Responsive image
博碩士論文 etd-0624111-220930 詳細資訊
Title page for etd-0624111-220930
論文名稱
Title
應用改良式直交粒子群最佳化演算法求解動態負載電壓穩定之研究
Voltage Stability Study for Dynamic Load with Modified Orthogonal Particle Swarm Optimization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-22
繳交日期
Date of Submission
2011-06-24
關鍵字
Keywords
靜態同步補償器、電壓穩定、直交粒子群演算法、等效電流注入法、最佳化電力潮流
STATCOM, Optimal Power Flow, Voltage Stability, Orthogonal Particle Swarm Optimizer, Equivalent Current Injection
統計
Statistics
本論文已被瀏覽 5663 次,被下載 10
The thesis/dissertation has been browsed 5663 times, has been downloaded 10 times.
中文摘要
本文利用電容器、靜態同步補償器(Static Synchronous Compensator, STATCOM)與風力發電機組,對24小時的動態負載系統進行最佳實虛功補償,以達到整體系統之電壓穩定。
利用本文提出的「改良式直交粒子群演算法(Modified Orthogonal Particle Swarm Optimizer, MOPSO)」搜尋電容、STATCOM及風力機組在系統中的最佳配置與容量,並結合「等效電流注入法(Equivalent Current Injection, ECI)」計算最佳化電力潮流以達成最佳化系統電壓穩定。本文所提出「改良式直交粒子群演算法」經由多重選擇與田口直交表,更新STATCOM與風力發電機容量的Gbest,改善粒子群演算法會經常落入局部最佳解的窘境,並配合負載平衡等式限制式與不等式限制式搜尋電力系統的電壓穩定最佳化。本文所提出「平均電壓變動量(Average Voltage Variation, AVV)」與「平均電壓降變動量(Average Voltage Drop Variation, AVDV)」來作為目標函數,計算整體系統之電壓變動量,並經由MOPSO收歛至系統最佳化。
測試IEEE 33 Bus之配電系統與苗栗後龍實際的配電系,並測試台電離尖峰時段電壓控制的案例,進行系統實虛功補償模擬,並得到最佳化系統之電壓穩定。
Abstract
The thesis use capacitors, Static Synchronous Compensator (STATCOM) and wind generator to get optimal voltage stability for twenty-four-hour dynamic load by compensating real/reactive power.
In the thesis, Modified Orthogonal Particle Swarm Optimizer (MOPSO) is proposed to find the sitting and sizing of capacitors, STATCOM and wind generator, and integrate Equivalent Current Injection (ECI) algorithm to solve Optimal Power Flow (OPF) to achieve optimal voltage stability. The algorithm uses MOPSO to renew STATCOM and wind turbine sizing Gbest with multiple choices and Taguchi orthogonal array, which improves Particle Swarm Optimizer (PSO) without falling into the local optimal solution and searches optimal voltage stability of power system by load balancing equation and inequality constraints. Average Voltage Variation (AVV) and Average Voltage Drop Variation (AVDV) are proposed as objective function to calculate whole system voltage variations, and convergence test of MOPSO.
The IEEE 33 Bus distribution system and Miaoli-Houlong distribution system were used for simulation to test the voltage control during peak and off-peak periods of Taipower. Compensation of real/reactive power was used to get optimal system voltage stability for each simulated case.
目次 Table of Contents
中文摘要..................................................................................i
英文摘要.................................................................................ii
目錄........................................................................................iii
圖目錄....................................................................................vi
表目錄..................................................................................viii
第一章 緒論............................................................................1
1.1 研究背景..........................................................................1
1.2 研究方法與目的..............................................................2
1.3 論文架構..........................................................................3
第二章 配電系統補償設備與問題描述................................5
2.1配電系統補償設備之模型與理論...................................5
2.1.1 靜態電容器...................................................................5
2.1.2 靜態同步補償器...........................................................6
2.1.3 風力機發電與控制原理...............................................7
2.2 電壓穩定之問題描述......................................................9
2.2.1 等式限制式...................................................................9
2.2.2 不等式限制式............................................................10
2.2.3 電壓品質指標值........................................................10
第三章最佳化電力潮流與電壓穩定評估..........................13
3.1 電流注入法....................................................................13
3.1.1 電流注入法負載匯流排模型推導............................14
3.1.2 電流注入法電壓控制匯流排模型推導....................18
3.2 電壓穩定評估................................................................22
3.2.1 平均匯流排電壓變動量............................................23
3.2.2 平均電壓降變動量....................................................24
3.3 動態負載規劃................................................................25
第四章改良直交粒子群演算法..........................................27
4.1 各種粒子群演算法........................................................27
4.1.1 傳統粒子群演算法....................................................27
4.1.2 時變性質加速係數粒子群演算法............................30
4.1.3 直交粒子群演算法....................................................32
4.2 改良直交粒子群演算法...............................................32
4.2.1 水準選取....................................................................33
4.2.2 直交方法....................................................................33
4.2.3 改良直交粒子群演算法與最佳化電力潮流流........36
第五章系統模擬及結果分析..............................................40
5.1 IEEE-33 Bus配電系統之模擬結果...........................41
5.1.1 IEEE 33 Bus配電系統之動態負載.........................41
5.1.2 平均電壓變動量........................................................44
5.1.3 平均電壓降變動量....................................................49
5.1.4 AVV與AVDV的比較...................................................52
5.2 後龍配電系統之模擬結果............................................55
5.2.1 後龍實際配電系統之動態負載................................55
5.2.2 平均電壓變動量........................................................57
5.2.3 平均電壓降變動量....................................................61
5.2.4 AVV與AVDV的比較...................................................64
5.3 台電特殊案例之模擬結果............................................66
第六章結論..........................................................................73
6.1結論.................................................................................73
6.2未來研究方向.................................................................74
參考文獻..............................................................................75
附錄......................................................................................79
參考文獻 References
[1] H. Norouzi and A. M. Sharaf, “Two Control Schemes to Enhance the Dynamic Performance of the STATCOM and SSSC,” IEEE Transactions on Power Delivery, Vol. 23, pp. 435-442, 2005.
[2] A. Jain, K. Joshi, A. Behal and N. Mohan, “Voltage Regulation with STATCOM:Modeling, Control and Results, ” IEEE Transactions on Power Delivery, Vol. 21, pp. 726-735, 2006.
[3] T. Senjyu, Y. Miyazato, A. Yona, N. Urasaki and T. Funabashi, “Optimal Distribution Voltage Control and Coordination With Distributed Generation,” IEEE Transactions on Power Delivery, Vol. 23, pp. 1236-1242, 2008.
[4] W. M. Lin and J. H. Teng, “Current-Based Power Flow Solutions for Distribution System,” IEEE ICPST’94Conference Beijing, China, pp. 414-418, 1994.
[5] IEEE Std. 1036-1992, “IEEE Guide for Application of Shunt Power Capacitors”.
[6] 崔文吉,“配電系統中考慮分散式電源併聯的電壓控制策略”,國立中山大學電機工程研究所碩士論文,七月,2007。
[7] 呂凱弘,馬肇聰,“以電力轉換器為基礎的整合型電力潮流控制器(UPFC)應用於電力品質控制之可行性分析”,國立聯合大學電機工程系,2005年電力電子研討會
[8] J. G. Slootweg, S.W. H. de Hann, H. Polinder and W. L. Kling, “General Model for Representing Variable Speed Wind Turbines in Power System Dynamics Simulations,” IEEE Trans. Power Systems, Vol. 18, pp. 144-151, 2003.
[9] J.Carpentier, “Contribution a. ‘1’etude du dispatching economique,” Bull. Soc. Francaise Elect., Vol. 3, pp. 431-447, 1962.
[10] R. W. Barcelo, W. W. Lemmon and H. R. Koen, “Optimization of the real-time dispatch with constraints for secure operation of bulk power system,” IEEE Transactions on Power Apparatus and System, Vol. 96, Iss. 3, part 1, pp.741-757, May. 1977.
[11] H. Saadat, “Power System Analysis,” McGraw-Hill, Inc., 2/e, 1996.
[12] W. M. Lin and J. H. Teng, “Distribution Fast-Decoupled State Estimation by Measurement Pairing,” IEE Proceedings, Generation, Transmission, and Distribution, Vol. 143, no. 1, pp. 43-48, Jan.1996.
[13] W. M. Lin, C. H. Huang and T. S. Zhan, “A Hybrid Current-Power Optimal Power Flow Technique,” IEEE Transactions on Power Systems, Vol. 23, no. 1, pp. 177-185, Feb. 2008.
[14] W. M. Lin, Y. S. Su, H. C. Chin and J. H. Teng, “Three-Phase Unbalanced Distribution Power Flow Solutions with Minimum Data Preparation,” IEEE Transactions on Power Systems, Vol. 143, pp. 1179-1183, Aug. 1999.
[15] W. M. Lin and S. J. Chen, “Bid-Based Dynamic Economic Dispatch with An Efficient Interior Point Method,” International Journal of EPES, Vol. 24, pp. 51-57, Apr. 2002.
[16] 林惠民,“自由化下電力和備轉容量之最佳調度以及節點現貨價格計算之研究”,國科會計畫成果報告,NSC89-TPC-7-110-006,2000。
[17] IEEE Std. 1547-2003, “IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power System”.
[18] J. Yuryevich and K. P. Wong, “Evolutionary Programming Based Optimal Power Flow Algorithm,” IEEE Transactions on Power Systems, Vol. 14, pp.1245-1250, Nov. 1999.
[19] A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas and V. Petridis, “Optimal Power Flow by Enhanced Genetic Algorithm,” IEEE Transactions on Power Systems, Vol. 14, Iss. 2, pp. 229-236, May. 2002.
[20] H. J. Chuang, “Optimization of Inverter Placement for Mass Rapid Transit Systems by Immune Algorithm,” IEE Proceedings-Electric Power Applications, Vol. 152, Iss. 1, pp. 61-71, Jan. 2005.
[21] V. Parada, J. A. Ferland, M. Arias and K. Daniels, “Optimization of Inverter Placement for Mass Rapid Transit Systems by Immune Algorithm,” IEEE Transactions on Power Delivery, Vol. 19, Iss. 3, pp. 1135-1141, July. 2004.
[22] M. A. Abido, “Optimal Power Flow Using Particle Swarm Optimization,” Electrical Power and Energy Systems, Vol. 24, pp. 563-571, 2002.
[23] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” IEEE International Conference Neural Networks, 1995. Proceedings, Vol. 4, pp. 1942-1948, 27 Nov. -1 Dec. 1995.
[24] Y. Shi and R. Eberhart, “Empirical Study of Particle Swarm Optimization,” Proc. IEEE Evol. Comput., Vol. 3, pp. 69-73, 1999.
[25] F. S. Cheng, J. S. Tu, C. H. Lv and M. T. Tsay, “A Generalized Regression Neural Network for Solving Economic Dispatch Problem,” ICEE for the 21st Century with focus on Sustainability and Reliability, pp. 113, Jul. 2007.
[26] A. Ratnaweera, S. k. Halgamuge and H. C. Watson, “Self-Organizing Hierarchical Particle Swarm Optimization with Time-Varying acceleration coefficients,” IEEE Transactions on Evolutionary Computation, Vol. 8, no. 3, pp. 240-255, Jun.2004.
[27] K. T. Chaturvedi, M. Pandit and L. Srivastava, “Self-Organizing Hierarchical 102 Particle Swarm Optimization for Nonconvex Economic Dispatch,” IEEE Transactions on Power System, Vol. 23, Iss. 3, pp. 1079-1087, Aug. 2008.
[28] S. Y. Ho, H. S. Lin, W. H. Liauh and S. J. Ho, “OPSO: Orthogonal Particle Swarm Optimization and Its Application to Task Assignment Problems,” IEEE Transactions on system, Man and Cybernetics, Part A, Vol. 38, Iss. 2, pp. 288-298, March. 2008.
[29] 鐘義順,“應用粒子群演算法於電流基礎之預防式安全線致最佳化電力潮流”,國立中山大學電機工程研究所碩士論文,ㄧ月,2008。
[30] 林崇倫,“增強型直交粒子群演算法解最佳化電力潮流問題”,私立正修科技大學電機工程研究所碩士論文,六月,2009。
[31] 凃嘉勝,“蟑螂演算法的發展與應用”,私立正修科技大學電機工程研究所碩士論文,五月,2007。
[32] 黃恆倫,“風力發電之網路連接動態模擬”,國立中山大學電機工程研究所碩士論文,六月,2004。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.220.13.70
論文開放下載的時間是 校外不公開

Your IP address is 18.220.13.70
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code