Responsive image
博碩士論文 etd-0624110-021419 詳細資訊
Title page for etd-0624110-021419
論文名稱
Title
非規則錫晶粒結構之錫鬚成長研究
The Study of Tin Whisker Growth with Irregular Tin Grain Structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-05-21
繳交日期
Date of Submission
2010-06-24
關鍵字
Keywords
錫鬚、非規則錫晶粒結構、壓應力、腐蝕、金屬間化合物、電鍍、無鉛
Irregular grain structure, Tin whisker growth, Pb-free, plating, Intermetallic compound, Corrosion, Compressive stress
統計
Statistics
本論文已被瀏覽 5703 次,被下載 0
The thesis/dissertation has been browsed 5703 times, has been downloaded 0 times.
中文摘要
一般在導線架上電鍍材料的選擇,錫鉛合金為最受歡迎的材料,但基於法令與環保意識的高漲,而且鉛有害人體,被禁止使用,因此純錫適合作為替代材料。然而使用純錫會有自發性的錫鬚成長(tin whisker growth)問題,會造成IC短路而使整個元件失效,所以探討錫鬚晶的生長行為與如何抑制錫鬚是現今電子封裝產業的重要議題。
電子元件在用於電連接的部位鍍上純錫沉積層,所述純錫沉積層為一微晶粒純錫層,其中各晶粒在與沉積表面垂直的方向上的尺寸小於其在與上述沉積表面平行的方向上的尺寸,稱它為非規則錫晶粒結構。研究中利用電子元件的電鍍方法,包括步驟︰調節錫鍍液成分,該錫鍍液包括起始劑和光亮劑;使該電子元件通過該錫鍍液,以在該電子元件的用於電連接的部位沉積一微晶粒純錫層的方式。利用實驗計畫法中,將不同錫粒結構及厚度組合,再經由高溫高濕及室溫錫鬚測試後,發現非規則錫晶粒結構的腐蝕機制,金屬間化合物的表面,及錫原子本身的擴散行為,總合研究結果後,與現有常見結構相比,其具有可有效防止錫鬚產生之優點。
Abstract
In past years, legislative pressures (particularly in Japan and Europe) had forced the electronics industry to eliminate Pb from their end products and manufacturing processes. With respect to factors such as ease of converting existing tin-lead plating systems, ease of manufacture and compatibility with existing assembly methods, pure tin plating is seen by many in the industry as a potentially simple and cost effective alternative to SnPb-based systems. The problem of spontaneous tin whisker formation, a characteristic of pure tin, still needs to be addressed, as it can lead to device failure by shorting two terminals on electronic devices. This possibility gives rise to major reliability concerns.
The study relates to an electronic component with pure tin deposit layer on the part for electric connection, wherein pure tin deposit layer is a fine grained tin deposit layer composed of grains with smaller size in the direction perpendicular to the deposit surface than in the direction parallel to the deposit surface. It is called irregular tin grain structure. It applies a process for plating an electronic component, so as to form a pure tin deposit layer on the part for electric connection, comprising the steps of: adjusting the composition of tin plating solution in which starter additive and brighter additive are included; moving the electronic component through the tin plating solution, so as to form a fine grained tin deposit layer on the part for electric connection. We performed a DoE by depositing different tin grain structures with variant thickness. After whisker test in high temperature/high humidity and room condition, we confirmed corrosion mechanism, intermetallic morphology, and different behaviour of tin atoms. To summarize the studies, as compared with the prior arts, irregular grain structure can validly inhibit the whisker growth.
目次 Table of Contents
1 Introduction 1
2 Literature review 4
2.1 Substrate effects 4
2.2 Plating thickness 5
2.3 Grain size and shape 6
2.4 Environmental stresses 6
2.4.1 Temperature 6
2.4.2 Moisture 7
2.4.3 Thermal cycling 8
2.5 Internally applied mechanical stresses 8
2.5.1 Plating chemistry and process 8
2.5.2 Diffusion of substrate elements into tin layer 9
2.5.3 Intermetallic formation 9
2.6 Externally applied mechanical stress 9
2.7 Electric field 10
2.8 NEMI Survey rank 10
3 Hypothesized mechanism 12
4 Experiment 18
4.1 Purpose 18
4.2 Sample preparation 20
4.3 Whisker test 22
4.4 Analysis method 23
5 Result and discussion 25
5.1 Deposit grain structure next to the substrate material 26
5.2 Whole thickness of the deposit layer 28
5.3 Thickness of irregular grain structure on the bottom layer 29
5.4 Plating thickness of the deposit layer close to the deposit surface 29
5.5 Deposit grain structure close to the deposit surface 30
5.6 Plating condition 31
5.7 Different copper based material 32
5.8 Corrosion mechanism 33
5.8.1 Vertical columnar grain structure (Type C) 35
5.8.2 Irregular grain structure (Type B) 36
5.8.3 Mixed grain structure (Type C+B) 37
5.8.4 Corroded Tin composition 39
5.9 Confirmation of whole IMC morphology 39
5.9.1 Vertical Columnar grain structure (Type C) 40
5.9.2 Semi-columnar grain structure (Type A) 41
5.9.3 Irregular grain structure (Type B) 42
5.9.4 Mixed type I (A+C) 43
5.9.5 Mixed type II (B+A) 43
5.9.6 Mixed type III (A+B) 44
5.10 Stress release behavior within various grain structures 45
5.10.1 Vertical columnar type grain structure (Type C) 46
5.10.2 Semi-columnar grain structure (Type A) 46
5.10.3 Irregular type grain structure (Type B) 47
5.10.4 Mixed type structure (Type B+A) 48
5.10.5 Theory of stress release behavior 48
5.11 Micro-structure confirmation 50
6 Conclusion 52
7 Reference 55
8 Appendix 61
參考文獻 References
1 E. Union, http://www.rohs.eu/english/index.html for the RoHS regulation, 2003
2 Y. Zhang, G. Breck, F. Humiec, K. Murski and J.A. Abys, "An Alternative Surface Finish for Tin/Lead Solders: Pure Tin", SMI'96 Proceedings, San Jose, CA, pp. 641, Sep., 1996
3 S. Winkler and B. Hom, "A Look at the Past Reveals a Leadfree Drop-In Replacement", High Density Interconnect (HDI) on-line, 4, http://www.hdi-online.com., Mar., 2001
4 J. Cannis, Advanced Packaging, (lead-free article 0801), http://ap.pennnet.com/Articles/Article_Display.cfm?Section=Archives&Subsection=Display&ARTICLE_ID=111597&KEYWORD=lead-free, Aug., 2001
5 B. Dunn, "Whisker Formation on Electronic Materials", ESA Scientific and Technical Review, 2, no. 1, pp. 1, 1976
6 P. Hinton, "Tin-Plating, Tin-Nickel Electroplate and Tin-plating over Nickel as Final Finishes on Copper", PWB Engineering, (unknown publication date), and Proceedings Surface-Mount International Conference, San Jose, CA, pp. 806, Sep., 1996
7 D. Endicott and K Kisner, "A Proposed Mechanism for Metallic Whisker Growth", Proceedings of the 71st Annual AES (American Electroplaters' Society) Technical Conference, New York, NY, USA, pp. 21, Jul., 1984
8 S. Lal, "An Evaluative Study of Lead-Free Deposits in High Speed Applications", American Electroplaters and Surface Finishers (AESF) SUR/FIN Conference, Nashville, TN., pp. 1, 2001
9 R. Schetty, "Minimization of Tin Whisker Formation for Lead Free Electronics Finishing", Circuit World, vol. 27, Issue 2, pp. 17, 2001
10 V. Glazunova, and N. Kudryavtsev, "An Investigation of the Conditions of Spontaneous Growth of Filiform Crystals on Electrolytic Coatings," Translated from Zhurnal Prikladnoi Khimii, 36, no. 3, pp. 543, Mar., 1963
11 Y. Zhang, C. Su, C. Fan, and J. Abys, "Tin Whisker Growth and Prevention", Journal of Surface Mount Technology, Vol. 13, Issue 4, pp. 1, 2000
12 B. Lee and D Lee, "Spontaneous Growth Mechanism of Tin Whiskers", Acta Mater., 46, No. 10, pp. 3701, 1998
13 T. Kakeshita, R. Kawanaka, and T. Hasegawa, "Grain Size Effect of Electro-Plated Tin Coatings on Whisker Growth", Journal of Materials Science, 17, pp. 2560, 1982
14 A. Selcuker, and M. Johnson, "Microstructural Characterization of Electrodeposited Tin Layer in Relation to Whisker Growth", Proceedings Capacitor and Resistor Technology Symposium: USA, pp. 19, Oct., 1990
15 P. Harris, "The Growth of Tin Whiskers", International Tin Research Institute, Publication No. 734, pp. 1, 1994
16 H. Leidecker, and J. Kadesch, "Effects of Uralane Conformal Coating on Tin Whisker Growth", Proceedings of IMAPS Nordic, 37th IMAPS Nordic Annual Conference, pp. 108, Sep., 2000
17 National Electronics Manufacturing Initiative (NEMI), “tin whisker testing and fundamental growth mechanisms”, forum presentation, pp. 1, 2001.
18 M. Dittes, P. Oberndorff, P. Su, P. Crema, “Humidity Effects on Sn Whisker Formation”, ECTE NEMI workshop, http://thor.inemi.org/webdownload/newsroom/Presentations/ECE/Tin%20Whisker%20Workshop%20May%202005/Humidity%20Effects.pdf, Jun., 2005
19 R. Diehl and N. Cifaldi, "Eliminate Whisker Growth on Contacts by Using a Tin Alloy Plate", Insulation/Circuits, pp. 37, Apr., 1976
20 S. Arnold, "Growth of Metal Whiskers on Electrical Components", Proceedings of Electrical Components Conference, pp. 75, 1959
21 R. Fisher, L. Darken and K. Carroll, “Accelerated Growth of Tin Whiskers”, Acta Metallurgica, 2, pp. 369, May, 1954
22 B. Dunn, "A Laboratory Study of Tin Whisker Growth", European Space Agency (ESA) STR- 223, pp. 1, Sep., 1987
23. M. Williams, “Tin Whisker Fundamentals Modelling Group Survey”, http://www.nemi.org/projects/ese/tin_whisker_activities.html, NEMI, USA, 2002
24 S. Koonce and S. Arnold, "Growth of Metal Whiskers", Unknown Publisher (only the Letters to the editor at the Bell Telephone Laboratories, Murray Hill, NJ), Dec., 1952
25 R. Schetty, “Minimization of Tin Whisker Formation for Pure Tin Electronics”, Proceedings IPC Works Conference, Miami, USA, 2000
26 K. N. Tu, “Cu/Sn Interfacial Reactions: Thin-Film Case versus Bulk Case”, Materials Chemistry and Physics, Vol. 46, pp. 217, 1996.
27 Y. Zhang, C. Xu, C. F., J. A. Abys and A. Vysotskaya, “Understanding Whisker Phenomenon - Whisker Index And Tin/Copper, Tin/Nickel Interface”, IPC SMEMA Council APEX, pp. S06-1-1, 2002
28 J. Haimovich, “Cu-Sn Intermetallic Compound - Growth in Hot-Air-Levelled Tin at and below 100 °C”, AMP Journal of Technology Vol. 3, pp. 46, Nov., 1993.
29 JEDEC Standard No 201, “Environmental Acceptance Requirements for Tin Whisker Susceptibility of Tin and Tin Alloy Surface Finishes”, Draft for ballot, Sep., 2005
30 IE, 60068-2-82, “Whisker Test Methods for Electronic and Electric Components” Doc. 91/517/CD, Aug., 2005
31 G. T. Galyon, “The Annotated Whisker Bibliography and Anthology v.1.2, NEMI , USA, http://www.nemi.org/projects /ese /tin_whisker _ activities.html, 2003
32 P. Oberndorff, M. Dittes, P. Crema, P. Su, and E. Yu, “Humidity Effects on Sn Whisker Formation”, IEEE Transaction on Electronics, Packaging and Manufacturing, VOL. 29, No. 4, pp. 239, Oct., 2006
33 K. N. Tu, J. O. Suh and Albert T. Wu: “Tin whisker growth on lead-free solder finishes,” Lead free solder, pp. 147, 2005
34 C. Xu, Y. Zhang, C. Fan, and J. Abys, “Understanding Whisker Phenomenon, Part II,” Proceedings of the Technical Conference APEX 2002, http://www.hkpc.org/hkiemat/mastec03_notes/11.pdf, San Diego, CA, Jan., 2002
35 J. W. Osenbach, J. M. DeLucca, B. D. Potteiger, A. Amin, R. L. Shook, and F. A. Baiocchi , “Sn Corrosion and Its Influence on Whisker Growth”, IEEE Transaction on Electronics, Packaging and Manufacturing, Vol. 30, No. 1, pp. 23, 2007
36 P. Oberndorff, M. Dittes, L. Petit, “Intermetallic Formation in Relation to Tin Whiskers”. Proc. IPC/Soldertec International Conference on Lead-Free Electronics, Brussels, pp. 170, Jun., 2003
37 E. E. de Kluizenaar, “Surface oxidation of molten soft solder: An auger study”, J. Vac. Sci. Technol., A 1, Vol. 3, pp. 1480, 1983
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.100.120
論文開放下載的時間是 校外不公開

Your IP address is 3.141.100.120
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code