Responsive image
博碩士論文 etd-0624104-151539 詳細資訊
Title page for etd-0624104-151539
論文名稱
Title
直接甲醇燃料電池MEA之理論模擬與分析
Theory Modeling and Analysis of MEA of a Direct Methanol Fuel Cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-01-16
繳交日期
Date of Submission
2004-06-24
關鍵字
Keywords
直接甲醇燃料電池、數值模擬
Numerical Simulation, Direct Methanol Fuel Cell(DMFC)
統計
Statistics
本論文已被瀏覽 5670 次,被下載 6069
The thesis/dissertation has been browsed 5670 times, has been downloaded 6069 times.
中文摘要
本論文針對直接甲醇燃料電池(DMFC)建立理論模型,以數值模擬方法來探討不同設計參數及操作條件下(溫度、甲醇濃度、質子交換膜厚度、觸媒含量等),直接甲醇燃料電池之內部反應機制及輸出功率之影響。分析探討的項目包含質子流密度、甲醇濃度、電化學反應率、過電位、壓力等現象在質子交換膜、觸媒層與擴散層之分佈情形。此外,亦探討各個操作條件對甲醇穿透( methanol crossover)之影響。最後將數值模擬結果與實驗結果做比較分析與討論。
模擬結果顯示增加溫度、壓力與陽極觸媒含量,可有效提升燃料電池的性能。甲醇濃度對性能亦有決定性的影響,最佳供應的甲醇濃度約為2M。在甲醇穿透方面,降低甲醇濃度或使用較厚的質子交換膜(Nafion 117)皆能抑制甲醇的穿透,但在高電流密度時,會導致濃度過電位與歐姆過電位的增加,對燃料電池之性能產生不良的影響。
Abstract
A theoretical model and numerical simulation of a direct methanol fuel cell (DMFC) is developed to simulate the reaction mechanisms and the cell voltage under several different designing parameters and operational conditions. The results of a numerical simulation include the distributions of the proton current density, the concentration of methanol, the electrochemical reaction rates, the overpotential losses, and the pressures within proton exchange membrane layer, catalyst layer and diffusion layer. In addition, the influence of aforementioned operational conditions on methanol crossover in a direct methanol fuel cell is also investigated. Finally, the results of the model are compared to the results from the experimental work.

The results show that increasing of temperature, pressure and anode catalyst loading can enhance the performance of a direct methanol fuel cell, and the concentration of methanol plays an important role in its performance. The optimal concentration of methanol for a direct methanol fuel cell is about 2M. Methanol crossover can be suppressed by decreasing methanol concentration and increasing thickness of polymer electrolyte membrane (PEM). However, under operating condition of high current density, thick PEM and low methanol concentration will cause large concentration overpotential and ohmic losses, respectively.
目次 Table of Contents
中文摘要…………………………………………………………………I
英文摘要………………………………………...………………………II
目錄……………………………………………………………………..III
圖目錄…………………………………………………………………..VI
表目錄………………………………………………………………...VIII
符號說明……………………………………………………………......IX
第一章 緒論
1.1前言……………………………………………………………...1
1.2 燃料電池簡介…………………………………………………..2
1.2.1 燃料電池之發展………………………………………...2
1.2.2 工作原理…………………………………………….…...3
1.2.3 燃料電池之極化現象………….……………..………….4
1.3 燃料電池種類…………………………………………………...6
1.4 研究目的………………………………………………………...8
1.5 文獻回顧………………………………………………………...8
第二章 直接甲醇燃料電池之結構與工作原理
2.1 直接甲醇燃料電池之結構…………………………….………13
2.1.1 質子交換膜…………………..…………………………13
2.1.2 作用層…………………………………………………..14
2.1.3 擴散層…………………………………………………..15
2.1.4 雙極導流板……………………………………………..16
2.2 直接甲醇燃料電池之工作原理…………………………….…16
2.3 直接甲醇燃料電池之優缺點……………………………….…18
第三章 直接甲醇燃料電池MEA之理論分析與數值方

3.1 理論模型與假設…………………………………………….…21
3.2 統御方程式………………………………………………...…..22
3.2.1 質子交換膜…………………………………………..…22
3.2.2 陽極擴散層……………………………………………..26
3.2.3 陽極作用層……………………………………………..27
3.2.4 陰極作用層……………………………………………..30
3.2.5 陰極擴散層……………………………………………..33
3.3 邊界條件…………………………………………………….…36
3.4 參數特性………………………………………………….……40
3.5 模擬方法…………………………………………………….…43

第四章 結果與討論
4.1 模擬條件……………………………………………………….45
4.2 甲醇濃度在陽極擴散層至陰極觸媒層間各區域中的分佈情形
…………………………………………………………………46
4.3 不同工作電流下,質子流密度及觸媒層電化學反應率之分佈
……………………….………………………………………...46
4.4 陽極觸媒層與陰極觸媒層中過電位的分佈…………….……48
4.5 陽極擴散層至陰極擴散層之間各區域內壓力的分佈……….48
4.6 甲醇濃度對直接甲醇燃料電池輸出電壓之影響………….…49
4.7 質子交換膜厚度對直接甲醇燃料電池輸出電壓之影響…….50
4.8 溫度對直接甲醇燃料電池輸出電壓之影響………….……....50
4.9 陽極與陰極觸媒含量對直接甲醇燃料電池輸出電壓之影響
…………………………………………………………………51
4.10 甲醇濃度對甲醇crossover之影響……………….………...52
4.11 質子交換膜厚度對甲醇crossover之影響………….……...52
4.12 溫度對甲醇crossover之影響………….…………………...53
第五章 結論與建議
5.1 結論………………………………………………………….…54
5.2 未來研究方向………………………………………….………55
參考文獻…………………………………………………………………57


圖目錄

圖1.1 質子交換膜燃料電池工作原理圖……………………………...60
圖1.2 燃料電池極化曲線圖…………………………………………...61
圖1.3 各種燃料電池之基本原理圖…………………………….……..62
圖2.1 直接甲醇燃料電池單一電池之工作原理圖……….…………..63
圖3.1 直接甲醇燃料電池模型示意圖…………………………...……64
圖4.1 陽極擴散層、陽極觸媒層、質子交換膜與陰極觸媒層各區域內
甲醇濃度之分佈情形…………………………………….……..65
圖4.2 陽極觸媒層、質子交換膜與陰極觸媒層各區域內質子流密度之分佈....……………………………………………………………65
圖4.3 陽極觸媒層內電化學反應速率之分佈……………………...….66
圖4.4 陰極觸媒層內電化學反應速率之分佈…………………………66
圖4.5 陽極觸媒層內過電位之分佈……………………………………67
圖4.6 陰極觸媒層內過電位之分佈………………….…………………67
圖4.7 陽極擴散層、陽極觸媒層、質子交換膜、陰極觸媒層與陰極擴散層各區域內壓力之分佈………………………………………68
圖4.8 甲醇濃度對電池輸出電壓之影響.…………....…………………68
圖4.9 質子交換膜厚度對電池輸出電壓之影響……………………….69
圖4.10 溫度對電池輸出電壓之影響…………………….……………..69
圖4.11 陰極觸媒含量對電池輸出電壓之影響………………………. .70
圖4.12 陽極觸媒含量對電池輸出電壓之影響………………………...70
圖4.13 甲醇濃度對甲醇crossover之影響……………………………71
圖4.14 質子交換膜厚度對甲醇crossover之影響……………………71
圖4.15 溫度對甲醇crossover之影響…………………………………72


























表目錄

表1.1 各種燃料電池基本特性比較……………………………………74
表1.2 各類燃料電池功率密度、壽命等之比較………………………75
表3.1 直接甲醇燃料電池各層之統御方程式…………………………76
表4.1 直接甲醇燃料電池之基本操作條件……………………………77
表4.2 質子交換膜之參數值……………………………………………78
表4.3 陽極之參數值……………………………………………………79
表4.4 陰極之參數值……………………………………………………80
參考文獻 References
參考文獻

1. 電化學,萬其超,商務印書局,1992 .
2. 燃料電池技術的現況分析,鄭耀宗、徐耀昇,八十八年節約能源論文發表會論文專輯,409-422頁。

3.“Water-balance calculations of solid-polymer-electrolyte fuel cells,” D. M. Bernardi, Journal of Electrochemical Society, Vol.137, No.11, November 1990.

4.“Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte,” D. M. Bernardi, M. W. Verbrugge, AIChE Journal, Vol.37, No.8, p.p.1151, 1991.

5. “A mathematical model of the solid-polymer-electrolyte fuel cell,”
D. M. Bernardi, M. W. Verbrugge, J. Electr, Journal of Electrochemical Society, Vol.139, No.9, p.p.2477, 1992.

6. “Platinum-tin alloy electrodes for direct methanol fuel cells,” M.A. Abdel Rahim, M.W. Khalil and H.B. Hassan, Journal of Applied Electrochemistry, 30, 1151-1155, 2000.

7. “Two-dimensional numerical modelling of a direct methanol fuel cell,” A.A. Kulikovsky, Journal of Applied Electrochemistry, 30, 1005-1014, 2000.

8. “Analysis of the nonlinear dynamics of a direct methanol fuel cell,” Su Zhou, Thorsten Schultz, Mirko Peglow and Kai Sundmacher, Journal of Owner Societies, 3, 347-355,2001.

9.“Open circuit voltage and methanol crossover in DMFCs,” Zhigang Qi, Arthur Kaufman, Journal of Power Sources, 110, 117-185, 2002.

10. “Measurement of methanol crossover in direct methanol fuel cell,” Satoru Hikita, Kimitaka Yamane, Yasuo Nakajima, Journal of Society of Automotive Engineers of Japan, 22, 151-156,2001.
11. “Influence of Electrode Structure on the Performance of a Direct Methanol Fuel Cell,” Zhaobin Wei, Suli Wang, Baolian Yi, Jianguo Liu, Likang Chen, Journal of Power Sources, 106, 364-369, 2002.

12. “Performance and modelling of a direct methanol solid polymer electrolyte fuel cell,” K. Scott, W.M. Taama, J. Cruickshank, Journal of Power Sources, 65, 159-171, 1997.

13. “A model for the liquid feed direct methanol fuel cell,” K. Scott, P. Argyropoulos, K. Sundmacher, Journal of Electroanalytical Chemistry, 477, 97-110,1999.

14. “Study of performance improvement in a direct methanol fuel cell,” Masayuki Kunimatsu, Toshio Shudo, Yasuo Nakajima, Journal of Society of Automotive Engineers of Japan, 23, 21-26, 2002.

15. “A solid-polymer electrolyte direct methanol fuel cell,” A.K. Shukla, C.L. Jackson, K. Scott, G. Murgia, Journal of The Power Sources, 111, 43-51, 2002.

16. “Modeling and simulation of a direct methanol fuel cell anode,” K.T. Jeng, C.W. Chen, Journal of The Power Sources, 112, 367-375, 2002.

17. “Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell,” Curtis Marr, Xianguo Li, Journal of The Power Sources, 77, 17-27, 1999.

18. “Methanol crossover in direct methanol fuel cells: a link between power and energy density,” Bogdan Gurau, Eugene S. Smotkin, Journal of The Power Sources, 112, 339-352, 2002.

19. “Suppression of methanol crossover and distribution of ohmic resistance in Pt-dispersed PEMs under DMFC operation,” Hiroyuki Uchida, Yohsuke Mizuno, and Masahiro Watanabe, Journal of The Electrochemical Society, 149, A682-A687, 2002.

20. “The voltage-current curve of a direct methanol fuel cell: “exact” and fitting equations,” A.A. Kulikovsky, Journal of Electrochemisry Communications, 4, 939-946, 2002.

21. “Estimation if the membrane methanol diffusion coefficient fron open circuit voltage measurements in a direct methanol fuel cell,” V.M. Baragan, A. Heinzel, Journal of Power Sources, 104, 66-72, 2002.

22. “Simulation of the direct methanol fuel cell III. design and optimization,” Jeremy P. Meyers, John Newman, Journal of The Electrochemical Society, 149 (6), A729-A735, 2002.

23.質子交換膜燃料電池MEA之理論模擬與分析,周宣任,中山大學論文,九十一年六月

24. 直接甲醇燃料電池之性能模擬,劉子豪,鄭錕燦,大葉大學論文,九十年六月。

25. 直接甲醇燃料電池研究-甲醇濃度、溫度及二氧化碳對性能的影
響,林佳駿,中山大學論文,九十二年八月。

26. 直接甲醇燃料電池製成技術發展現況,高志勇、陳耿陽、吳富其、
黃秋萍,工業材料雜誌,第193期,111~119頁,92年1月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code