Responsive image
博碩士論文 etd-0624104-182807 詳細資訊
Title page for etd-0624104-182807
論文名稱
Title
適應性基因演算法結合混合式模糊PID控制器於磁浮系統定位控制之研究與改善
Hybrid Fuzzy PID Controller with Adaptive Genetic Algorithms for the Position Control and Improvement of Magnetic Suspension System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-11
繳交日期
Date of Submission
2004-06-24
關鍵字
Keywords
磁浮系統、適應性基因演算法、模糊PID控制器
fuzzy PID controller, magnetic suspension system, adaptive genetic algorithms
統計
Statistics
本論文已被瀏覽 5768 次,被下載 2891
The thesis/dissertation has been browsed 5768 times, has been downloaded 2891 times.
中文摘要
磁浮系統本身為一個高度非線性且開迴路不穩定的系統。本論文希望先以相位領先控制器作為內迴路,讓系統處於穩定的狀態。再利用模糊PID控制器做為外迴路,克服系統的非線性及改善系統的響應特性。
因為傳統的模糊PID控制器參數設計是一件冗長的嘗試錯誤法,所以本論文用非二進位式適應型基因演算法來幫助我們找到最佳的參數值並應用至實務上。至於在實驗的部分則分為兩種測試: (1) 加入初始電壓的模糊PID控制器做定位、外來干擾等的磁浮系統測試 (2) 不加入初始電壓的模糊PID控制器做定位控制。
由實驗結果可知,使用非二進位的基因演算法所設計的模糊PID控制器不僅可以增加磁浮系統的操作範圍,且能迅速準確的定位,同時有抗外來干擾的能力。
Abstract
Magnetic suspension systems are highly nonlinear and essentially unstable systems. In this thesis, we utilize a phase-lead controller operating in the inner loop to stabilize the magnetic suspension system at first. Furthermore, we design a fuzzy PID controller operating in the outer loop to overcome the nonlinearity and to improve the system’s performances.
Because of setting the parameters in traditional fuzzy PID is a long-winded trial and error, so we adopt non-binary modified adaptive genetic algorithms to help us finding the parameters of fuzzy PID controller. As to the experimental implementation, we set two situations in our experiment test: (1) we utilize fuzzy PID controller with initial voltage to test the positions control, and eliminate the extra disturbance. And, (2) we utilize fuzzy PID controller without initial voltage to control the position of suspension object.
For the experimental results, we obtain that the designed fuzzy PID controller not only increases the system’s operating range, but also positions accurately and rapidly, and it meanwhile can eliminate the extra disturbance.
目次 Table of Contents
Contents…………………………………………………………………..I
List of Symbols…………………………………………………………IV
List of Figures…………………………………………………………..VI
List of Tables………………………………………………………….VIII
Chinese Abstract ………………………………………………………..IX
English Abstract …………………………………………………………X

Chapter 1. Introduction 1
1.1 Research Motivation and Goal 1
1.2 Papers Review 2
1.3 Genetic Algorithms and Fuzzy Logic Controller 3
1.4 Research Results and Contributions 5
1.5 Thesis Structure 5

Chapter 2. Fuzzy System and Control 7
2.1 Introduction of Systems and Control 7
2.2 Fuzzy Sets and Membership Function 10
2.3 Simplified Fuzzy Reasoning Method 13
2.4 Hybrid Reduced Rule Fuzzy PID like controller 15

Chapter 3. Genetic Algorithms 20
3.1 Brief History of Genetic Algorithms 20
3.2 Foundations of Genetic Algorithms 22
3.3 Simple Genetic Algorithms(SGA) 23
3.4 Modifications to Simple Genetic Algorithms 26
3.4.1 Encoded and Decoded Processes 27
3.4.2 Fitness Function Definition 27
3.4.3 Mapping Objective Functions to Fitness Form 28
3.4.4 Fitness Scaling 28
3.4.5 Reproduction 30
3.4.6 Crossover Operator 31
3.4.7 Mutation 33
3.5 Adaptive Genetic Algorithm 33
3.5.1 Adaptive Probabilities of Crossover and Mutation 34
3.5.2 Elitist Strategy 38
3.5.3 Extinction and Immigration Strategy 39
3.5.4 The Structure of Modified Genetic Algorithm 41

Chapter 4. System Model Building 43
4.1 System Modeling and Linearization 43

Chapter 5. Fuzzy PID Controller Design 51
5.1 The Phase Lead Compensator 51
5.2 Design Steps of PIDFLC 54
5.3 Parameter Tuning of PIDFLC Using AGA 59
5.4 Flow Chart of Simulation 61
5.5 Compare the Simulation Results 62
Chapter 6. Experiments and Results 70
6.1 Experimental Apparatus 70
6.2 Experimental Steps 76
6.3 Experiment Results with Initial Voltage 77
6.3.1 Result of Simulation and Experiment 78
6.3.2 Operating Range Test 79
6.3.3 Different Initial Position Experiment 81
6.3.4 Extra Disturbance Elimination 83
6.4 Experiment Results with no Initial Voltage 85

Chapter 7. Conclusions and Recommendations 89

References 91
參考文獻 References
[1] Trumper, D.L., Olson, S.M., and Subrahmanyan, P.K., “Linearizing Control of Magnetic Suspension Systems”, Control Systems Technology, IEEE Transactions, Vol. 5 Issue: 4, pp.427 –438, Jul 1997.

[2] P. S. Shiakolas and D. Piyabogkarn, “On the Development of a Real-time Digital Control System using xPC Targer and Magnetic Levitation Device”, pProcs. Of the 40th IEEE Cons. On Decision and Control, Orlando, USA, pp.87-92, 2001.

[3] H. Yu, T. C. Yang, D.Rigas and B.V. Jayawant, “Modelling and Control of Magnetic Suspension Systems”, Proceeding of the 2002 IEEE International Conference on Control Applications September 18-20, 2002.

[4] Tzes, A., Chen, Jung-Che, and Peng, Pei-Yuan, “Supervisory Fuzzy Control Design for a Magnetic Suspension System”, Fuzzy Systems, IEEE World Congress on Computational Intelligence, Proceedings of the Third IEEE Conference, Vol. 1, pp.138-143, 26-29 Jun 1994.

[5] 劉智豪, 結合基因演算法與混合式模糊PID控制器之磁浮系統控制,國立中山大學機械工程研究所碩士論文,2003。

[6] 陳譯光, 適應性基因演算法與混合式模糊PID控制器於線性馬達之定位控制 ,國立中山大學機械工程研究所碩士論文,2003。

[7] Yoichi, Kanemitsu, “Comparison of Control laws for Magnetic Levitation”, Fourth International Symposium on Bearings, ETH Zurich pp.13-18, August 1994.

[8] Yang, Peng, Zhang, Qiang, and Li, Lianbing, “Design of Fuzzy Weight Controller in Single-Axis Magnetic Suspension System”, Intelligent Control and Automation, Proceedings of the 4th World Congress, Vol. 4, pp.3027-3030, 2002.

[9] K. Oguchi and K. Okada, Contactless Starting and Positioning of a Steel Ball in
Single-Axis Magnetic Suspension Device By Variable Structure Control.


[10] Trumper, D.L., Olson, S.M., and Subrahmanyan, P.K., “Linearizing Control of Magnetic Suspension Systems”, Control Systems Technology, IEEE Transactions, Vol. 5 Issue: 4, pp.427 –438, Jul 1997.

[11] Hassan, D.M.M., and Mohamed, A.M., ”Variable Structure Control of a Magnetic Levitation System”, American Control Conference, Proceedings of the 2001, Vol.5, pp.3725-3730, 2001.

[12] Cho, D., Kato, Y., and Spilman, D., “Sliding Mode and Classical Controllers in Magnetic Levitation Systems”, IEEE Control Systems Magazine, Vol. 13, Issue: 1, pp.42-48, Feb 1993.

[13] Huang, Chao-Ming, Chen, Min-Shin, and Yen, Jia-Yush, “Adaptive Nonlinear Control of Repulsive Maglev Suspension Systems”, Control Applications, Proceedings of the 1999 IEEE International Conference, Vol. 2, pp.1734-1739, 1999.

[14] Lane, D.J., Gray, W.S., and Murphy, K.M., “Linear H∞ Optimal Control of a Two Degree of freedom Magnetic Suspension System”, American Control Conference, Proceedings of the 1997 , Vol. 3, pp.1687-1691, 4-6 Jun 1997.

[15] Coley, D.A., “An introduction to genetic algorithms for scientists and engineers”, World Scientific Publishing Co. Pte. Ltd., 1999.

[16] Holland J. H., “Adaptation in Natural and Artificial Systems”, University of Michigan Press, Ann Arbor, 1975.

[17] Blekas, K., Papageorgiou, G., and Stafylopatis, A., “Continuous optimization schemes for fuzzy classification”, Digital Signal Processing Proceedings, 1997 13th International Conference, Vol. 1, pp.265-268, 2-4 Jul 1997.

[18] Cho, Hyun-Joon, Wang, Bo-Hyeun, and Roychowdhury, S., “Automatic rule generation for fuzzy controllers using genetic algorithms: a study on representation scheme and mutation rate”, Fuzzy Systems Proceedings, IEEE World Congress on Computational Intelligence, Anchorage, USA, Vol. 2, pp.1290-1295, 1998.


[19] Eksin, I., and Erol, O.K., “Design of optimum fuzzy controller using genetic algorithms”, Electrotechnical Conf. 8th Mediterranean, Vol. 1, pp.186-190, 1996.

[20] Lim, M.H., Rahardja, S., and Gwee, B.H., “A GA paradigm for learning fuzzy rules”, Fuzzy Sets and Systems, Vol. 82, pp.177-186, September 9, 1996.

[21] Liska, J., and Melsheimer, S.S., “Complete design of fuzzy logic systems using genetic algorithms”, Proc. 3rd IEEE Conf. On Computational Intelligence, Orlando, Florida, USA, Vol.2, pp.1377-1382, 1994.

[22] Zadeh, L.A. 1965. “Fuzzy sets”. Inf. & Contr., 8, pp.338-353.

[23] Zadeh, L.A. 1965. “Fuzzy sets and systems”. Proc. Symp. Syst. Theory, Polytch. Inst. Brooklyn, pp.29-37.

[24] Wang, Li-Xin, “A course in fuzzy systems and control”, Prentice-Hall, 1997.

[25] Jamshidi, M., Vadiee, N., and Ross, T. J., “FUZZY LOGIC AND CONTROL: Software and Hardware Applications”, Prentice Hall, 1993.

[26] Mizumoto, M., “Realization of PID controls by fuzzy control method”, Fuzzy Systems, IEEE International Conference, pp.709-715, 8-12 Mar 1992.

[27] Ronald, R. Yager, and Dimitar, P. Filev, “Essentials of Fuzzy Modeling and Control”, John Wiley & Sons, 1994.

[28] Sugeno, M. and Yasukawa, T., “A Fuzzy-Logic-Based Approach to Qualitative Modeling,” IEEE Transactions on Fuzzy Systems 1, pp.7-31, 1993.

[29] Dubois, Didier, and Prade, Henri, “Fuzzy Sets and Systems: Theory and Application”, Academic Press, 1980.

[30] Chen, Yung-Yaw, and Perng, Chiy-Ferng, “Input Scaling Factors in Fuzzy Control Systems”, Proc, 3rd IEEE Conf. On Computational Intelligence, Vol.3, pp.1666-1670, 1994.

[31] Zhang, B.S., and Edmunds, J.M., “On fuzzy logic controllers”, Control '91, International Conference, Vol. 2, pp.961-965, 25-28 Mar 1991.

[32] 鄭忠義,結合基因演算法與混合式模糊PID控制器之主動式振動控制,國立中山大學機械工程研究所碩士論文,2002。

[33] Mizumoto, M., “Product-sum-gravity method fuzzy singleton-type reasoning method simplified fuzzy reasoning method”, Proc. 5th IEEE Conf. On Fuzzy Systems, New Orleans, Vol.3, pp.2098-2102, 1996.

[34] 王進德,蕭大全,類神經網路與模糊控制理論入門,全華科技圖書,1994。

[35] 楊英魁,孫宗瀛,鄭魁香,林建德,蔣旭堂,模糊控制理論與技術,全華科技圖書,2001。

[36] Van Der Wal, A.J., “Application of fuzzy logic control in industry,” Fuzzy Sets and Systems Vol.74, pp. 33-41,August 25, 1995.

[37] Visioli, A., “Tuning of PID controllers with fuzzy logic”, IEEE Proc. on Control Theory and Applications , Vol.1, pp. 1 -8, Jan 2001.

[38] Sandhu, G.S., Brehm, T., and Rattan, K.S., “Analysis and design of a proportional plus derivative fuzzy logic controller,” Proc. IEEE National Aerospace and Electronics Conf., Dayton, Ohio, Vol. 1, pp. 397-404, 1996.

[39] Rattan, K.S. and Van Cleave, D., “Design and implementation of a reduced rule fuzzy logic PID controller,” NAFIPS.19th conf. of the North American Fuzzy Information Society, Atlanta, Georgia, pp. 465-469, 2000.

[40] Rechenberg, I., “Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution”, Frommann-Holzboog Verlag, Stuttgart, 1973

[41] Schwefel, H. P., “Numerical Optimization for Computer Models”, Wiley, Chichester, UK, 1981.

[42] Fogel, L.J., Owens, A.J., and Walsh, M.J., “Artificial Intelligence through Simulated Evolution”, Wiley, New York, 1966.

[43] Goldberg, D.H., “Genetic Algorithms in Search, optimization, and Machine Learning”, Addison-Wesley Publishing Company, 1985.
[44] Frenzel, J.F., “Genetic algorithms,” IEEE Potentials, Vol. 12, No. 3, pp. 21-24, Oct. 1993.

[45] Goldberg, D.E., “Genetic algorithms in search, optimization, and machine learning”, Mass.: Addison-Wesley, 1989.

[46] Xu, Hongze, Wei, Xue-Ye, and Xu, Maosheng, “Schema Analysis of Multi-Points Crossover Genetic Algorithm”, Proc. 3rd World Congress on Intelligent Control and Automation, Hefei, P.R. China, Vol. 1, pp.521-524, 2000.

[47] Srinivas, M., and Patnaik, L.M., “Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms”, IEEE Transactions on Systems, Man and Cybernetics, Vol.24, pp.656 –667, Apr 1994.

[48] Chambers, Lance, “Practical Handbook of Genetic Algorithms”, Boca Raton, CRC Press, 1999.

[49] 陳奕仁,適應性基因演算法結合菁英政策於線性馬達定位機台之主動式振動控制器設計,國立中山大學機械工程研究所,碩士論文,2001

[50] Shimodaira, H., “A New Genetic Algorithm Using Large Mutation Rates and Population-Elitist Selection (GALME)”, Proc. 8th IEEE Conf. On Tools with Artificial Intelligence, Toulousse, France, pp.25-32, 1996.

[51] Yao, Leehter, “Learning of Decision Regions Based on the Genetic Algorithm”, ETFA., IEEE Symposium on Emerging Technologies and Factory Automation, Tokyo, Japan, pp.438-445, 1994.

[52] Hebbale, K. V. and Taylor, D. L., “Dynamics of a Ferromagnetic Suspension System,” Proc. 1986 American Control Conf., pp.217-223, 1986.

[53] McCarthy, E.P., “Phase lead compensator design”, Electronics Letters, Vol. 26, Issue: 21, pp.1817-1819, 11 Oct 1990.

[54] 洪三育, 磁浮系統之模糊控制, 國立中山大學機械工程研究所碩士論文, 1994。


[55] Reznik, L., “Fuzzy Controller Design: Recommendations to the User”, Knowledge-Based Intelligent Electronic Systems, Proceedings KES '98, 1998 Second International Conference, Vol. 3, pp.609 –616, 21-23 Apr 1998.

[56] Rojas, I., Merelo, J.J., Bernier, J.L., and Prieto, A., “A New Approach to Fuzzy Controller Designing and Coding via Genetic Algorithms,” Fuzzy Systems, 1997, Proceedings of the Sixth IEEE International Conference, Vol. 3, pp.1505-1510, 1-5 Jul 1997.

[57] Homaifar, A., and McCormick, E., “Simultaneous Design of Membership Functions and Rule Sets for Fuzzy Controllers Using Genetic Algorithms”, Fuzzy Systems, IEEE Transactions, Vol. 3 Issue: 2, pp.129-139, May 1995

[58] Cheng, C.Y., “Hybrid Fuzzy PID Controller for an Active Vibration Control System via Genetic Algorithms, Master thesis”, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Taiwan, R.O.C, 2002.

[59] MacVicar-Whelan, P.J., “Fuzzy sets for man-machine interaction,” International Journal of Man-Machine Studies, Vol. 8, pp. 687-697, 1976.

[60] Tang, K.L. and Mulholland, R.J., “Comparing fuzzy logic with classical controller designs,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-17, No. 6, pp. 1085-1087, Nov./Dec. 1987.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code