Responsive image
博碩士論文 etd-0624113-144408 詳細資訊
Title page for etd-0624113-144408
論文名稱
Title
液體填充與液晶填充光子晶體光纖元件之製作與量測
Fabrication and Measurement of Liquid-Filled and Liquid-Crystal-Filled Photonic Crystal Fiber Devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
188
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-17
繳交日期
Date of Submission
2013-07-24
關鍵字
Keywords
奈米粒子、光子晶體光纖、馬赫-任德干涉儀、液晶、光控染料
liquid crystal, photoresponsive azobenzene, nanoparticle, photonic crystal fibers, Mach-Zehnder interferometers
統計
Statistics
本論文已被瀏覽 5696 次,被下載 0
The thesis/dissertation has been browsed 5696 times, has been downloaded 0 times.
中文摘要
傳統的光子晶體光纖在製作完成後,便難再利用外在因素調變其光學特性,因此有人提出在光子晶體光纖的空氣孔洞內填入可調性材料,如:液體與液晶,來製作可調式光子晶體光纖元件。在本論文中,我們利用液體填充光子晶體光纖與光控液晶光子晶體光纖來製作新型可調式光子晶體光纖元件。首先,我們利用真空注入技術將兩小段液體填充至光子晶體光纖孔洞內,成功地製作出一種新穎且不需破壞光纖外在結構的液體引致馬赫-任德光子晶體光纖干涉儀。量測結果發現可以得到明顯的干涉條紋,並且干涉儀的消光比在波長1525 nm時約為-15 dB。此外,我們所製作的馬赫-任德干涉儀對溫度與彎曲敏感度分別為:-176 pm/oC和15.5 nm/m,其溫度和彎曲的高敏感度顯示了此液體引致馬赫-任德光子晶體光纖干涉儀具有應用在光纖感測器的能力。
另外,我們將向列型液晶與光控染料4MAB所組成之光控液晶混合物填注入光子晶體光纖中形成光控液晶光子晶體光纖。將光控液晶光子晶體光纖串聯一般液晶光子晶體光纖可以製作出光調控帶通濾波器。利用照射5秒藍光雷射,可以看到兩個可調控傳輸頻帶各自有115 nm與110 nm之頻寬變化,而傳輸頻帶中心波長的位移變化量分別為48 nm和43 nm。接著,我們在光控液晶光子晶體光纖內摻雜銀奈米粒子以改善其反應時間,量測結果顯示,上升時間與下降時間分別可以減少38%和42%。
最後,我們也利用選擇性封孔技術將光控液晶混合物選擇性地填注入光子晶體光纖之兩側空氣孔洞,製成可調式光控液晶光子晶體光纖衰減器。利用照射藍光雷射,在波長為1100 nm處可得到-26 dB的傳輸衰減。我們所製作的光控液晶光子晶體光纖衰減器也可以藉由照射綠光雷射來回復其傳輸特性,形成有用的光調控元件。
Abstract
As the photonic crystal fibers (PCFs) are fabricated, it is hard to modulate their optical properties to function as tunable optical devices. To introduce tunable optical properties into the PCFs, one can infiltrate tunable-index materials, such as liquid and liquid crystals (LCs), into the air holes of the PCFs to form tunable optical devices. In this dissertation, we employ liquid-filled PCFs and photoresponsive PLCFs to form novel tunable optical devices. First, we utilize a vacuum pumping machine to infiltrate two liquid sections into the PCFs. A novel Mach-Zehnder interferometer (MZI) with two liquid sections can be successfully fabricated. Unlike other PCF-based MZIs, no damage is made to the PCF structure during the fabrication of our proposed MZI structure. The experiment results show that very clear interference patterns can be obtained, and a extinction ration (ER) of -15 dB can be achieved at λ = 1525 nm. Besides, the temperature and bending sensitivities of our fabricated PCF-based MZI are -176 nm/oC and 15.5 nm/m, respectively. As a result, our fabricated PCF-based MZIs can be utilized in temperature and bending sensing applications.
We have also fabricated photoresponsive PLCFs by infiltrating a LC mixture consisting of E7 LCs and the photoresponsive 4MAB into PCFs. By seriesly connecting a photoresponsive PLCF and a PLCF filled with E7 LCs, an optically tunable bandpass filter can be realized. After 5-second blue-laser irradiation, the bandwidth variations of two pass bands are 115 nm and 110 nm, respectively, and the center wavelengths of the transmission bands are shifted about 48 nm and 43 nm. In addition, we dope the Ag NPs into the photoresponsive PLCFs to improve the response time. The measurement results show that the rise time and decay time can be reduced about 38% and 42%, respectively.
Finally, a selective blocking technique is used to infiltrate the photoresponsive LC mixture into both-side air holes of the PCFs to from optically tunable PLCF attenuators. By irradiating a blue laser, a maximum attenuation tunability about -26 dB can be obtained at λ = 1100 nm. Our fabricated optically tunable PLCF attenuators possess reversible properties by green-laser irradiation and can be applied in optical tunable devices.
目次 Table of Contents
1 Introduction 1
1.1 Photonic Crystal Fibers……………………………………………1
1.2 Liquid-Filled Photonic Crystal Fibers……………………………4
1.3 Photonic Liquid Crystal Fibers……………………………………7
1.4 Mativations and Organization of the Dissertation………………10
2 Basic Properties of Nematic Liquid Crystals 28
2.1 Optical Properties of Nematic Liquid Crystals…………………28
2.1.1 Birefringence……………………………………………29
2.1.2 External Electric Field Effects for NLCs…………………31
2.1.3 Order Parameter and Temperature Effects for NLCs………32
2.2 Photoresponsive Azobenzene-Doped Nematic Liquid Crystals…33
3 Sample Preparations 44
3.1 Overview…………………………………………………………44
3.2 Fabrication of Photonic Crystal Fiber Devices…………………44
3.2.1 PCF-Based MZI (Used in Chapter Four) …………………44
3.2.2 Photoresponsive PLCFs (Used in Chapter Five) …………47
3.2.3 Photoresponsive PLCFs Doped with Ag NPs
(Used in Chapter Five) ………………………………49
3.2.4 Selectively Blocking Technique (Used in Chapter Six) …51
4 Mach-Zehnder Interferometer Based on Selectively
Liquid Infiltration in Photonic Crystal Fibers 68
4.1 Operation Machanism of PCF-Based MZIs………………………69
4.2 Optical Properties of PCF-Based MZIs………………………72
4.3 Measurement for Temperature Sensitivity………………………76
4.4 Measurement for Surrounding Refractive Index Sensitivity……77
4.5 Measurement for Bending Sensitivity………………………79
4.6 Liquid Length Effect for Temperature Sensitivity………………80
5 Photoresponsive Photonic Liquid Crystal Fibers 101
5.1 Optical Properties of Photoresponsive PLCFs………………102
5.1.1 Irradiation Effects of Photoresponsive PLCFs……………102
5.1.2 Temperature Effects of Photoresponsive PLCFs…………103
5.1.3 Thermal Recovery of Photoresponsive PLCFs……………105
5.2 Optically Tunable Bandpass Filter Using Series-Connected
PLCFs……………………………………………………………106
5.3 Response Time of Photoresponsive PLCFs Doped with
Ag NPs…………………………………………………………108
6 Optically Tunable Selective-Filled Photoresponsive Photonic
Liquid Crystal Fiber Attenuators 128
6.1 Fabrication of Optically Tunable PLCF Attenuators……………128
6.2 Optical Tunable PLCF Attenuator………………………………131
6.3 Polarization Properties of Optically Tunable PLCF
Attenuators………………………………………………………133
7 Summary and Conclusions 147

References 150
Publication
參考文獻 References
[1] Akahane, Y., T. Asano, B. S. Song, and S. Noda, “High-Q nanocavity in a two-dimensional photonic crystal,” Nature, vol. 425, pp. 944–947, 2003.
[2] Alkeskjold, T. T., J. Lægsgaard and A. Bjarklev, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express, vol. 12, pp. 5857–5871, 2004.
[3] Alkeskjold, T. T., J. Lægsgaard and A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Geuza, and S. T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Optics, vol. 45, pp. 2261–2264, 2006.
[4] Alkeskjold, T. T., and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett., vol. 32, pp. 1707–1709, 2007.
[5] Bahadur, B., “Liquid Crystal: Applications and Uses,” vol. 1, World Scientific, Singapore, 1990.
[6] Birks, T. A., J. C. Knight, and P. St. J. Russell, “Endless single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961–963, 1997.
[7] Blinov, L. M., and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, Springer-Verlag, New York,1994.
[8] Broderick, N. G. R., T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett., vol. 24, pp. 1395–1397, 1999.
[9] Bétourné, A., V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, “Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm,” Opt. Express, vol. 15, pp. 316–324, 2007.
[10] Chen, C. C., H. D. Chien, and P. G. Luan, “Photonic crystal beam splitters,” Appl. Opt., vol. 43, pp. 6188–6190, 2004.
[11] Chen, C. P., and C. P. Yu, “Long-period fiber gratings based on liquid-filled photonic crystal fibers,” Proc. SPIE, vol. 7609, pp. 760911, 2010.
[12] Chien, F. S., Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express, vol. 12, pp. 1119–1125, 2004.
[13] Choi, H. Y., M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formd in photonic crystal fiber,” Opt. Express, vol. 15, pp. 5711–5720, 2007.
[14] Chow, E., S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional of light in a two-dimensional photonic crystal slab,” Nature, vol. 407, pp. 983–986, 2000.
[15] Chutinan, A., and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B, vol. 62, pp. 4488–4492, 2000.
[16] Cregan, R. F., B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science, vol. 285, pp. 1537–1539, 1999.
[17] DeGennes, P. G., and J. Prost, The Physics of Liquid Crystals, Oxford University Press, New York, 1993.
[18] Deng, M., C. P. Tang, T. Zhu, and Y. J. Rao, ” Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Optics Communications, vol. 284, pp. 2849–2853, 2011.
[19] Dierking, I., Textures of Liquid Crystals, Wiley–VCH, Weinheim, 2003.
[20] Domachuk, P., H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic bandgap device,” Appl. Phys. Lett., vol. 84, pp. 1838–1840, 2004.
[21] Du, F., Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett., vol. 85, pp. 2181–2183, 2004.
[22] Du, J. B., Y. Liu, Z. Wang, Z. Y. Liu, B. Zou, L. Jin, B. Liu, G. Y. Kai, and X. Y. Dong, “Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid,” Opt. Express, vol. 16, pp. 4263–4269, 2008.
[23] Du, J. B., Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Y. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett., vol. 33, pp. 2215–2217, 2008.
[24] Dyck, H. R., and D. S. McClure, “Ultraviolet spectra of stilbene, p‐monohalogen stilbenes, and azobenzene and the trans to cis photoisomerization process,” J. Chemi. Phys., vol. 36, pp. 2326–2346, 1962.
[25] Eggleton, B. J., C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express, vol. 9, pp. 698–713, 2001.
[26] Fan, S., P. R. Villeneuve, and J. D. Joannopolous, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B, vol. 59, pp. 15882–15892, 1999.
[27] Ferrando, A., E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett., vol. 25, pp. 790–792, 2000.
[28] Folkenberg, J. R., M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express, vol. 12, pp. 956–960, 2004.
[29] Gérôme, F., J. L. Auguste, and J. M. Blondy, ”Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Opt. Lett., vol. 29, pp. 2725–2727, 2004.
[30] Geng, Y., X. Tan, Y. Deng, and Y. Yu, ”A cascaded photonic crystal fiber Mach–Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B, vol. 102, pp. 595–599, 2011.
[31] Gundu, K. M., M. Kolesik, J. V. Moloney, and K. S. Lee, “Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers,” Opt. Express, vol. 14, pp. 6870–6878, 2006.
[32] Haakestad, M. W., T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 17, pp. 819–821, 2005.
[33] Ha, Y. S., H. J. Kim, H. G. Park, and D. S. Seo, “Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping,” Opt. Express, vol. 20, pp. 6448–6455, 2012.
[34] Han, Y. G., G. Kim, K. Lee, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Bending sensitivity of long-period fiber gratings inscribed in holey fibers depending on an axial rotation angle,” Opt. Express, vol. 15, pp. 12866–12871, 2007.
[35] Hansen, T. P., J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 13, pp. 588–590, 2001.
[36] Hsiao, V. K., and C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express, vol. 16, pp. 12670–12676, 2008.
[37] Ikeda Tomiki, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem., vol. 13, pp. 2037–2057, 2003.
[38] John, S., “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486–2489, 1987.
[39] Ju, J., W. Jin, and H. L. Ho, “Compact in-fiber interferometer formed by long-period gratings in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 20, pp. 1899–1901, 2008.
[40] Ju, J., H. F. Xuan, W. Jin, S. Liu, and H. L. Ho, “Selective opening of airholes in photonic crystal fiber,” Opt. Lett., vol. 35, pp. 3886–3888, 2010.
[41] Khoo, C. I., “Liquid Crystal,” Wiley, New York, 1994.
[42] Khoo, C. I., “Liquid Crystal-Physical Properties and Nonlinear Optical Phenomena,” John Wiley & Sons Press, New York, 1995.
[43] Kim, S. H., H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, and Y. H. Lee, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett., vol. 81, pp. 2499–2501, 2002.
[44] Kim, B., T. H. Kim, L. Cui, and Y. Chung, “Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications,” Opt. Express, vol. 18, pp. 15502–15507, 2009.
[45] Knight, J. C., T. A. Birks, P. St. Russel, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 1547–1549, 1996.
[46] Knight, J. C., T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” IEEE Electron Lett., vol. 34, pp. 1347–1348, 1998a.
[47] Knight, J. C., J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science, vol. 282, pp. 1476–1478, 1998b.
[48] Knight, J. C., J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, pp. 807–809, 2000.
[49] Kumar, S., J. Brock, D. Finotello, M. Fisch, C. Garland, J. Ho, M. Neubert, B. Padulka, P. Photinos, S. Sinha, and P. Ukleja, Liquid crystals: experiment study of physical properties and phase transitions. Cambridge: Cambridge University Press, 2001.
[50] Kuo, S. M., Y. W. Huang, S. M. Yeh, W. H. Cheng, and C. H. Lin, “Liquid crystal modified photonic crystal fiber (LC-PCF) fabricated with an un-cured SU-8 photoresist sealing technique for electrical flux measurement,” Opt. Express, vol. 19, pp. 18372–18379, 2011.
[51] Larsen, T., A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express, vol. 11, pp. 2589–2596, 2003.
[52] Lee, S. G., J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, “Fabrication of a side-polished fiber polarizer with a briefringent polymer overlay,” Opt. Lett., vol. 22, pp. 606–608, 1997.
[53] Lee, H. K., A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater., vol. 10, pp. 1402–1407, 1998.
[54] Lee, C. H., C. H. Chen, C. L. Kao, C. P. Yu, S. M. Yeh, W. H. Cheng, and T. H. Lin, “Photo and electrical tunable effects in photonic liquid crystal fiber,” Opt. Express, vol. 18, pp. 2814–2821, 2010a.
[55] Lee, C. R., J. D. Lin, B. Y. Huang, T. S. Mo, and S. Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express, vol. 18, pp. 25896–25905, 2010b.
[56] Lee, C. R., J. D. Lin, Y. J. Huang, S. C. Huang, S. H. Lin, and C. P. Yu, “All-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber,” Opt. Express, vol. 19, pp. 9676–9689, 2011.
[57] Li, J., S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys., vol. 96, pp. 19–24, 2004.
[58] Lim, J. H., H. S. Jang, and K. S. Lee, “Mach–Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett., vol. 29, pp. 346–348, 2004.
[59] Lin, S. Y., E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science, vol. 282, pp. 274–276, 1998.
[60] Liou, J. H., “Fabrication and analysis of selectively liquid-filled photonic crystal fibers,” M. S. Thesis, Department of Photonics, National Sun Yat-sen University, Kaohsiung, Taiwan, June, 2009.
[61] Liou, J. H., S. S. Huang, and C. P. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commum., vol. 283, pp. 971–974, 2010.
[62] Liou, J. H., T. H. Chang, T. Lin, and C. P. Yu, “Reversible photo-induced long-period fiber grating in photonic crystal fibers,” Opt. Express, vol. 19, pp. 6756–6761, 2011.
[63] Liu, J. H., and C. P. Yu, “Loss-reduced internally liquid-filled photonic crystal fibers,” Proc. SPIE, vol. 7609, pp. 76091M, 2010.
[64] Loncar, M., D. Nedeljkovic, T. Doll, J. Vuckovic, T. P. Pearsall, and A. Scherer, “Waveguides in planar photonic crystals,” Appl. Phys. Lett., vol. 77, pp. 1937–1939, 2000.
[65] Mada, H., and K. Osajima, “Time response of a nematic liquid-crystal cell in a switched dc electric field,” J. Appl. Phys., vol. 60, p.p. 3111–3113, 1986.
[66] Malitson, I. H., “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am., vol. 55, pp. 1205–1208, 1965.
[67] Mekis, A., J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett., vol. 77, pp. 3787–3790, 1996.
[68] Mita, I., K. Horie, and K. Hirao, “Photochemistry in polymer solids. 9. photoisomerization of azobenzene in a polycarbonate film,” Macromolecules, vol. 22, pp. 558–563, 1989.
[69] Miyamoto, k., S. Saito, T. Takahashi1, Y. Toko, S. Yokoyama, S. Takigawa, N. Toshima, and S. Kobayashi, “Characteristics of nanoparticle doped nematic liquid crystals in low temperature,” Mol. Cryst. Liq. Cryst., vol. 507, pp. 108–113, 2009.
[70] Mohammadi, S., A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Appl. Phys. Lett., vol. 94, pp. 051906-1–051906-3, 2009.
[71] Mortensen, N. A. “Effective area of photonic crystal fibers,” Opt. Express, vol. 10, pp. 341–348, 2002.
[72] Mortensen, N. A., M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, “Improved large-mode area endlessly single-mode photonic crystal fibers,” Opt. Lett., vol. 28, pp. 393–395, 2003.
[73] Ni, Y., L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett., vol. 16, pp. 1516–1518, 2004.
[74] Noordegraaf, D., L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express, vol. 15, pp. 7901–7912, 2007.
[75] Noordegraaf, D., L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett., vol. 33, pp. 986–988, 2008.
[76] Notomi, M., A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express, vol. 12, pp. 1551–1561, 2004.
[77] Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “High birefringent photonic crystal fibers,” Opt. Lett., vol. 25, pp. 1325–1327, 2000.
[78] Painter, O., R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science, vol. 284, pp. 1819–1821, 1999.
[79] Qian, W., C. L. Zhao, Y. Wang, C. C. Chan, S. Liu, and W. Jin, “Partially liquid-filled hollow-core photonic crystal fiber polarizer,” Opt. Lett., vol. 36, pp. 3296–3298, 2011.
[80] Qian, W., C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Y. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” IEEE Sensors Journal, vol. 12, pp. 2593–2597, 2012.
[81] Raja, R. V. J., A. Husakou, J. Hermann, and K. Porsezian, “Supercontinuum generation in liquid-filled photonic crystal fiber with slow nonlinear response,” J. Opt. Soc. Am. B, vol. 27, pp. 1763–1768, 2010.
[82] Reeves, W. H., J. C. Knight, and P. St. J. Russell, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express, vol. 10, pp. 609–613, 2002.
[83] Reinitzer, Friedrich, Monatsch. Chem., vol. 9, 421 (1888)
[84] Saitoh, K., and M. Koshiba, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express, vol. 8, pp. 843–852, 2003.
[85] Scolari, L., T. T. Alkeskjold, J. Riishede, and A. Bjarklev, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express, vol. 13, pp. 7483–7496, 2005.
[86] Scolari, L., S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S. T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express, vol. 17, pp. 3754–3764, 2009.
[87] Shin, W., Y. L. Lee, B.-A. Yu, Y.-C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Optics Communications, vol. 283, pp. 2097–2101, 2010.
[88] Song, B. S., S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q double-heterostructure nanocavity,” Nature materials, vol. 4, pp. 207–210, 2005.
[89] Steinvurzel, P., E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt. Express, vol. 7, pp. 3007–3014, 2006.
[90] Talneau, A., L. L. Gouezigou, and N. Bouadma, “Quantitative measurement of low propagation losses at 1.55 m on planar photonic crystal waveguides,” Opt. Lett., vol. 26, pp. 1259–1261, 2001.
[91] Tan, X. L., L. F. Zhang, W. X. Jiang, Q. Zhang, and J. Zhou, “Continuously tunable bandpass filter based on liquid-filled photonic crystal fibers,” Opt. Eng., vol. 52, pp. 015010, 2013.
[92] Tokushima, M., H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120o sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett., vol. 76, pp. 952–954, 2000.
[93] Villatoro, J., V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett., vol. 91, pp. 91109-1–91109-3, 2007.
[94] Villatoro, J., V. Finazzi, G. Badenes, and V. Pruneri, “Highly sensitive sensors based on photonic crystal fiber modal interferometers,” J. Sensors, vol. 2009, pp. 747803–747814, 2009.
[95] Wang, Y. P., H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. L. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 22, pp. 164–166, 2010a.
[96] Wang, Y. P., X. L. Tan, W. Jin, S. J. Liu, D. Q. Ying, and Y. L. Hoo, “Improved bending property of half-filled photonic crystal fiber,” Opt. Express, vol. 18, pp. 12197–12202, 2010b.
[97] Wang, F., W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express, vol. 19, pp. 17585–17590, 2011a.
[98] Wang, Y., M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett., vol. 23, pp. 1520–1522, 2011b.
[99] Wang, J. N., and J. L. Tang, “Photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing,” Sensors, vol. 12, pp. 2983–2995, 2012.
[100] Wei, L., T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett., vol. 21, pp. 1633–1635, 2009.
[101] Witkowska, A., K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birk, “All-fiber anamorphic coreshape transitions,” Opt. Lett., vol. 31, pp. 2672–2674, 2006.
[102] Wong, W. C., W. Zhou, C. C. Chan, X. Dong, and K. C. Leong, “Cavity ringdown refractive index sensor using photonic crystal fiber interferometer,” Sensors and Actuators B, vol. 161, pp. 108–113, 2012.
[103] Wu, L., M. Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur, and R. M. D. L. Rue, “Planar photonic crystal polarization splitter,” Opt. Lett., vol. 29, pp. 1620–1622, 2004.
[104] Wu, T. L., and C. H. Chao, “A novel ultraflattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 17, pp. 67–69, 2005.
[105] Wu, D. K. C., B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index,” Opt. Lett., vol. 34, pp. 322–324, 2009.
[106] Xuan, H. F., W. Jin, J. Ju, Y. P. Wang, M. Zhang, Y. B. Liao, and M. H. Chen, “Hollow-core photonic bandgap fiber polarizer,” Opt. Lett., vol. 32, pp. 845–847, 2008.
[107] Yablonovitch, E., “Inhibited spontaneous emission in solid-state physics electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987.
[108] Yang, D. K., and S. T. Wu, Fundamentals of Liquid Crystal Devices, Wiley, New York, 2006.
[109] Yang, R., Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, “Single S-tapered fiber Mach–Zehnder interferometers,” Opt. Lett., vol. 36, pp. 4482–4484, 2011a.
[110] Yang, J., L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Applied Opt., vol. 50, pp. 5503–5507, 2011b.
[111] Yariv, A., “Optical Electronics in Modern Communications”, 5th Ed., Oxford University Press, New York, 1997.
[112] Yeh, P., and C. Gu, Optics of Liquid Crystal Displays, John Wiley & Sons, Inc., New York, 1999.
[113] Yeom, D. I., P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, “Tunable acoustic gratings in solid-core photonic bandgap fiber,” Opt. Express, vol. 15, pp. 3513–3518, 2007.
[114] Yu, C. P., and H. C. Chang, “Yee-mesh-based finite difference eignmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express, vol. 12, pp. 6165–6177, 2004.
[115] Yu, C. P., J. H. Liou, S. S. Huang, and H. C. Chang, “Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation,” Opt. Express, vol. 16, pp. 4443–4451, 2008.
[116] Yu, C. P., and J. H. Liou, “Selectively liquid-filled photonic crystal fibers for optical devices,” Opt. Express, vol. 17, pp. 8729–8734, 2009.
[117] Zhang, R., J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express, vol. 14, pp. 6800–6812, 2006.
[118] Zhang, H., S. Chang, J. G. Yuan, and D. G. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fibers,” J. Light and Electron Opt., vol. 121, pp. 783–787, 2010.
[119] Zheng, X., Y. G. Liu, Z. Wang, T. T. Han, C. G. Wei, and J. J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett., vol. 100, pp. 141104-1–141104-4, 2012.
[120] Zhou, W. J., W. C. Wong, C. C. Chan, L. Y. Shao, and X. Y. Dong, “Highly sensitive fiber loop ringdown strain sensor using photonic crystal fiber interferometer,” Appl. Optics, vol. 50, pp. 3087–3092, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.22.70.9
論文開放下載的時間是 校外不公開

Your IP address is 3.22.70.9
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code