers was utilized to examine individual atomic contribution for luminescence emission. The hydrogen bond effect for PBO-OH and PBO was evidenced in a major Stoke’s shift to a longer wavelength because of protonic transfer on the excited state. Elemental electronegativities affected the delocalization of the π electron leading to a blue shift in absorption spectra as shown in case of PBO and PBT. The PBO molecule was more collinear and co-planar, providing more charge delocalization than PBT. However the absorption edge of the PBT was about 30 nm higher than that of PBO. This suggested that the electronegativities affected the molecular delocalization. Using the solid-state physics with pseudofunction (PSF) calculation, there was good match between absorption spectra and calculated excitation energies for the rigid-rod polymer systems.

目次 Table of Contents
TABLE OF CONTENTS
LIST OF FIGURES……………………………………………………VI
LIST OF TABLES…………………………………………………XVII

CHAPTER 1 INTRODUCTION……………………………1
1.1 History of Light Emitting Diode…………………………………2
1.1.1 Semiconductor Light Emitting Diode………………………2
1.1.2 Organic LED……………………………………………2
1.2 Molecular Light Emitting Diode………………………………3
1.2.1 Structure…………………………………………………3
1.2.2 Classifications of Molecular Light Emitting Diode………4
1.3 Luminescent Polymers……………………………………5
1.3.1 Conjugated Polymer…………………………………………5
1.3.2 Conjugated Rigid-rod Polymer……………………………6
1.4 Energy Band and Band Gap……………………………………7
1.4.1 Work Function………………………………………………8
1.4.2 Nearly Free Electron Model………………10
1.4.3 Band Gap of Conjugated Polymers………………………11
1.4.3.1 Electron-phonon Interaction—Peierl’s Distortion………12
1.4.3.2 Electron-electron Interaction—Hubbard’s Distortion…15
1.5 Luminescence Emission……………………………………16
1.5.1 Electroluminescence of Two-level System………………16
1.5.2 Luminescence Process…………………………………18
1.5.2.1 Recombination……………………………………18
1.5.2.2 Emission…………………………………………19
1.5.2.3 Energy Level of Molecules……………………20
1.6 Charge Transport……………………………………………22
1.6.1 Conformation Misfits………………………………………23
1.6.2 Degeneracy………………………………………………24
1.6.3 Solitons…………………………………………………25
1.6.4 Polaron and Bipolaron…………………………………26
1.6.5 Generation of Solitons…………………………………28
1.7 Quantum Efficiency of Electroluminescence……………………29
1.8 Polarized Luminescence…………………………………31
1.9 Molecular Modification and Atomic Substitutions……………32

CHAPTER 2 FUNDAMENTALS OF EXPERIMENT……………35
2.1 Thin-film Morphology……………………………………………35
2.1.1 Scanning Electron Microscope (SEM)…………………37
2.1.1.1 Electron Guns………………………………………37
2.1.1.2 Electron and Specimen Interactions…………………38
2.1.1.3 Electron Signal Detection and X-ray Analysis………38
2.1.2 X-ray Scattering………………………………………39
2.2 Thin-film Optical Characterization………………………………41
2.2.1 UV-Vis Absorption Spectrum……………………………42
2.2.2 Spectral Reflectance……………………………………45
2.2.3 Photoluminescence………………………………………47
2.3 Mono-layer/Multi-layer LED Fabrication………………………48
2.3.1 Spin Coating………………………………………………51
2.3.2 Coagulation………………………………………………52
2.3.3 Vacuum Thermal Evaporation………………………52
2.4 Mono-layer/Multi-layer LED Characterization…………………53
2.4.1 Current-voltage measurement…………………………55
2.4.2 Electroluminescence…………………………………….56

CHAPTER 3 MONO-LAYER HOMOJUNCTION LEDS……………59
3.1 Introduction………………………………………………………59
3.2 Rigid-rod Polymer……………………………………………60
3.3 Design of the Experiments……………………………………60
3.3.1 PBT Thin-film Processing and Characterization…………61
3.3.2 Device Processing and Characterization of PBT Thin-film
from Lewis Acid…………………………………61
3.3.3 Quantum Efficiency: Metallic Cathode and Film Thickness..61
3.4 Experiment……………………………………………………64
3.4.1 Preparation of PBT Rigid-rod Polymer Solution………64
3.4.2 Process of Thin-film…………………………………65
3.4.3 Thin-film Morphology……………………………………65
3.4.3.1 Scanning Electron Microscopy……………………65
3.4.3.2 X-ray Scattering……………………………………66
3.4.4 Thin-film Characterization………………………………66
3.4.4.1 UV-Vis Absorption…………………………………66
3.4.4.2 Spectral Reflectance………………………………67
3.4.4.3 Photoluminescence…………………………………67
3.4.5 Mono-layer LED Fabrication…………………………68
3.4.5.1 Vacuum Thermal Evaporation………………………68
3.4.6 Mono-layer LED Characterization………………69
3.4.6.1 I-V Measurement……………………………………69
3.4.6.1 Electroluminescence.............69
3.5 Experimental Results…………………………………………69
3.5.1 PBT Thermal Stability………………………70
3.5.2 PBT Thin-film of Different Solvents……70
3.5.3 PBT Thin-film and Device from Lewis Acid……………71
3.5.4 PBT Thin-film Refractive Index.…………………………74
3.5.5 LED Cathode Electrode……………………………………78
3.5.6 PBT Film Thickness for Mono-layer LEDs…………………78
3.6 Conclusions……………………………………………………80

CHAPTER 4 MULTI-LAYER HETEROJUNCTION LEDS…………97
4.1 Introduction……………………………………………………97
4.1.1 Multi-layer LED Structure………………………………100
4.1.1.1 Ideal Multi-layer Heterojunction…………………100
4.1.1.2 Quantum Well……………………………………102
4.2 Materials……..……………………………………………103
4.2.1 Energy Levels of Conjugated Molecules…………105
4.3 Design of the LED Experiments…………………………………106
4.3.1 Bi-layer Heterojunction………………………………106
4.3.2 Tri-layer Heterojunction…………………………………107
4.4 Experimental…………………………………………………108
4.4.1 Deposition and Film Thickness of Dye Chemicals………109
4.4.2 Thin-film and Multi-layer LED Fabrication……………110
4.4.3 Multi-layer LED Characterization………………………111
4.4.3.1 I-V Measurement………………………………112
4.4.3.2 Electroluminescence…………………112
4.5 Experimental Results…………………………………………113
4.5.1 Surface Profilometry and UV-Vis Spectroscopy…………113
4.5.2 Junction Film Thickness…………………………………114
4.5.3 UV-Vis Absorbance of PBT, C6 and Alq3………………115
4.5.4 Electroluminescence of Mono-layer LEDs of PBT,
C6 and Alq3………………………………………………116
4.5.5 Opto-electronic of Multi-layer LEDs……………………116
4.5.5.1 C6 and PBT/C6 Multi-layer LEDs……………………116
4.5.5.2 Alq3 and PBT/Alq3 Multi-layer LEDs……………117
4.5.5.3 Alq3/C6 and PBT/Alq3/C6 Multi-layer LEDs…………119
4.5.5.4 C6/Alq3 and PBT/C6/Alq3 Multi-layer LEDs………120
4.5.6 Summary…………………………………………………120
4.6 Conclusions…………………………………………………123

CHAPTER 5 POLARIZED LUMINESCENCE EMISSION……144
5.1 Introduction.…………………………………………………144
5.2 Materials……………………………………………………146
5.3 Uniaxial Film and Device Preparation…………………………148
5.3.1 Mechanical Orientation for Freestanding Film
and LED Devices………………………………………148
5.4 Experimental…………………………………………………149
5.4.1 PBO Polymer Fiber and Solvents………………………149
5.4.2 Isotropic Thin-film and LED Devices…………………150
5.4.3 PBO Uniaxial Thin-film and LED Devices………………150
5.4.3.1 Mechanical Shearing for Oriented PBO Thin-film……150
5.4.3.2 Novel Processing for Highly Oriented PBO Thin-film..152
5.4.4 Film and Device Morphology……………………………153
5.4.5 PLM Image……………………………………………153
5.4.6 UV-Vis Absorbance…………………………………153
5.4.7 Photoluminescence………………………………154
5.4.8 I-V Measurement………………………………………154
5.4.9 Electroluminescence………………155
5.5 Experimental Results…………………………………………155
5.5.1 X-ray Scattering on PBO Fiber…………………………155
5.5.2 Opto-electronic Characterization of Mechanically Sheared
Systems…………………………………………………156
5.5.2.1 PLM Image…………………………………………156
5.5.2.2 UV-Vis Absorbance…………………………………156
5.5.2.3 Photoluminescence……………………………157
5.5.2.4 Mechanically Sheared PBO LEDs…………………159
5.5.3 Novel Processing for Highly Oriented PBO Thin-film…160
5.6 Conclusions……………………………………………163

CHAPTER 6 MOLECULAR AND ATOMIC MODIFICATIONS…175
6.1 Introduction.…………………………………………………175
6.1.1 Molecular Modifications………………………………176
6.1.2 Atomic Substitutions…………………………………178
6.2 Materials and Experiment…………………………………………180
6.2.1 Molecular Modifications………………………………180
6.2.1.1 Pbi Coil-like and PBT Rigid-rod Polymer Blends…181
6.2.1.2 6F-PBO Copolymers for Tunable and
White Light Emission………………………183
6.2.2 Atomic Substitutions……………………………………185
6.2.2.1 Hydrogen Bonding Effects………………………186
6.2.2.2 Electronegativity……………………………………187
6.2.2.3 Heteroatom Effects……………………………………187
6.2.2.4 Computational Simulation…………………188
6.3 Results and Discussion………………………………………189
6.3.1 Pbi Coil-like and PBT Rigid-rod Polymer Blends………189
6.3.2 6F-PBO Copolymers for Tunable and
White Light Emission……………………………………191
6.3.3 Atomic Substitutions…………………………………193
6.3.3.1 Intramolecular Hydrogen Bond………………193
6.3.3.2 Electronegativity and Heteroatom Effects…………195
6.3.3.3 Computational Simulation Results…………196
6.4 Conclusions…………………………………………………200
LIST OF REFERENCES……………………………………………222
參考文獻 References
1. M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2042 (1963).
2. W. Helfrich and W. G. Schneider, Phys. Rev. Lett., 14, 229 (1965).
3. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
4. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys., 65, 3610 (1989).
5. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay,
R. H. Friend, P. L. Burn, and A. B. Holmes, Nature, 347, 539 (1990).
6. D. Braun and A. J. Hegger, Appl. Phys. Lett., 58, 1982 (1991).
7. D. D. C. Bradley, Synth. Met., 54, 401 (1993).
8. H. Vanherzeele, J. S. Meth, S. A. Jenekhe, and M. F. Roberts, Appl. Phys. Lett.,
58, 663 (1991).
9. S. A. Jenehke and P. O. Johns, Macromolecules, 23, 4419 (1990).
10. D. N. Rao, J. Swiatkiewicz, P. Chopra, S. K. Ghosal, and P. N. Prasad, Appl. Phys. Lett., 48, 1187 (1986).
11. L. Pauling, "Nature of the Chemical Bond," Cornell University Press, Ithaca, New York (1960).
12. Charles Kittel, "Introduction to Solid State Physics," John Wiley & Sons, Inc., New York, New York (1988).
13. R. E. Peierls, "Quantum Theory of Solids," Oxford University Press, London, England (1955).
14. J. Hubbard, "Electron Correlations in Narrow Energy Bands," Proc. R. Soc., London, England (1963).
15. R. Siegmar, "One-Dimensional Metals," Wiley-VCH, Weinheim, New York (1995).
16. D. Baeriswyl, "Theroretical Aspects of Conducting Polymer : Electronic Structure and Defect States," Reidel, Dordrecht, Holland (1985).
17. H. G. Kiess, "Conjugated Conducting Polymers," Springer-Verlag, New York, New York (1992).
18. S. Kagoshima, H. Nagasawa, and T. Sambongi, "One-Dimensional Conductors," Springer-Verlag, Heidelberg, (1982).
19. P. Bhattacharya, "Semiconductor Optoelectronic Devices," Prentice-Hall, Inc., Upper Saddle River, New Jersey (1997).
20. E. F. Schubert, "Light Emitting Diodes," Cambridge University Press, London, England (2003).
21. B. M. Krasovitskii and B. M. Bolotin, "Organic Luminescent Materials," VCH, Weinheim, Germany (1987).
22. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett., 42, 1698 (1979).
23. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. B, 22, 2209 (1980).
24. M. J. Rice, Phys. Lett. A, 71, 152 (1979).
25. T. A. Skotheim, "Handbook of Conducting Polymer," Marcel Dekker, Inc.,
Upton, New York (1986).
26. A. A. Bergh and J. P. Dean, Proc. IEEE., 60, 156 (1972).
27. M. Wohlgenannt, Kunj Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny, Nature, 409, 494 (2001).
28. R. J. Spry, M. D. Alexander Jr., S. J. Bai, T. D. Dang, G. E. Price, D. R. Dean, B. Kumar, J. S. Solomon, and F. E. Arnold, J. Polym. Sci. Part B: Polym. Phys., 35, 2925 (1997).
29. S. J. Bai, R. J. Spry, D. E. Zelmon, U. Ramabadran, and J. Jackson, J. Polym. Sci. Part B: Polym. Phys., 30, 1507 (1992).
30. M. Hamaguchi and K. Yoshino, Appl. Phys. Lett., 67, 3381 (1995).
31. M. Era, T. Tsutsui, and S. Saito, Appl. Phys. Lett., 7, 2436 (1995).
32. B. M. Krasovitskii and B. M. Bolotin, Khim. Geterotsiklich. Soedin., 11, 1443 (1974).
33. R. Swanepoel, Opt. Soc. Am. A, 2, 1339 (1985).
34. R. Swanepoel, J. Phys. E: Sci. Instrum., 16, 1214 (1983).
35. S. J. Bai, C. C. Wu, L. W. Tu, and K. H. Lee, J. Polym. Sci. Part B: Polym. Phys., 40, 1760 (2002).
36. J. A. Osaheni and S. A. Jenekhe, Macromolecules, 27, 739 (1994).
37. K. Okumoto and Y. Shirota, J. Lumin., 97, 1171 (2000).
38. X. Zhang and S. A. Jenekhe, Macromolecules, 33, 2069 (2000).
39. A. J. Esptein and J. S. Miller, Sci. Am., 241, 52 (1979).
40. O.-K. Kim, J. Polym. Sci. Polym. Lett. Ed., 23, 137 (1985).
41. L. R. Daiton, J. Thomson, and H. S. Nalwa, Polymer, 28, 543 (1987).
42. P. A. DePra, J. G. Gaudiello, and T. J. Marks, Macromolecules, 21, 2295 (1988).
43. A. Bidarian and P. K. Kadaba, J. Mater. Sci. Lett., 7, 922 (1988).
44. S. A. Jenehke and S. J. Tibbetts, J. Polym. Sci. Part B: Polym. Phys., 26, 201 (1988).
45. M. D. Pace and O.-K. Kim, Synth. Met., 25, 333 (1988).
46. F. Coter, Y. Belaish, D. Davidov, L. R. Dalton, E. Ehrenfreund, M. R. McLean, and H. S. Halwa, Synth. Met. E, 29, 471 (1989).
47. X. F. Cao, J. P. Jiang, D. P. Bloch, and R. W. Hellwarth, J. Appl. Phys., 65, 5012 (1989).
48. H. Vanherzeele, J. S. Meth, S. A. Jenekhe, and M. F. Roberts, J. Opt, Soc. Am. B, 9, 524 (1992).
49. C. Y.-C. Lee, J. Swiatkiewicz, P. N. Prasad, R. Metha, and S. J. Bai, Polymer, 32, 1195 (1991).
50. C. Weder, C. Sarwa, C. Bastiaansen, and P. Smith, Adv. Mater., 9, 1035 (1997).
51. S. J. Bai, K. R. Srinivasan, L.-S. Tan, R. J. Spry, and G. E. Price, J. Appl. Phys., 85, 280 (1999).
52. S. Mittler-Neher, A. Otomo, G. I. Stegeman, C. Y.-C. Lee, R. Mehta, A. K. Agrawal, and S. A. Jenehke, Appl. Phys. Lett., 62, 115 (1993).
53. S. A. Jenekhe, X. Zheng, and L. X. Chen, Chem. Mater., 9, 409 (1997).
54. L. Wang, T. Wada, T. Yuba, M. Kakimoto, Y. Imai, and H. Sasabe, J. Appl. Phys., 79, 9321 (1996).
55. M. F. Roberts and S. A. Jenekhe, Polym. Commun., 31, 215 (1990).
56. S. A. Jenekhe and J. A. Osaheni, Science, 265, 765 (1994).
57. S. Trohalaki and D. S. Dudis, Polymer, 36, 911 (1995).
58. S. A. Jenekhe, P. O. Johnson, and A. K. Agrawal, Macromolecules, 22, 3216 (1989).
59. R. M. Tarkka, X. Zhang, and S. A. Jenekhe, J. Am. Chem. Soc., 118, 9438 (1996).
60. J. F. Wolf, B. H. Loo, and F. E. Arnold, Macromolecules, 14, 915 (1981).
61. R. C. Evers, F. E. Arnold, and T. E. Helminiak, Macromolecules, 14, 925 (1981).
62. J. F. Wolf and F. E. Arnold, Macromolecules, 14, 909 (1981).
63. W. J. Welsh, D. Bhaumik, and J. E. Mark, Macromolecules, 14, 947 (1981).
64. J. P. Flory, Proc. R. Soc. Lond. Ser. A, 234, 73 (1956).
65. I. D. Parker, Q. Pei, and M. Marrocco, Appl. Phys. Lett., 65, 1272 (1994).
66. W. Rieb, S. Karg, V. Dyakonov, M. Meier, and M. Schwoerer, J. Lumine., 60-61, 906 (1994).
67. H. Antoniadis, B. R. Hsieh, M. A. Abkowitz, S. A. Jenekhe, and M. Stolka, Synth. Met., 62, 265 (1994).
68. S. Miyata and H. S. Nalwa, "Organic Electroluminescent Materials and Devices," Gordon and Breach, Hitachi City, Ibaraki, Japan (1997).
69. H. Antoniadis, M. A. Abkowitz, and B. R. Hsieh, Appl. Phys. Lett., 65, 2030 (1994).
70. P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett., 68, 3308 (1996).
71. L. B. Lin, S. A. Jenekhe, and P. M. Borsenberger, J. Chem. Phys., 105, 8490 (1996).
72. L. B. Lin, S. A. Jenekhe, and P. M. Borsenberger, Appl. Phys. Lett., 69, 3495 (1996).
73. N. C. Greenham, S. C. Moratt, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, Nature, 365, 628 (1993).
74. H. Meyer, D. Haarer, H. Naarmann, and H. H. Horhold, Phys. Rev. B, 52, 2587 (1995).
75. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys., 27, 713 (1988).
76. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys., 27, L269 (1988).
77. Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Lmai, Appl. Phys. Lett., 65, 807 (1994).
78. M. A. Baldo and S. R. Forrest, Phys. Rev. B, 62, 10958 (2000).
79. J. A. Osaheni and S. A. Jenekhe, Chem. Mater., 7, 672 (1995).
80. X. Z. Jiang, Y. Q. Liu, X. Q. Song, and D. B. Zhu, Synth. Met., 91, 311 (1997).
81. X. Z. Jiang, Y. Q. Liu, X. Q. Song, and D. B. Zhu, Synth. Met., 87, 175 (1997).
82. H. Suzuki, H. Meyer, S. Hoshino, and D. Haarer, J. Appl. Phys., 78, 2684 (1995).
83. H. Cao, X. Gao, and C. H. Huang, Appl. Surf. Sci., 161, 443 (2000).
84. S. A. Jenekhe, L. R. de Paor, X. L. Chen, and R. M. Tarkka, Chem. Mater., 8, 2401 (1996).
85. S. W. Pro, S. P. Lee, H. S. Lee. O. K. Kwon, H. S. Hoe, S. H. Lee, Y. K. Ha, Y. K. Kim, and J. S. Kim, Thin Solid Films, 363, 232 (2000).
86. L. Zugang and H. Nazare, Synth. Met., 111-112, 47 (2000).
87. C. Weder, C. Sarwa, A. Montali, C. Bastiaansen, and P. Smith, Science, 279, 835 (1998).
88. F. Krausz and E. Wintner, Phys. Rev. B, 39, 3701 (1989).
89. M. Sinclair, D. Moses, K. Akagi, and A. J. Heeger, Phys. Rev. B, 38, 10704 (1988).
90. H. Yanagi and S. Okamoto, Appl. Phys. Lett, 71, 2563 (1997).
91. H. Tokuhisa, M. Era, and T. Tsutsui, Appl. Phys. Lett., 72, 2639 (1998).
92. E. K. Miller, D. Yoshida, C. C. Yang, and A. J. Heeger, Phys. Rev. B, 59, 4661 (1999).
93. T. W. Hagler, K. Pakbaz, K. F. Voss, and A. J. Heeger, Phys. Rev. B, 44, 8652 (1991).
94. J. A. Odell, A. Keller, and E. D. T. Atkins, Macromolecules, 18, 1443 (1985).
95. S. J. Bai and G. E. Price, Polymer, 33, 2136 (1992).
96. M. E. Hunsaker, G. E. Price, and S. J. Bai, Polymer, 33, 2128 (1992).
97. C.-P. Wong, H. Ohnuma, and G. C. Berry, J. Polym. Sci. Part C, 65, 173 (1978).
98. M. W. Wellman, W. W. Adams, R. A. Wolff, D. R. Wiff, and A. V. Fratini, Macromolecules, 14, 935 (1981).
99. S. A. Jenehke and P. O. Johnson, Macromolecules, 23, 4419 (1990).
100. S. A. Jenehke, P. O. Johnson, and A. K. Agrawal, Macromolecules, 22, 3216 (1989).
101. V. Cimrov'a, M. Remmers, D. Neher, and G. Wegner, Adv. Mater., 8, 146 (1996).
102. H. Yoshida, Y. Nakano, and S. Hayase, Macromolecules, 28, 2389 (1995).
103. A. P. Davey, R. G. Howard, and W. J. Blau, J. Mat. Chem., 7, 417 (1997).
104. D. P. Pope and A. Keller, J. Matter. Sci., 9, 920 (1974).
105. R. W. Gray and R. J. Young, J. Mat. Sci. Lett., 9, 521 (1974).
106. H. H. Song, A. S. Argon, and R. E. Cohen, Macromolecules, 23, 790 (1990).
107. J. A. Odell, A. Keller, and E. D. T. Atkins, J. Polym. Sci. Polym. Lett. Ed., 21, 289 (1983).
108. T. Kohji, Y. Junichi, K. Tooru, M. Hiroki, and Y. Kazuyuki, Macromolecules,
31, 5430 (1998).
109. C. C. Chau and J. Blackson, Polymer, 36, 2511 (1995).
110. T. C. Chung, F. Moreas, J. D. Flood, and A. J. Heeger, Phys. Rev. B, 29, 2341 (1984).
111. L. Lauchlan, S. Etemad, T. C. Chung, A. J. Heeger, and A. G. Macdiarmid, Phys.
Rev. B, 24, 3701 (1981).
112. G. Kossmehl, Ber. Bunsenges. Phys. Chem., 83, 417 (1979).
113. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature, 357, 477 (1992).
114. C. C. Wu, P. Y. Tsay, H. Y. Cheng, and S. J. Bai, submit to J. Appl. Phys. for
publication (2003).
115. M. Dotrong, M. H. Dotrong, and R. C. Evers, J. Polym. Sci. A: Polym. Chem.,
35, 3451 (1997).
116. Y. Maruyama, Y. Oishi, M. Kakimoto, and Y. Imai, Macromolecules, 21, 2305
(1988).
117. T. D. Dang, P. T. Mather, M. D. Alexander, Jr., C. J. Grayson, M. D. Houtz, and
R. J. Spry, J. Polym. Sci. Part A: Polym. Chem., 38, 1991 (2000).
118. W. D. Joseph, J. C. Abed, R. Mercier, and J. E. McGrath, Polymer, 23, 5046
(1994).
119. G. Hougham, G. Tesoro, and A. Viehbeck, Macromolecules, 29, 3453 (1996).
120. D. Heol and E. Grunwald, J. Phys. Chem., 81, 2135 (1977).
121. R. V. Kasowski, M. H. Tsai, T. N. Rhodin, and D. D. Chambliss, Phys. Rev. B,
34, 2656 (1986).
122. R. V. Kasowski, T. N. Rhodin, and M. H. Tsai, Appl. Phys. A, 41, 61 (1986).
123. L. Hedin and B. I. Lundqvist, J. Phys. C. Solid State Phys., 4, 2064 (1971).
124. O. K. Anderson, Phys. Rev. B, 12, 3060 (1976).
125. P. Hohenberg and W. Kohn, Phys. Rev. B, 864, 136 (1964).
126. W. Kohn and L. J. Sham, Phys. Rev. A, 1133, 140 (1965).
127. M. P. Tosi, Solid State Phys., 16, 107 (1964).
128. D. D. C. Bradley and R. H. Friend, J. Phys. Condens. Matter., 1, 3671 (1989).
129. "Colorimetry", 2nd ed., CIE Publication No. 15.2, (CIE, Vienna, 1986)
130. D. McMorrow and M. Kasha, J. Phys. Chem., 88, 2235 (1984).
131. H. C. Joshi, H. B. Tripathi, T. C. Pant, and D. D. Pant, Chem. Phys. Lett., 173,
83 (1990).
132. "Table of Periodic Properties of the Elements," Sargent-Welch Scientific
Company, Skokie, Illionis (1980).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code