Responsive image
博碩士論文 etd-0624110-123112 詳細資訊
Title page for etd-0624110-123112
論文名稱
Title
經由摩擦攪拌製程形成原位氧化鋁及鋁鈰介金屬化合物強化之鋁基複合材料微觀組織及機械性質之研究
Study on the microstructure and mechanical properties of friction stir processed aluminum matrix composite strengthened by in-situ formed Al2O3 particle and Al-Ce intermetallic compound
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
136
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-05-17
繳交日期
Date of Submission
2010-06-24
關鍵字
Keywords
機械性質、摩擦攪拌製程
friction stir processing, metal matrix composite, mechanical properties
統計
Statistics
本論文已被瀏覽 5660 次,被下載 0
The thesis/dissertation has been browsed 5660 times, has been downloaded 0 times.
中文摘要
本研究結合了摩擦攪拌製程之熱加工以及鋁與氧化鈰之放熱反應製造原位鋁基複合材料。鋁與氧化鈰之壓錠是由傳統擠壓及燒結所製成,然後經多道次摩擦攪拌之燒結壓錠,其微觀組織藉由使用X光繞射、掃描式電子顯微鏡及穿透式電子顯微鏡觀察描繪其特徵。強化相已被鑑定為Al11Ce3和 δ*Al2O3。氧化鋁均勻分布於鋁基地,其平均顆粒大小約10 nm。鋁基材晶粒平均大小 390-550 nm。穿透式電子顯微鏡觀察顯示氧化鋁與鋁基材具特定晶向關係;其關係為 (223)δ*-Al2O3平行(111)Al 和 [1-10]δ*-Al2O3 大約平行於 [1-10]Al。氧化鋁與鋁之晶向關係明確顯示氧化鋁是經固態析出所產生。推測反應過程應是,摩擦攪拌製程產生過飽合氧於鋁基材中,然後均勻析出奈米級氧化鋁顆粒。
研究結果也顯示,燒結溫度及摩擦攪拌製程之工具走速會明顯影響複合材料微結構及機械性質。此複合材料展現在常溫與高溫均具有高強度;在燒結溫度833 K及走速30 mm/min條件下,楊氏係數為109 GPa,抗拉強度488 MPa及延伸率約3%。造成此複合材料高強度之主要貢獻有二,包括鋁基材次微米晶粒結構以及奈米級氧化鋁顆粒造成之Orowan強化。另外,由於氧化鋁之高溫穩定性,此複合材料在723K下仍有高強度。

Abstract
In this study, a novel technique was used to produce aluminum based in situ composites from powder mixtures of Al and CeO2. This technique has combined hot working nature of friction stir processing (FSP) and exothermic reaction between Al and oxide. Billet of powder mixtures was prepared by the use of conventional pressing and sintering route. The sintered billet was then subjected to multiple passages of friction stir processing (FSP). The microstructure was characterized by the use of TEM, SEM and XRD. The reinforcing phases were identified as Al11Ce3 and δ*-Al2O3. The Al2O3 particles with an average size of ~10 nm are uniformly distributed in the aluminum matrix, which has an average grain size about 390-500 nm. The analysis of TEM indicated that these Al2O3 particles exhibit crystallographic orientation relationship with the aluminum matrix, i.e., (223)δ*-Al2O3//(111)Al and [1-10]δ*-Al2O3 roughly parallel to [1-10]Al. The precipitates of Al2O3 exhibiting crystallographic orientation relationship with the aluminum clearly indicates that they were formed from solid state precipitation. Apparently, significant supersaturation of oxygen in aluminum had been created in FSP, and nanometric Al2O3 particles were then precipitated uniformly in the aluminum matrix.
This study shows that both sintering temperature and the tool traversing speed used in FSP have significant influence on the microstructure and mechanical properties of the composite. The composites produced exhibit high strength both at ambient and elevated temperatures. For example, the composite produced by 833K sintering followed by FSP with tool traversing speed of 30 mm/min possesses enhanced modulus (E = 109 GPa) and strength (UTS = 488 MPa) as well as a tensile ductility of ~3%. The major contributions to the high strength of the composite are the submicrometer grain structure of aluminum matrix and the Orowan strengthening caused by the fine dispersion of nanometer size Al2O3 particles inside aluminum grains. In addition, the composite also exhibits high strength at elevated temperatures up to 773 K. The good thermal stability and high temperature strength of the composite may be attributed to the uniform dispersion of nanometric Al2O3 particles, which are very stable at elevated temperatures.
目次 Table of Contents
Table of Contents…………............................................................................................... I
List of Tables…………………………………………………………………………… III
List of Figures………………………………………………………………………….. IV
Abstract…………………………………………………………………………………. X

Chapter 1 Introduction...................................................................................................... 1
Chapter 2 Literature Review ........................................................................................... 4
2.1 Metal matrix composites (MMCs)........................................................................... 4


2.1.1 Strengthening mechanisms of particulate reinforced MMCs. ……………. 5
2.1.2 Fabrication of in-situ MMCs……………………………………….. 8
2.1.3 Mechanical properties of in situ aluminum matrix composites…………… 12
2.2 Friction stir welding (FSW) …………………………………………………….. 13
2.2.1 Metal flow in FSW…………………………………………………………14
2.2.2 Temperature distribution in FSW…………………………………………..16
2.2.3 Microstructure evolution in FSW…………………………………………. 16
2.3 Friction stir processing (FSP)……………………………………………….. 18
2.4 In situ MMCs produced by FSP…………………………………………….. 19
Chapter 3 Experimental Procedures …………………………………………………. 22
3.1 Materials………………………………………………………………………… 22
3.2 Fabrication of billets for friction stir processing………………………………… 22
3.2.1 Powder mixing…………………………………………………………….. 22
3.2.2 Powder ball-milling……………………………………………………..… 22
3.2.3 Cold compaction…………………………………………………………... 22
3.2.4 Sintering …………………………………………………………………... 23
3.3 Friction stir processing ………………………………………………………….. 23
3.4 Isothermal heat treatment (IHT)……………………...…………………………. 24
3.5 Microstructure analysis………………………………………………………….. 24
3.5.1 Microscopic observation…………………………………………………... 24
3.5.2 X-ray diffraction (XRD)…………………………………………………... 24
3.5.3 Transmission electron microscopy (TEM)………………………………… 25
3.6 Mechanical properties…………………………………………………………… 25
3.6.1 Microhardness measurement……………………………………………… 25
3.6.2 Ambient temperature tensile and compressive tests………………………. 25
3.6.3 Elevated temperature compressive tests………………………………...… 26
Chapter 4 Results………………………………………………………………………. 27
4.1 Microstructure evolution in pre-FSP processing………………………………... 27
4.1.1 Microstructure of cold compaction ……………………………………….. 27
4.1.2 Microstructure after sintering……………………………………………... 27
4.2 Microstructure and mechanical properties of specimens produced by FSP…...... 29
4.2.1 Effect of FSP parameters………………………………………………….. 29
4.2.2 Influence of sintering temperature ………………………………………... 32
4.2.3 Effect of CeO2 content…………………………………………………….. 35
4.2.4 Mechanical properties at elevated temperatures…………………………... 36
4.3 Formation of nanometric Al2O3 particles in composites produced by FSP…. 37

Chapter 5 Discussion ……………………...……………………………… 41
5.1 In-situ reaction and microstructure evolution in FSP…………………………… 41
5.2 Tensile-compressive strength difference ……………………………………… 42
5.3 Strengthening mechanisms……………………………………………………… 43
Chapter 6 Conclusion …………………………………………………………………. 45
Chapter 7 References ……………………………………………………………...…. 113
參考文獻 References
1. Thomas WM, Nicoholas ED, Needham JC, Church MG, Templesmith P, Dawes CJ. GB patent application 9125978.8, December 1991; US patent 5460317, October 1995.
2. Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R 2005: 50: 1-78.
3. Ma ZY. Friction stir processing technology: A Review. Metall Mater Trans A 2008:39: 642-58.
4. Berbon PB, Bingel WH, Mishra RS, Bampton CC, Mahoney MW. A tool to homogenize nanocomposite aluminum alloys. Scripta Mate 2001: 44: 61-6.
5. Manisha D, Newkirk JW, Mishra RS. Properties of friction stir-processed Al 1100–NiTi composite. Scripta Mater 2007:56:541-4.
6. Kwon YJ, Saito N, Shigematsu I. Friction stir process as a new manufracturing technique of ultrafine grained aluminum alloy. J Mater Sci Lett 2002: 21:1473-6.
7. Wang Y, Shi XL, Mishra RS, Watson TJ. Friction stir welding devitrified Al-4.0Y-4.0Ni-0.9Co alloy produced by amorphous powders. Scripta Mater 2007: 56: 971-4.
8. Kwon YJ, Saito N, Shigematsu I. Mechanical properties of fine-grained aluminum alloy produced by friction stir process. Scripta Mater 2003: 49: 785-789.
9. Chang CI, Lee CJ, Huang JC. Relationship between grain size and Zener Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta Mater 2004: 51:509-14.
10. Ma ZY, Mishra RS, Mahoney MW. Superplastic deformation behaviour of friction stir processed 7075 Al alloy. Acta Mater 2002: 50: 4419-30.
11. Johannes LB, Charit I, Mishra RS ,Verma R. Enhanced superplasticity through friction stir processing in continuous cast AA5083 aluminum. Mater Sci Eng A 2007:464:351-7.
12. Ma ZY, Sharam SR, Mishra RS. Effect of friction stir processing on the microstructure of cast A351 aluminum. Mater Sci Eng A 2006:433: 269-78.
13. Ma ZY, Sharam SR, Mishra RS. Effect of multiple-pass friction stir processing on microstructure and tensile properties of a cast aluminum-silicon alloy. Scripta Mater 2006:54: 1623-6.
14. Nakata K, Kim YG, Fujii H,Tsumura T, Komazaki T. Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing. Mater Sci Eng A 2006: 437: 274-80.
15. Ma ZY, Pilchak AL, Juhas MC, and Williams JC. Scripta Mate 2006: 54: 1623-6.
16. Mishra RS, Ma ZY, Charit I. A novle technique for fabrication of surface composite. Mater Sci Eng A 2003:341:307-310.
17. Hsu CJ, Kao PW, Ho NJ. Ultrafine-grained Al-Al2Cu composites produced in situ by friction stir processing. Scripta Mater 2005, vol. 53, pp. 341-5.
18. Hsu CJ, Chang CY, Kao PW, Ho NJ, Chang CP. Al-Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater 2006:54: 5241-9.
19. Lee IS, Kao PW, and Ho NJ. Microstructure and mechanical properties of Al–Fe in situ nanocomposite produced by friction stir processing. Intermetallics 2008:16:1104-8.
20. Lee CJ, Huang JC, Hsieh PJ. Mg based nano-composites fabricated by friction stir processing. Scripta Mater 2006: 54:1415-20.
21. Lloyd DJ. Particle reinforced aluminum and magnesium matrix composites. Intl Mater Rev 1994:39: 1-23.
22. Martin JW, Doherty RD. Stability of Microstructures in Metallic Systems, Cambridge University Press, 1976, pp. 234-236.
23. Tjong SC, Ma ZY. Microstructural and mechanical characteristics of in situ metal mtrix composites. Mater Sci Eng R 2000 : 29 : 49-113.
24. Mei L, Halldearn RD, and Xiao P. Mechanisms of the aluminium-iron oxide thermite reaction. Scripta Mater 1999: 41: 541-8.
25. Yu P, Deng CJ, Ma NG, Yau MY, Ng DH. Formation of nanostructured eutectic network in α-Al2O3 reinforced Al–Cu alloy matrix composite. Acta Mater 2003:51: 3445-54.
26. Huang ZJ, Hua BY, Zhang JS. Study on the fabrication of Al matrix composites strengthened by combined in-situ alumina particle and in-situ alloying elements. Mater Sci Eng 2003: A351:15-22.
27. Das SK, Davis LA. High performance aerospace alloys via rapid solidification processing. Mater Sci Eng 1988: 98:1-12.
28. Clyne TW, Withers PJ. An introduction to metal matrix composites. Cambridge, Cambridge University Press; 1993.
29. Miller WS, Humphreys FJ. Strengthening mechanisms in particulate metal matrix composites. Scripta Met Mater 1991;25:33-38.
30. Kumar KS, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 2003:51:5743-74.
31. Vaidya RU, Chawla KK. Thermal expansion of metal-matrix composites. Compos Sci Technol 1994:50: 13-22.
32. Dunand DC, Davis LA. Reinforced silver chloride as a model material for the study of dislocations in metal matrix composites. Mater Sci Eng A 1991:144:179-188.
33. Arsenault RJ, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion. Mater Sci Eng 1986;81:175–87.
34. Zhang Z, Chen DL. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scripta Mater 2006:54:1321-26
35. Srinivasan S, Chen SR, Schwarz RB. Synthesis of Al/Al3Ti two-phases alloy by mechanical alloying. Mater Sci Eng A1992;153:691-695.
36. Cheng YC, Wang SH, Kao PW, Chang CP. Microstructures and mechanical properties of mechanically allyed Al-Al3Ti alloys. Mater Sci Forum 1996;217:1891-1896.
37. Varin RA. Intelmetallic-reinforced light-metal matrix in situ composites. Metall Mater Trans 2002;33A:193-201.
38. Choi Y, Mullins ME, Wijayatilleke K, Lee JK. Fabrication of metal matrix composites of TiC-Al through self-propagating synthesis reaction. Metall Mater Trans 1992;23A:2387-2392.
39. Vyletel GM, Allison JE, Aken DCV. Recrystallization and grain growth
phenomena in a particle-reinforced aluminum composite. Metall Mater Trans A 1995;26A:1395-1405.
40. Tong XC, Fang HS. Al-TiC composites in situ processed by ingot metallurgy and rapid solidification technology. Metall Mater Trans A 1998;29A:893-902.
41. Pan J, Li JH, Fukunaka H, Ning XG, Ye HQ, Yao ZK, Yang M. Microstructural study of the interface reaction between titania whiskers and aluminum. Comp Sci Tech 1997;57:319-325.
42. Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci 2001:46:1-184.
43. Bi J, Ma ZY, Wu SJ, Shen HW, Lu YX. Microstructure-property correlation Al4C3 dispersion strengthened Al composites. J Mater Sci Technol. 1993:9:61-64.
44. Ying DY, Zhang DL. Processing of Cu-Al2O3 metal matrix nanocomposite material by using high energy ball milling. Mater Sci Eng A 2000:286: 152–156.
45. Reddy BSB, Das K, Pabi SK, Das S. Mechanical–thermal synthesis of Al–Ce/Al2O3 nanocomposite powders. Mater Sci and Eng A 2007:445–446.
46. Biselli C, Morris DG, Randall N. Mechanical alloying of high-strength copper alloys containing TiB2 and Al2O3 dispersoid particles. Scripta Metall. Mater. 1994:30:1327-1332
47. Daniel BSS, Murthy VSR, Murthy GS. Metal-ceramic composites via in-situ methods. J Mater Sci Technol 1997:68:132-155.
48. Fukunagn H, Wang XG, Aramaki YZ. Preparation of intermetallic compound matrix composites by reaction squeeze casting. J Mat Sci let 1991:10:23-25;
49. Pan J, Li JH, Fukunaka H, Ning XG, Ye HQ, Yao ZK, Yang M. Microstructure study of the interface reaction between titania whisker and aluminum Composites Sci. Technol. 1997:57:319-325.
50. Peng HX, Wang DZ, Geng L, Yao CK, Mao JF, Scripta Mater. Evaluation of the microstructure of in-situ reaction proceed Al3Ti-Al2O3-Al composite. 1997:37:199-204.
51. Gotman I, Koczak MJ, Shtessel E. Fabrication of A1 matrix in situ composites via self-propagating synthesis. Mater Sci Eng A 1994:187:189-199.
52. Ma ZY, Li JH, Luo M, Ning XG, Lu YX, Bi J, Zhang YZ. In-situ formed Al2O3 and TiB2 particulates mixture-reinforced aluminum composite. Scripta Metall Mater 1994:31: 635-639.
53. Kuruvilla AK, Prasad KS, Bhanuprasad VV, Mahajan YR. Microstructure-property correlation in Al/TiB2 (XD) composites. Scripta Metall Mater 1990:24: 873-878.
54. Srivatsan TS, Sudarshant TS, Laverniaj EJ. Processing of discontinuously-reinforced metal matrix composites by rapid solidification. Prog Mater Sci 1995:39:317-409.
55. Wu JM, Li ZZ. Nanostructured composite obtained by mechanically driven reduction reaction of CuO and Al powder mixture. J Alloys Compd 2000:99:9–16.
56. Lee KM, Moon IH. High temperature performance of dispersion-strengthened Al-Ti alloys prepared by mechanical alloying. Mater Sci Eng 1994:85: 165-170.
57. Wang SH, Kao PW. The strengthening effect of Al3Ti in high temperature deformation of Al–Al3Ti composites. Acta Mater 1998:46:2675-2682.
58. Colligan K. Material flow behavior during friction stir welding of aluminum. Weld J 1999;78:229S-237S.
59. Seidel TU, Reynolds AP. Visualization of material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 2001; 32A:2879-2884.
60. Arbegast WJ. In: Jin Z et al., editors. Hot Deformation of Aluminum Alloys III. Warrendale, PA: TMS;2003. p.313-327.
61. Heurtier P, Desrayaud C, Montheillet F. A thermomechanical analysis of the friction stir welding process. Mater Sci Forum 2002;396-402:1537-1542.
62. Su JQ, Nelson TW, Mishra R, Mahoney M. Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater 2003:51:713-729.
63. Lee WB, Yeon YM, Jung SB. Joint properties of friction stir welded AZ31B–H24 magnesium alloy. Mater Sci Technol 2003:19:785-790.
64. Prado RA, Murr LE, Shindo DJ, Soto KF. Tool wear in the friction-stir welding of aluminum alloy 6061+20% Al2O3: a preliminary study. Scripta Mater 2001:45:75–80.
65. Arbegast WJ. Friction Stir Welding After a Decade of Development. Weld J 2006:85:38-45.
66. Colligan KJ, Fisher JJ, Gover JE, Pickens JR. Friction stir welding in the AAAV. Adv Mater Processes 2002:160:39-41.
67. Campbell G, Stotler T. Friction stir welding of armor grade aluminum plate. Weld J 1999:78:45-47.
68. Seidel TU, Reynolds AP. Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 2001:32:2879-2884.
69. Sato YS, Kokawa H, Ikeda K, Enomoto M, Jogan S, Hashimoto T. Microtexture in the friction-stir weld of an aluminum alloy. Metall Mater Trans A 2001: 32:941-48.
70. Park SHC, Sato YS, Kokawa H. Basal plane texture and flow pattern in friction stir weld of a magnesium alloy. Metall Mater Trans A 2003:34:987-994.
71. Field DP, Nelson TW, Hovanski Y, Jata KV. Heterogeneity of crystallographic texture in Friction Stir Welds of Aluminum. Metall Mater Trans A 2001:32:2869-2677.
72. Mahoney MW, Rhodes CG, Flintoff JG, Bingel WH, Spurling R A. Properties of friction-stir-welded 7075 T651 aluminum. Metall Mater Trans A 1998:29:1955-1964.
73. Li Y, Murr LE, McClure JC. Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum. Mater Sci Eng A 1999:271:213-223.
74. Liu G, Murr LE, Niou CS, McClure JC, Vega FR. Microstructural aspects of the friction-stir welding of 6061-T6 aluminum. Scripts Mater 1997:37:355-361.
75. Sato YS, Kokawa H, Enmoto M, Jogan S. Microstructural evolution of 6063 aluminum during friction-stir welding. Metall Mater Trans A 1999:30 :2429-2437.
76. Rhodes CG, Mahoney MW, Bingel WH, Spurling RA, Bampton CC. Effects of friction stir welding on microstructure of 7075 aluminum. Scripta Mater. 1997:36:69-75.
77. Rhodes CG, Mahoney MW, Bingel WH, Calabres M. Fine-grain evolution in friction-stir processed 7050 aluminum. Scripta Mater 2003:48: 1451–55.
78. Su JQ, Nelson TW, Sterling CJ. Friction stir processing of large-area bulk UFG aluminum alloys. Scripta Mater 2005:52:135–40.
79. Mishra RS, Mahoney MW, McFadden SX, Mara NA, Mukherjee AK. High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scripta Mater 2000;42:163-168.
80. Hu CM, Lai CM, Du XH, Ho NJ, Huang JC. Enhanced tensile plasticity in ultrafine-grained metallic composite fabricated by friction stir process. Scripta Mater 2008:59:1163-1166.
81. Hu CM, Lai CM, Kao PW, Ho NJ, Huang JC. Solute-enhanced tensile ductility of ultrafine-grained Al–Zn alloy fabricated by friction stir processing. Scripta Mater 2009:60:639-642.
82. Hsu CJ, Kao PW, Ho NJ. Intermetallic-reinforced aluminum matrix composites produced in situ by friction stir processing. Mater Let 2007:61:1315–1318.
83. Chuang CH, Huang JC, Hsieh P.J. Using friction stir processing to fabricate MgAlZn intermetallic alloys. Scripta Mater 2005:53:1455–60.
84. Chang CI, Lee CJ, Huang JC. Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta Materialia 2004:51:509–514.
85. Gerlich A., Yamamoto M, North TH. Strain Rates and Grain Growth in Al 5754 and Al 6061 Friction Stir Spot Welds. Metall Mater Trans A 2007:38:1291-1302.
86. Gale WF, Totemeier TC. Smithells Metals Reference Book, 8th ed., Elsevier, 2004.
87. Borzone G, Cacciamani G, Ferro R. Heat of formation of aluminum-cerium intermetallic compounds. Metall Trans A 1991: 22: 2119-2123.
88. Fargeot D, Mercurio D, Dauger A. Structural characterization of alumina metastable phases in plasma sprayed deposits. Mater Chem Phys 1990:24:299-314.
89. Wang YG, Bronsveld PM, DeHosson JM. Ordering of octahedral vacancies in transition aluminas. J Am Ceram Soc 1998: 81:1655-1660.
90. Spigarelli S, Cerri E, Cavaliere P, Evagelista E. An analysis of hot formability of the 6061+20% Al2O3 composite by means of different stability criteria. Mater Sci Eng A 2002:327:144–154.
91. Tanner LE. Diffraction contrast from elastic shear strains due to coherent phases. Phil Mag 1966:14:111-130.
92. Billingham J, Bell PS, Lewis MH. Vacancy short-range order in substoichiometric Transition metal carbides and nitrides with the NaCl structure. I.electron diffraction studies of short-range ordered compounds. Acta Cryst A 1972:28:602-606.
93. Sauvage M, Parthe E. Vacancy short-range order in substoichiometric Transition metal carbides and nitrides with the NaCl structure. II. Numerical calculation of vacancy arrangement. Acta Cryst A 1972:28:607-616.
94. Dauger A, Fargeot D. T.E.M. study of Al2O3 metastble phases. Radiation Effects 1983:74:279-289.
95. Rooksby HP, Rooymans JM. The formation and structure of delta alumina. Clay Min Bull 1961:4:234-238.
96. Levin I, Brandon D. Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 1998:81:1995-2012.
97. Cordfunke EHP, Korning RJM. The enthalpies of formation lanthanide compounds III. Ln2O3 (cr). Thermochimica 2001:375:65-79.
98. Peel M, Steuwer A, Preuss M, Withers PJ. Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater 2003:51:4791-801.
99. Yu CY, Kao PW, Chang CP. Transition of tensile deformation behaviors in ultrafine-grained aluminum Acta Mater 2005, vol. 53, pp. 4019-28.
100. Martin JW. Micromechanisms in Particle Hardened Alloys. Cambridge University Press, 1980, pp. 60-64.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.197.114.92
論文開放下載的時間是 校外不公開

Your IP address is 44.197.114.92
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code