Responsive image
博碩士論文 etd-0624105-210303 詳細資訊
Title page for etd-0624105-210303
論文名稱
Title
應用免疫演算法於輸電線保護電驛規劃與分析
The Optimal Transmission Line Relaying Planning and Analysis with Immune Algorithm
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-20
繳交日期
Date of Submission
2005-06-24
關鍵字
Keywords
保護電驛、免疫演算法、最佳化、馬可夫
Markov, protective relay, optimization, immune algorithm
統計
Statistics
本論文已被瀏覽 5670 次,被下載 6606
The thesis/dissertation has been browsed 5670 times, has been downloaded 6606 times.
中文摘要
本論文針對台電輸電線保護電驛系統之可靠度進行分析,並藉由馬可夫理論建立起可靠度模型,另外針對分析多種元件之組合時,可依各種狀態建立馬可夫傳輸矩陣,進行各種輸電線載波保護電驛之分析。
本論文首先將對各種輸電線保護方式,並建立保護電驛、通訊設備、斷路器間的可靠度區塊模型,並加以整合分析。此外亦應用馬可夫模型進行可靠度及確定率的分析,並根據台電公司的訂定目標可獲得最適電驛維護週期之問題,達到供電系統電驛保護之可靠。在求解可靠度的方法上,有狀態空間法,網路法等,其中以馬可夫模型的建立最為複雜,但使用本方法可較確切的將各種機率狀態表示為時變模型,進而求解狀態在隨機空間內,任一時間點的模型函數。在建立馬可夫時變傳輸矩陣後,利用拉氏轉換後之關係,進行矩陣運算,可以使求解時變函數過程中變為較容易,完成保護系統之可靠度分析。利用分析結果,可降低設備維護不良之斷電機率及節省維護人力。
由於輸電線之健全會直接影響變電所轄區用戶之供電,輸電線的故障往往會造成嚴重之用戶損失,本文以台電高屏供電區營運處之輸電架構進行分析,考慮用戶斷電損失模型,並結合設備投資、人力維護成本為目標適應函數,進行最佳化分析。利用免疫演算法求解最少成本之保護電驛數量及配置,滿足系統保護之可靠度,並推導各種投資方案與經濟效益關係。本方法與一般遺傳法不同處在於可保留適合度較高之抗體,以確保求解最佳適合度保護電驛系統規劃。藉由分析電驛配置最佳化之結果,其可提升保護系統之可靠度,以減少用戶斷電損失。
Abstract
The objective of this thesis is to enhance the reliability analysis of Relaying systems and build-up model by Markov theory for taipower transmission lines. The set of combinatory multi-elements can be expressed a transition matrix for any pilot protection analysis. The protective reliability system need for transmission protection is introduced and the block modeling consists of protective relays, communication set and circuit breaker. The block modeling is applied for the analysis of the reliability and availability of protection systems by Markov theory, which can be need to derive the adapative maintance cycle by Markov reliability modeling. The system reliability is analysis related to the interruption of supply power. There many methods to be used for the analysis of system reliability such as state space, network. etc. The Markov modeling is more complicated and difficult, however better time-vary probability functions can be defined, for stochastic modeling, the system reliability at any time axis can be obtained by Markov transition matrix, with the time-vary Markov transition matrix.
The customers served by each substation can be affected according to the states of transmission lines healthy. Althouth 80% of system faults occurs in the distribution system, transmission line faults will cause more serious service outage. According to the Kauo-Ping transmission line model in taipower, the optimal protection relay planning is solved by minimizing the overall outage cost of customer service interruption and investment protection relay equipments for transmission power systems with immune algorithm. The objective function and constraints are expressed as antigen, and all feasible solutions are expressed as antibody. The diversity of antibody is then enhanced by proximity of antigen so that the global optimization during the solution process can be obtained. It is found that the power service can be restored effectively with the optimal planning of protection relay by the proposed immune algorithm.
Based on the computer simulation of protection relay planning, different protection relaying strategies optimal relay planning and customer loss, can be considered for different to enhance the reliability of protection relay system for loss interruption of customer power outage.
目次 Table of Contents
目 錄
中文摘要 i
英文摘要 iii
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文內容概要 5
第二章 輸電線保護系統 7
2.1 前言 7
2.2 輸電線保護系統架構 7
2.2.1 非載波系統 8
2.2.2 載波系統 16
2.2.3 副線系統 24
2.3 傳統與數位式保護系統分析 26
第三章 保護電驛維護週期與可靠度分析 29
3.1 前言 29
3.2 馬可夫可靠度理論 29
3.2.1 可靠度相關指標 29
3.2.2 可靠度相關機率 31
3.2.3馬可夫可靠度模型 32
3.3 保護電驛可靠度分析 34
3.3.1 可靠度資料 35
3.3.2 台電輸電線保護模型 37
3.3.3可靠度分析 45
3.4 電驛維護週期與分析 52
第四章 應用免疫演算法於保護電驛配置規劃 58
4.1 前言 58
4.2故障模式與效應分析 59
4.2.1網路簡化 59
4.2.2串並聯元件系統可靠度 61
4.3可靠度成本 63
4.3.1用戶損失函數 66
4.3.2迴歸分析 69
4.3.3投資成本估算 72
4.3.4維護人力成本 74
4.3.5目標函數 75
4.4 應用免疫演算法於保護電驛之規劃 75
4.4.1 免疫系統原理 76
4.4.2 雜異度與相似度計算 79
4.5 系統分析 81
4.6 實例模擬 85
第五章 結論與未來研究方向 102
5.1 結論 102
5.2 未來研究方向 103
參考文獻 105
參考文獻 References
參考文獻

[1] Roy Billinton, Satish Jonnavithula, ”Calculation of Frequency, Duration, and Availability Indexes in Complex Networks”,IEEE Trans. on Reliability,Vol. 48,No. 1, March 1999.

[2] W.E. Vesely, ”A Time-Dependent Methodology for Fault Tree Evalution”, Nuclear Engineering Design,Vol. 13, 1970, pp 337-360.

[3] J.B. Fussell, “How to hand-calculate systems reliability and safety characteristics”, IEEE Trans. on Reliability,Vol. R24, Aug 1975, pp 169-174

[4] J.A. Buzacott, “Network Approaches to Finding the Reliability of Repairable Systems”, IEEE Trans. on Reliability,Vol. R-19, Nov 1970,pp 140-146.

[5] C. Singh and R. Billinton, System Reliability Modeling and Evalution, 1977;Hutchinson Educational.

[6] R. Billinton and R.N. Allan, Reliability Evaluation of Engineering Systems: Concepts and Techniques,1983;Plenum Publishing.

[7] C. Singh, “Calculating the Time-Specific Frequency of System Failure”, IEEE Trans. on Reliability, Vol. R-28, Jun 1979,pp 124-126.

[8] C. Singh, R. Billinton, “Frequency and duration concepts in system reliability evaluation”, IEEE Trans. on Reliability, Vol. R-24, 1975 Apr, pp 31-36.

[9] R.N Allan, R. Billinton, M.F. De Oliveira, “An Efficient Algorithm for Deducing the Minimal Cuts and Reliability Indices of a General Network Configuration”, IEEE Trans. on Reliability, Vol. R-25, Oct 1976,pp 226-233.

[10] J. R. Norris, Markov Chains, 1977, Cambridge University Press.

[11] Roy Billinton, “Determination of the Optimum Routine Test and Self-Checking Intervals in Protective Relaying Using a Reliability Model”, IEEE Trans. on Power Systems, Vol. 17, No. 3, August 2002.

[12] ABB Electric Coporation, Applied Protective Relaying, B7235G.

[13] J.L. Blackburn and B. Washington, “Protection Relaying Principles and Applications”, Marcel Dekker Inc., New York, 1987,pp 192-197.

[14] 李宏任, 電機設備保護, 全華科技圖書, 台北, 民國八十六年, 第10-27~10-30頁.

[15] 李宏任, 實用保護電驛,全華科技圖書, 台北,民國八十八年, 第12-2~12-10頁.

[16] S.H. Horowitz, A.G. Phadke and J.S. Thorp, “Adaptive Transmission System Relaying”, IEEE PES Summer Metting,1987.

[17] 台灣電力公司訓練所, 電驛說明書, 台電, 台北, 民國七十二年.

[18] D. Dolezilek, “SEL Communication and integration white paper”, Schweitzer Engineering Labories Inc.,USA.

[19] 29th Annual Western Protective Relay Conference, ”Resolving digital line current differential relay security and dependability problems:A case history”, October 22-24,2002.

[20] IEEE Std. 493-1997, IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems, December 1997.

[21] Roy Billinton, Ronald N Allan, Reliability Evaluation of Power Systems, Plenum Press, 1990.

[22] 楊進德, 配電系統規劃的可靠度成本模型設計與價值分析之研究,中山大學博士論文, 民國九十一年.

[23] 陳澤義, 缺電成本之估計及其在分級電價規劃上的涵義,中華經濟研究院, 台北, 民國84.

[24] 陳寛仁, 工程經濟, 三民書局.

[25] 施澄鐘, 數值分析, 松岡圖書, 台北, 民國八十一年.

[26] Curve Fitting for MATLAB User’s Guide Version 1.,2004.

[27] Optimization for MATLAB User’s Guide Version 3.,2004.

[28] 吳家駿,應用免疫演算法於配電系統運轉策略之研究,國立中山大學碩士論文,民國九十年。

[29] Ernie G. Neudorf, “Cost-Benefit Analysis of Power System Reliability:Two Utility Case Studies”, IEEE Trans. on Power Systems,Vol. 10, No. 3, August 1995.

[30] L. Goel and R. Billinton, “Determination of Reliability Worth for Distribution System Planning,” IEEE Trans. on Power Delivery, Vol. 9, No.3, July 1994, pp.1577-1583.

[31] L. Goel and R. Billinton, “A Procedure for Evaluating Interrpted Energy Assessment Rates in an Overall Electric Power System,” IEEE Trans. on Power Systems, Vol. 6, No.4, Nov. 1991, pp.1396-1403.

[32] C. H. Lin, C. S. Chen and C. J. Wu, “An Immune-Based Optimization Method for Loading Balance of Main Transformers and Distribution Feeders”, IEEE Power Engineering Society Summer Meeting, Vol. 1, pp. 48-53, 2001.

[33] J. S. Chun, M. K. Kim, H. K. Jung, “Shape Optimization of Electromagnetic Using Immune Algorithm”, IEEE Trans. on Magnetics, Vol.33, No. 2, pp.1876-1879, 1997.

[34] C. S. Chang, W. Wang, A. C. Liew and F. S.Wen, “Bicriterion Optimisation for Tractions in Rapid Transit Systems Using Genetic Algorithms”, IEE Proceedings-Electric Power Applications, Vol. 145, No. 1, January 1998, pp. 49-54.

[35] S. J. Huang, “An Immune-Based Optimization Method to Capacitor Placement in a Radial Distribution System”, IEEE Trans. on Power Delivery, Vol. 15, No. 2, pp. 744-749, April 2000.

[36] C. H. Lin, C. S. Chen, C. J. Wu and M. S. Kang, “Application of immune algorithm to optimal switching operation for distribution-loss minimization and loading balance”, IEE Proceedings, Generation, Transmission, and Distribution, Vol. 150, No. 2, March 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code