Responsive image
博碩士論文 etd-0624113-191725 詳細資訊
Title page for etd-0624113-191725
論文名稱
Title
微小核醣核酸182在乳癌內的調控及角色
Regulation of microRNA-182 and its functional role in breast cancer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-12
繳交日期
Date of Submission
2013-07-24
關鍵字
Keywords
微小核醣核酸、β-catenin、間質金屬酶、RECK
RECK, β-catenin, microRNA, matrix metalloproteinase
統計
Statistics
本論文已被瀏覽 5670 次,被下載 480
The thesis/dissertation has been browsed 5670 times, has been downloaded 480 times.
中文摘要
微小核醣核酸是一段由體內自行合成的小片段RNA序列,藉由translation repression或mRNA cleavage來抑制基因的表現。MiR-182為miR-96,182,183 cluster的一員,座落在chromosome 7q32的區域並且在許多癌症中有高度表現。最近的研究顯示miR-182主要扮演oncogenic miRNA並且會抑制數種tumor suppressor genes像是FOXO3, FOXO1, BRCA1 與MTSS1等。在本篇的第一部分研究中,我們驗證miR-182高度表現在乳癌病人檢體及細胞株內,此外,我們發現在乳癌細胞株內β-catenin可以去調控miR-182,在MDA-MB-231抑制或knockdown β-catenin的情況下均會顯著的降低miR-182的表現。Chromatin immunoprecipitation assay證明β-catenin會結合到miR-182的啟動子上。我們進一步的找到tumor suppressor genes-RECK為miR-182新的標的基因,在MDA-MB-231轉殖anti-miR-182會增加RECK蛋白質的表現,而在人類乳腺上皮細胞H184B5F5/M10轉殖pre-miR-182則會抑制RECK蛋白質的表現,但在上述的情況下均不會去影響RECK mRNA的表現。利用anti-miR-182增加RECK蛋白質的表現下會進而去抑制下游的間質金屬酶9的活性、細胞侵犯與群落形成的能力,更重要的是,表現miR-182的情況下會去抑制β-catenin inhibitor所造成RECK蛋白質回升的現象,意味著miR-182是β-catenin調控RECK的重要中間者。綜合上述的結果,我們證明了在乳癌內β-catenin會去調控miR-182且miR-182會去抑制RECK蛋白質的表現,進而增加間質金屬酶9的活性與細胞侵犯的能力。
Abstract
MicroRNAs (MiRNAs) are endogenous small non-coding RNAs which negatively regulate gene expression by inducing translation repression or mRNA cleavage. MiR-182 is a member of the miR-183 cluster which is located at human chromosome 7q32 region and is over-expressed in several types of human cancer. Recent studies demonstrated that miR-182 functions as an oncogenic miRNA via inhibition of several tumor suppressor genes like FOXO3, FOXO1, BRCA1 and MTSS1. In the first part of this study, we demonstrated that miR-182 is over-expressed in human breast tumor tissues and cell lines. In addition, we found that β-catenin up-regulated miR-182 expression in breast cancer cells. Inhibition or knockdown of β-catenin significantly reduced miR-182 level in MDA-MB-231 cells. Chromatin immunoprecipitation assay confirmed the constitutive binding of β-catenin on miR-182 promoter. We further identified the tumor suppressor Reversion-inducing Cysteine-rich Protein with Kazal motifs (RECK) as a new target of miR-182. Anti-miR-182 increased RECK protein in MDA-MB-231 cells while pre-miR-182 reduced RECK protein but not mRNA in H184B5F5/M10 human normal mammary epithelial cells. Restoration of RECK protein by anti-miR-182 attenuated matrix metalloproteinase-9 (MMP-9) activity, cell invasion and colony formation. More importantly, ectopic expression of miR-182 inhibited restoration of RECK protein by β-catenin inhibitor indicating induction of miR-182 is important for β-catenin-induced down-regulation of RECK. Taken together, we provide evidences that miR-182 is up-regulated by β-catenin signaling pathway in breast cancer and its up-regulation increases MMP-9 activity and cell invasiveness by repressing RECK.
目次 Table of Contents
Part I Up-regulation of miR-182 by β-catenin in breast cancer increases invasiveness by targeting the matrix metalloproteinase inhibitor RECK
1. Introduction………………………………………………………………………...1
2. Specific aim………………………………………………………………………..10
3. Materials…………………………………………………………………...............11
4. Methods……………………………………………………………………………14
5. Results……………………………………………………………………...............26
6. Figures and tables…………………………………………………………………33
7. Discussion………………………………………………………………………….50
8. Appendix…………………………………………………………………………...54
Part II The role of miR-182 in chemokine expression
1. Introduction……………………………………………………………………….62
2. Materials…………………………………………………………………...............65
3. Methods……………………………………………………………………………66
4. Preliminary results………………………………………………………………..67
5. Figures…………………………………………………………………………....68
6. Discussion………………………………………………………………………….72
7. Appendix……………………………………………………………………….…..74
8. References………………………………………………………………………….78
9. Curriculum Vitae……………………………………………………………..…...91
參考文獻 References
[1] A. Esquela-Kerscher, F.J. Slack, Oncomirs - microRNAs with a role in cancer, Nat Rev Cancer, 6 (2006) 259-269.
[2] V.N. Kim, MicroRNA biogenesis: coordinated cropping and dicing, Nat Rev Mol Cell Biol, 6 (2005) 376-385.
[3] R. Garzon, G. Marcucci, C.M. Croce, Targeting microRNAs in cancer: rationale, strategies and challenges, Nat Rev Drug Discov, 9 (2010) 775-789.
[4] D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116 (2004) 281-297.
[5] I. Alvarez-Garcia, E.A. Miska, MicroRNA functions in animal development and human disease, Development, 132 (2005) 4653-4662.
[6] G. Stefani, F.J. Slack, Small non-coding RNAs in animal development, Nat Rev Mol Cell Biol, 9 (2008) 219-230.
[7] V. Ambros, The functions of animal microRNAs, Nature, 431 (2004) 350-355.
[8] G.A. Calin, C. Sevignani, C.D. Dumitru, T. Hyslop, E. Noch, S. Yendamuri, M. Shimizu, S. Rattan, F. Bullrich, M. Negrini, C.M. Croce, Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers, Proc Natl Acad Sci U S A, 101 (2004) 2999-3004.
[9] B. Zhang, X. Pan, G.P. Cobb, T.A. Anderson, microRNAs as oncogenes and tumor suppressors, Dev Biol, 302 (2007) 1-12.
[10] G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti, T. Kipps, M. Negrini, F. Bullrich, C.M. Croce, Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proc Natl Acad Sci U S A, 99 (2002) 15524-15529.
[11] A. Cimmino, G.A. Calin, M. Fabbri, M.V. Iorio, M. Ferracin, M. Shimizu, S.E. Wojcik, R.I. Aqeilan, S. Zupo, M. Dono, L. Rassenti, H. Alder, S. Volinia, C.G. Liu, T.J. Kipps, M. Negrini, C.M. Croce, miR-15 and miR-16 induce apoptosis by targeting BCL2, Proc Natl Acad Sci U S A, 102 (2005) 13944-13949.
[12] G.A. Calin, M. Ferracin, A. Cimmino, G. Di Leva, M. Shimizu, S.E. Wojcik, M.V. Iorio, R. Visone, N.I. Sever, M. Fabbri, R. Iuliano, T. Palumbo, F. Pichiorri, C. Roldo, R. Garzon, C. Sevignani, L. Rassenti, H. Alder, S. Volinia, C.G. Liu, T.J. Kipps, M. Negrini, C.M. Croce, A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia, N Engl J Med, 353 (2005) 1793-1801.
[13] L. Ma, J. Teruya-Feldstein, R.A. Weinberg, Tumour invasion and metastasis initiated by microRNA-10b in breast cancer, Nature, 449 (2007) 682-688.
[14] M.L. Si, S. Zhu, H. Wu, Z. Lu, F. Wu, Y.Y. Mo, miR-21-mediated tumor growth, Oncogene, 26 (2007) 2799-2803.
[15] M.V. Iorio, M. Ferracin, C.G. Liu, A. Veronese, R. Spizzo, S. Sabbioni, E. Magri, M. Pedriali, M. Fabbri, M. Campiglio, S. Menard, J.P. Palazzo, A. Rosenberg, P. Musiani, S. Volinia, I. Nenci, G.A. Calin, P. Querzoli, M. Negrini, C.M. Croce, MicroRNA gene expression deregulation in human breast cancer, Cancer Res, 65 (2005) 7065-7070.
[16] L.F. Sempere, M. Christensen, A. Silahtaroglu, M. Bak, C.V. Heath, G. Schwartz, W. Wells, S. Kauppinen, C.N. Cole, Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer, Cancer Res, 67 (2007) 11612-11620.
[17] K.A. Cissell, Y. Rahimi, S. Shrestha, E.A. Hunt, S.K. Deo, Bioluminescence-based detection of microRNA, miR21 in breast cancer cells, Anal Chem, 80 (2008) 2319-2325.
[18] L.X. Yan, Q.N. Wu, Y. Zhang, Y.Y. Li, D.Z. Liao, J.H. Hou, J. Fu, M.S. Zeng, J.P. Yun, Q.L. Wu, Y.X. Zeng, J.Y. Shao, Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth, Breast Cancer Res, 13 (2011) R2.
[19] J.A. Chan, A.M. Krichevsky, K.S. Kosik, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells, Cancer Res, 65 (2005) 6029-6033.
[20] S. Xu, P.D. Witmer, S. Lumayag, B. Kovacs, D. Valle, MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster, J Biol Chem, 282 (2007) 25053-25066.
[21] Z.B. Jin, G. Hirokawa, L. Gui, R. Takahashi, F. Osakada, Y. Hiura, M. Takahashi, O. Yasuhara, N. Iwai, Targeted deletion of miR-182, an abundant retinal microRNA, Mol Vis, 15 (2009) 523-533.
[22] Q. Zhu, W. Sun, K. Okano, Y. Chen, N. Zhang, T. Maeda, K. Palczewski, Sponge transgenic mouse model reveals important roles for the microRNA-183 (miR-183)/96/182 cluster in postmitotic photoreceptors of the retina, J Biol Chem, 286 (2011) 31749-31760.
[23] M.F. Segura, D. Hanniford, S. Menendez, L. Reavie, X. Zou, S. Alvarez-Diaz, J. Zakrzewski, E. Blochin, A. Rose, D. Bogunovic, D. Polsky, J. Wei, P. Lee, I. Belitskaya-Levy, N. Bhardwaj, I. Osman, E. Hernando, Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor, Proc Natl Acad Sci U S A, 106 (2009) 1814-1819.
[24] C. Huynh, M.F. Segura, A. Gaziel-Sovran, S. Menendez, F. Darvishian, L. Chiriboga, B. Levin, D. Meruelo, I. Osman, J. Zavadil, E.G. Marcusson, E. Hernando, Efficient in vivo microRNA targeting of liver metastasis, Oncogene, 30 (2011) 1481-1488.
[25] L. Jiang, P. Mao, L. Song, J. Wu, J. Huang, C. Lin, J. Yuan, L. Qu, S.Y. Cheng, J. Li, miR-182 as a prognostic marker for glioma progression and patient survival, Am J Pathol, 177 (2010) 29-38.
[26] B.L. Mihelich, E.A. Khramtsova, N. Arva, A. Vaishnav, D.N. Johnson, A.A. Giangreco, E. Martens-Uzunova, O. Bagasra, A. Kajdacsy-Balla, L. Nonn, miR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cells, J Biol Chem, 286 (2011) 44503-44511.
[27] Z. Liu, J. Liu, M.F. Segura, C. Shao, P. Lee, Y. Gong, E. Hernando, J.J. Wei, MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma, J Pathol, 228 (2012) 204-215.
[28] S.D. Weeraratne, V. Amani, N. Teider, J. Pierre-Francois, D. Winter, M.J. Kye, S. Sengupta, T. Archer, M. Remke, A.H. Bai, P. Warren, S.M. Pfister, J.A. Steen, S.L. Pomeroy, Y.J. Cho, Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma, Acta Neuropathol, 123 (2012) 539-552.
[29] J. Wang, J. Li, J. Shen, C. Wang, L. Yang, X. Zhang, MicroRNA-182 downregulates metastasis suppressor 1 and contributes to metastasis of hepatocellular carcinoma, BMC Cancer, 12 (2012) 227.
[30] L. Cekaite, J.K. Rantala, J. Bruun, M. Guriby, T.H. Agesen, S.A. Danielsen, G.E. Lind, A. Nesbakken, O. Kallioniemi, R.A. Lothe, R.I. Skotheim, MiR-9, -31, and -182 deregulation promote proliferation and tumor cell survival in colon cancer, Neoplasia, 14 (2012) 868-879.
[31] K. Tsuchiyama, H. Ito, M. Taga, S. Naganuma, Y. Oshinoya, K.I. Nagano, O. Yokoyama, H. Itoh, Expression of MicroRNAs associated with Gleason grading system in prostate cancer: miR-182-5p is a useful marker for high grade prostate cancer, Prostate, (2012).
[32] Y.Q. Wang, R.D. Guo, R.M. Guo, W. Sheng, L.R. Yin, MicroRNA-182 promotes cell growth, invasion and chemoresistance by targeting programmed cell death 4 (PDCD4) in human ovarian carcinomas, J Cell Biochem, (2013).
[33] T. Tang, H.K. Wong, W. Gu, M.Y. Yu, K.F. To, C.C. Wang, Y.F. Wong, T.H. Cheung, T.K. Chung, K.W. Choy, MicroRNA-182 plays an onco-miRNA role in cervical cancer, Gynecol Oncol, (2013).
[34] H. Liu, L. Du, Z. Wen, Y. Yang, J. Li, L. Wang, X. Zhang, Y. Liu, Z. Dong, W. Li, G. Zheng, C. Wang, Up-regulation of miR-182 expression in colorectal cancer tissues and its prognostic value, Int J Colorectal Dis, (2013).
[35] I.K. Guttilla, B.A. White, Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells, J Biol Chem, 284 (2009) 23204-23216.
[36] B.N. Hannafon, P. Sebastiani, A. de las Morenas, J. Lu, C.L. Rosenberg, Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer, Breast Cancer Res, 13 (2011) R24.
[37] O. Giricz, P.A. Reynolds, A. Ramnauth, C. Liu, T. Wang, L. Stead, G. Childs, T. Rohan, N. Shapiro, S. Fineberg, P.A. Kenny, O. Loudig, Hsa-miR-375 is differentially expressed during breast lobular neoplasia and promotes loss of mammary acinar polarity, J Pathol, 226 (2012) 108-119.
[38] P. Moskwa, F.M. Buffa, Y. Pan, R. Panchakshari, P. Gottipati, R.J. Muschel, J. Beech, R. Kulshrestha, K. Abdelmohsen, D.M. Weinstock, M. Gorospe, A.L. Harris, T. Helleday, D. Chowdhury, miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors, Mol Cell, 41 (2011) 210-220.
[39] K. Krishnan, A.L. Steptoe, H.C. Martin, S. Wani, K. Nones, N. Waddell, M. Mariasegaram, P.T. Simpson, S.R. Lakhani, B. Gabrielli, A. Vlassov, N. Cloonan, S.M. Grimmond, MicroRNA-182-5p targets a network of genes involved in DNA repair, RNA, (2012).
[40] R. Lei, J. Tang, X. Zhuang, R. Deng, G. Li, J. Yu, Y. Liang, J. Xiao, H.Y. Wang, Q. Yang, G. Hu, Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis, Oncogene, (2013).
[41] K.M. Cadigan, R. Nusse, Wnt signaling: a common theme in animal development, Genes Dev, 11 (1997) 3286-3305.
[42] T. Reya, A.W. Duncan, L. Ailles, J. Domen, D.C. Scherer, K. Willert, L. Hintz, R. Nusse, I.L. Weissman, A role for Wnt signalling in self-renewal of haematopoietic stem cells, Nature, 423 (2003) 409-414.
[43] K. Willert, J.D. Brown, E. Danenberg, A.W. Duncan, I.L. Weissman, T. Reya, J.R. Yates, 3rd, R. Nusse, Wnt proteins are lipid-modified and can act as stem cell growth factors, Nature, 423 (2003) 448-452.
[44] L.R. Howe, A.M. Brown, Wnt signaling and breast cancer, Cancer Biol Ther, 3 (2004) 36-41.
[45] T. Reya, H. Clevers, Wnt signalling in stem cells and cancer, Nature, 434 (2005) 843-850.
[46] A.M. Brown, Wnt signaling in breast cancer: have we come full circle?, Breast Cancer Res, 3 (2001) 351-355.
[47] A. Klaus, W. Birchmeier, Wnt signalling and its impact on development and cancer, Nat Rev Cancer, 8 (2008) 387-398.
[48] A. Incassati, A. Chandramouli, R. Eelkema, P. Cowin, Key signaling nodes in mammary gland development and cancer: beta-catenin, Breast Cancer Res, 12 (2010) 213.
[49] R.H. Giles, J.H. van Es, H. Clevers, Caught up in a Wnt storm: Wnt signaling in cancer, Biochim Biophys Acta, 1653 (2003) 1-24.
[50] P. Polakis, Wnt signaling and cancer, Genes Dev, 14 (2000) 1837-1851.
[51] A. Ryo, M. Nakamura, G. Wulf, Y.C. Liou, K.P. Lu, Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC, Nat Cell Biol, 3 (2001) 793-801.
[52] S.Y. Lin, W. Xia, J.C. Wang, K.Y. Kwong, B. Spohn, Y. Wen, R.G. Pestell, M.C. Hung, Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression, Proc Natl Acad Sci U S A, 97 (2000) 4262-4266.
[53] O. Tetsu, F. McCormick, Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells, Nature, 398 (1999) 422-426.
[54] S. Candidus, P. Bischoff, K.F. Becker, H. Hofler, No evidence for mutations in the alpha- and beta-catenin genes in human gastric and breast carcinomas, Cancer Res, 56 (1996) 49-52.
[55] P.W. Schlosshauer, S.A. Brown, K. Eisinger, Q. Yan, E.R. Guglielminetti, R. Parsons, L.H. Ellenson, J. Kitajewski, APC truncation and increased beta-catenin levels in a human breast cancer cell line, Carcinogenesis, 21 (2000) 1453-1456.
[56] F. Ugolini, E. Charafe-Jauffret, V.J. Bardou, J. Geneix, J. Adelaide, F. Labat-Moleur, F. Penault-Llorca, M. Longy, J. Jacquemier, D. Birnbaum, M.J. Pebusque, WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type, Oncogene, 20 (2001) 5810-5817.
[57] L. Ai, Q. Tao, S. Zhong, C.R. Fields, W.J. Kim, M.W. Lee, Y. Cui, K.D. Brown, K.D. Robertson, Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer, Carcinogenesis, 27 (2006) 1341-1348.
[58] J. Veeck, P.J. Wild, T. Fuchs, P.J. Schuffler, A. Hartmann, R. Knuchel, E. Dahl, Prognostic relevance of Wnt-inhibitory factor-1 (WIF1) and Dickkopf-3 (DKK3) promoter methylation in human breast cancer, BMC Cancer, 9 (2009) 217.
[59] E.L. Huguet, J.A. McMahon, A.P. McMahon, R. Bicknell, A.L. Harris, Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue, Cancer Res, 54 (1994) 2615-2621.
[60] T.D. Bui, J. Rankin, K. Smith, E.L. Huguet, S. Ruben, T. Strachan, A.L. Harris, S. Lindsay, A novel human Wnt gene, WNT10B, maps to 12q13 and is expressed in human breast carcinomas, Oncogene, 14 (1997) 1249-1253.
[61] C.C. Liu, J. Prior, D. Piwnica-Worms, G. Bu, LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy, Proc Natl Acad Sci U S A, 107 (2010) 5136-5141.
[62] G.M. Wulf, A. Ryo, G.G. Wulf, S.W. Lee, T. Niu, V. Petkova, K.P. Lu, Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1, EMBO J, 20 (2001) 3459-3472.
[63] S. Persad, A.A. Troussard, T.R. McPhee, D.J. Mulholland, S. Dedhar, Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation, J Cell Biol, 153 (2001) 1161-1174.
[64] E. Sadot, B. Geiger, M. Oren, A. Ben-Ze'ev, Down-regulation of beta-catenin by activated p53, Mol Cell Biol, 21 (2001) 6768-6781.
[65] C. Takahashi, Z. Sheng, T.P. Horan, H. Kitayama, M. Maki, K. Hitomi, Y. Kitaura, S. Takai, R.M. Sasahara, A. Horimoto, Y. Ikawa, B.J. Ratzkin, T. Arakawa, M. Noda, Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK, Proc Natl Acad Sci U S A, 95 (1998) 13221-13226.
[66] M. Noda, J. Oh, R. Takahashi, S. Kondo, H. Kitayama, C. Takahashi, RECK: a novel suppressor of malignancy linking oncogenic signaling to extracellular matrix remodeling, Cancer Metastasis Rev, 22 (2003) 167-175.
[67] K. Furumoto, S. Arii, A. Mori, H. Furuyama, M.J. Gorrin Rivas, T. Nakao, N. Isobe, T. Murata, C. Takahashi, M. Noda, M. Imamura, RECK gene expression in hepatocellular carcinoma: correlation with invasion-related clinicopathological factors and its clinical significance. Reverse-inducing--cysteine-rich protein with Kazal motifs, Hepatology, 33 (2001) 189-195.
[68] T. Masui, R. Doi, T. Koshiba, K. Fujimoto, S. Tsuji, S. Nakajima, M. Koizumi, E. Toyoda, S. Tulachan, D. Ito, K. Kami, T. Mori, M. Wada, M. Noda, M. Imamura, RECK expression in pancreatic cancer: its correlation with lower invasiveness and better prognosis, Clin Cancer Res, 9 (2003) 1779-1784.
[69] P.N. Span, C.G. Sweep, P. Manders, L.V. Beex, D. Leppert, R.L. Lindberg, Matrix metalloproteinase inhibitor reversion-inducing cysteine-rich protein with Kazal motifs: a prognostic marker for good clinical outcome in human breast carcinoma, Cancer, 97 (2003) 2710-2715.
[70] K. Takenaka, S. Ishikawa, K. Yanagihara, R. Miyahara, S. Hasegawa, Y. Otake, Y. Morioka, C. Takahashi, M. Noda, H. Ito, H. Wada, F. Tanaka, Prognostic significance of reversion-inducing cysteine-rich protein with Kazal motifs expression in resected pathologic stage IIIA N2 non-small-cell lung cancer, Ann Surg Oncol, 12 (2005) 817-824.
[71] T. Takeuchi, M. Hisanaga, M. Nagao, N. Ikeda, H. Fujii, F. Koyama, T. Mukogawa, H. Matsumoto, S. Kondo, C. Takahashi, M. Noda, Y. Nakajima, The membrane-anchored matrix metalloproteinase (MMP) regulator RECK in combination with MMP-9 serves as an informative prognostic indicator for colorectal cancer, Clin Cancer Res, 10 (2004) 5572-5579.
[72] A. Rabien, M. Burkhardt, M. Jung, F. Fritzsche, M. Ringsdorf, H. Schicktanz, S.A. Loening, G. Kristiansen, K. Jung, Decreased RECK expression indicating proteolytic imbalance in prostate cancer is associated with higher tumor aggressiveness and risk of prostate-specific antigen relapse after radical prostatectomy, Eur Urol, 51 (2007) 1259-1266.
[73] J. Oh, R. Takahashi, S. Kondo, A. Mizoguchi, E. Adachi, R.M. Sasahara, S. Nishimura, Y. Imamura, H. Kitayama, D.B. Alexander, C. Ide, T.P. Horan, T. Arakawa, H. Yoshida, S. Nishikawa, Y. Itoh, M. Seiki, S. Itohara, C. Takahashi, M. Noda, The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis, Cell, 107 (2001) 789-800.
[74] N. Meng, Y. Li, H. Zhang, X.F. Sun, RECK, a novel matrix metalloproteinase regulator, Histol Histopathol, 23 (2008) 1003-1010.
[75] L.T. Liu, J.P. Peng, H.C. Chang, W.C. Hung, RECK is a target of Epstein-Barr virus latent membrane protein 1, Oncogene, 22 (2003) 8263-8270.
[76] L.T. Liu, H.C. Chang, L.C. Chiang, W.C. Hung, Induction of RECK by nonsteroidal anti-inflammatory drugs in lung cancer cells, Oncogene, 21 (2002) 8347-8350.
[77] R.M. Sasahara, C. Takahashi, M. Noda, Involvement of the Sp1 site in ras-mediated downregulation of the RECK metastasis suppressor gene, Biochem Biophys Res Commun, 264 (1999) 668-675.
[78] R.M. Sasahara, S.M. Brochado, C. Takahashi, J. Oh, S.S. Maria-Engler, J.M. Granjeiro, M. Noda, M.C. Sogayar, Transcriptional control of the RECK metastasis/angiogenesis suppressor gene, Cancer Detect Prev, 26 (2002) 435-443.
[79] H.C. Chang, L.T. Liu, W.C. Hung, Involvement of histone deacetylation in ras-induced down-regulation of the metastasis suppressor RECK, Cell Signal, 16 (2004) 675-679.
[80] L.T. Liu, H.C. Chang, L.C. Chiang, W.C. Hung, Histone deacetylase inhibitor up-regulates RECK to inhibit MMP-2 activation and cancer cell invasion, Cancer Res, 63 (2003) 3069-3072.
[81] M.C. Hsu, H.C. Chang, W.C. Hung, HER-2/neu represses the metastasis suppressor RECK via ERK and Sp transcription factors to promote cell invasion, J Biol Chem, 281 (2006) 4718-4725.
[82] H.C. Chang, C.Y. Cho, W.C. Hung, Silencing of the metastasis suppressor RECK by RAS oncogene is mediated by DNA methyltransferase 3b-induced promoter methylation, Cancer Res, 66 (2006) 8413-8420.
[83] C.Y. Cho, J.H. Wang, H.C. Chang, C.K. Chang, W.C. Hung, Epigenetic inactivation of the metastasis suppressor RECK enhances invasion of human colon cancer cells, J Cell Physiol, 213 (2007) 65-69.
[84] C.H. Chien, Y.M. Sun, W.C. Chang, P.Y. Chiang-Hsieh, T.Y. Lee, W.C. Tsai, J.T. Horng, A.P. Tsou, H.D. Huang, Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data, Nucleic Acids Res, 39 (2011) 9345-9356.
[85] A. Gokhale, R. Kunder, A. Goel, R. Sarin, A. Moiyadi, A. Shenoy, C. Mamidipally, S. Noronha, S. Kannan, N.V. Shirsat, Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway, J Cancer Res Ther, 6 (2010) 521-529.
[86] S. Handeli, J.A. Simon, A small-molecule inhibitor of Tcf/beta-catenin signaling down-regulates PPARgamma and PPARdelta activities, Mol Cancer Ther, 7 (2008) 521-529.
[87] M. Vaid, R. Prasad, Q. Sun, S.K. Katiyar, Silymarin targets beta-catenin signaling in blocking migration/invasion of human melanoma cells, PLoS One, 6 (2011) e23000.
[88] A.B. Stittrich, C. Haftmann, E. Sgouroudis, A.A. Kuhl, A.N. Hegazy, I. Panse, R. Riedel, M. Flossdorf, J. Dong, F. Fuhrmann, G.A. Heinz, Z. Fang, N. Li, U. Bissels, F. Hatam, A. Jahn, B. Hammoud, M. Matz, F.M. Schulze, R. Baumgrass, A. Bosio, H.J. Mollenkopf, J. Grun, A. Thiel, W. Chen, T. Hofer, C. Loddenkemper, M. Lohning, H.D. Chang, N. Rajewsky, A. Radbruch, M.F. Mashreghi, The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes, Nat Immunol, 11 (2010) 1057-1062.
[89] G. Li, C. Luna, J. Qiu, D.L. Epstein, P. Gonzalez, Alterations in microRNA expression in stress-induced cellular senescence, Mech Ageing Dev, 130 (2009) 731-741.
[90] F.C. Geyer, M. Lacroix-Triki, K. Savage, M. Arnedos, M.B. Lambros, A. MacKay, R. Natrajan, J.S. Reis-Filho, beta-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation, Mod Pathol, 24 (2011) 209-231.
[91] L. Yang, X. Wu, Y. Wang, K. Zhang, J. Wu, Y.C. Yuan, X. Deng, L. Chen, C.C. Kim, S. Lau, G. Somlo, Y. Yen, FZD7 has a critical role in cell proliferation in triple negative breast cancer, Oncogene, 30 (2011) 4437-4446.
[92] T.D. King, M.J. Suto, Y. Li, The Wnt/beta-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer, J Cell Biochem, 113 (2012) 13-18.
[93] C.P. Prasad, G. Rath, S. Mathur, D. Bhatnagar, R. Ralhan, Potent growth suppressive activity of curcumin in human breast cancer cells: Modulation of Wnt/beta-catenin signaling, Chem Biol Interact, 181 (2009) 263-271.
[94] H. Liu, Y. Wang, X. Li, Y.J. Zhang, J. Li, Y.Q. Zheng, M. Liu, X. Song, X.R. Li, Expression and regulatory function of miRNA-182 in triple-negative breast cancer cells through its targeting of profilin 1, Tumour Biol, (2013).
[95] Z. Zhang, Z. Li, C. Gao, P. Chen, J. Chen, W. Liu, S. Xiao, H. Lu, miR-21 plays a pivotal role in gastric cancer pathogenesis and progression, Lab Invest, 88 (2008) 1358-1366.
[96] G. Gabriely, T. Wurdinger, S. Kesari, C.C. Esau, J. Burchard, P.S. Linsley, A.M. Krichevsky, MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators, Mol Cell Biol, 28 (2008) 5369-5380.
[97] S.J. Hu, G. Ren, J.L. Liu, Z.A. Zhao, Y.S. Yu, R.W. Su, X.H. Ma, H. Ni, W. Lei, Z.M. Yang, MicroRNA expression and regulation in mouse uterus during embryo implantation, J Biol Chem, 283 (2008) 23473-23484.
[98] F. Loayza-Puch, Y. Yoshida, T. Matsuzaki, C. Takahashi, H. Kitayama, M. Noda, Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs, Oncogene, 29 (2010) 2638-2648.
[99] H.M. Jung, B.L. Phillips, R.S. Patel, D.M. Cohen, A. Jakymiw, W.W. Kong, J.Q. Cheng, E.K. Chan, Keratinization-associated miR-7 and miR-21 regulate tumor suppressor reversion-inducing cysteine-rich protein with kazal motifs (RECK) in oral cancer, J Biol Chem, 287 (2012) 29261-29272.
[100] S.T. Reis, J. Pontes-Junior, A.A. Antunes, M.F. Dall'Oglio, N. Dip, C.C. Passerotti, G.A. Rossini, D.R. Morais, A.J. Nesrallah, C. Piantino, M. Srougi, K.R. Leite, miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer, BMC Urol, 12 (2012) 14.
[101] L. Han, X. Yue, X. Zhou, F.M. Lan, G. You, W. Zhang, K.L. Zhang, C.Z. Zhang, J.Q. Cheng, S.Z. Yu, P.Y. Pu, T. Jiang, C.S. Kang, MicroRNA-21 expression is regulated by beta-catenin/STAT3 pathway and promotes glioma cell invasion by direct targeting RECK, CNS Neurosci Ther, 18 (2012) 573-583.
[102] Y. Yang, R. Chaerkady, M.A. Beer, J.T. Mendell, A. Pandey, Identification of miR-21 targets in breast cancer cells using a quantitative proteomic approach, Proteomics, 9 (2009) 1374-1384.
[103] L.B. Frankel, N.R. Christoffersen, A. Jacobsen, M. Lindow, A. Krogh, A.H. Lund, Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells, J Biol Chem, 283 (2008) 1026-1033.
[104] F. Meng, R. Henson, H. Wehbe-Janek, K. Ghoshal, S.T. Jacob, T. Patel, MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer, Gastroenterology, 133 (2007) 647-658.
[105] H. Hirata, K. Ueno, V. Shahryari, Y. Tanaka, Z.L. Tabatabai, Y. Hinoda, R. Dahiya, Oncogenic miRNA-182-5p targets Smad4 and RECK in human bladder cancer, PLoS One, 7 (2012) e51056.
[106] H. Hirata, K. Ueno, V. Shahryari, G. Deng, Y. Tanaka, Z.L. Tabatabai, Y. Hinoda, R. Dahiya, MicroRNA-182-5p promotes cell invasion and proliferation by down regulating FOXF2, RECK and MTSS1 genes in human prostate cancer, PLoS One, 8 (2013) e55502.
[107] D. Raman, P.J. Baugher, Y.M. Thu, A. Richmond, Role of chemokines in tumor growth, Cancer Lett, 256 (2007) 137-165.
[108] F. Balkwill, Cancer and the chemokine network, Nat Rev Cancer, 4 (2004) 540-550.
[109] S. Ali, G. Lazennec, Chemokines: novel targets for breast cancer metastasis, Cancer Metastasis Rev, 26 (2007) 401-420.
[110] R.M. Ransohoff, Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology, Immunity, 31 (2009) 711-721.
[111] K. Ley, C. Laudanna, M.I. Cybulsky, S. Nourshargh, Getting to the site of inflammation: the leukocyte adhesion cascade updated, Nat Rev Immunol, 7 (2007) 678-689.
[112] S.J. Youngs, S.A. Ali, D.D. Taub, R.C. Rees, Chemokines induce migrational responses in human breast carcinoma cell lines, Int J Cancer, 71 (1997) 257-266.
[113] A. Muller, B. Homey, H. Soto, N. Ge, D. Catron, M.E. Buchanan, T. McClanahan, E. Murphy, W. Yuan, S.N. Wagner, J.L. Barrera, A. Mohar, E. Verastegui, A. Zlotnik, Involvement of chemokine receptors in breast cancer metastasis, Nature, 410 (2001) 50-56.
[114] T. Murakami, W. Maki, A.R. Cardones, H. Fang, A. Tun Kyi, F.O. Nestle, S.T. Hwang, Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells, Cancer Res, 62 (2002) 7328-7334.
[115] M.C. Smith, K.E. Luker, J.R. Garbow, J.L. Prior, E. Jackson, D. Piwnica-Worms, G.D. Luker, CXCR4 regulates growth of both primary and metastatic breast cancer, Cancer Res, 64 (2004) 8604-8612.
[116] K. Xie, Interleukin-8 and human cancer biology, Cytokine Growth Factor Rev, 12 (2001) 375-391.
[117] X. Le, Q. Shi, B. Wang, Q. Xiong, C. Qian, Z. Peng, X.C. Li, H. Tang, J.L. Abbruzzese, K. Xie, Molecular regulation of constitutive expression of interleukin-8 in human pancreatic adenocarcinoma, J Interferon Cytokine Res, 20 (2000) 935-946.
[118] N. Mukaida, S. Okamoto, Y. Ishikawa, K. Matsushima, Molecular mechanism of interleukin-8 gene expression, J Leukoc Biol, 56 (1994) 554-558.
[119] Q. Shi, J.L. Abbruzzese, S. Huang, I.J. Fidler, Q. Xiong, K. Xie, Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic, Clin Cancer Res, 5 (1999) 3711-3721.
[120] C. Hensley, S. Spitzler, B.E. McAlpine, M. Lynn, J.C. Ansel, A.R. Solomon, C.A. Armstrong, In vivo human melanoma cytokine production: inverse correlation of GM-CSF production with tumor depth, Exp Dermatol, 7 (1998) 335-341.
[121] W. Nurnberg, D. Tobias, F. Otto, B.M. Henz, D. Schadendorf, Expression of interleukin-8 detected by in situ hybridization correlates with worse prognosis in primary cutaneous melanoma, J Pathol, 189 (1999) 546-551.
[122] R.K. Singh, M.L. Varney, C.D. Bucana, S.L. Johansson, Expression of interleukin-8 in primary and metastatic malignant melanoma of the skin, Melanoma Res, 9 (1999) 383-387.
[123] M. Gutman, R.K. Singh, K. Xie, C.D. Bucana, I.J. Fidler, Regulation of interleukin-8 expression in human melanoma cells by the organ environment, Cancer Res, 55 (1995) 2470-2475.
[124] S. Huang, J.B. Robinson, A. Deguzman, C.D. Bucana, I.J. Fidler, Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8, Cancer Res, 60 (2000) 5334-5339.
[125] G.F. Greene, Y. Kitadai, C.A. Pettaway, A.C. von Eschenbach, C.D. Bucana, I.J. Fidler, Correlation of metastasis-related gene expression with metastatic potential in human prostate carcinoma cells implanted in nude mice using an in situ messenger RNA hybridization technique, Am J Pathol, 150 (1997) 1571-1582.
[126] S. Wu, H. Shang, L. Cui, Z. Zhang, Y. Zhang, Y. Li, J. Wu, R.K. Li, J. Xie, Targeted blockade of interleukin-8 abrogates its promotion of cervical cancer growth and metastasis, Mol Cell Biochem, 375 (2013) 69-79.
[127] Y.S. Lee, I. Choi, Y. Ning, N.Y. Kim, V. Khatchadourian, D. Yang, H.K. Chung, D. Choi, M.J. LaBonte, R.D. Ladner, K.C. Nagulapalli Venkata, D.O. Rosenberg, N.A. Petasis, H.J. Lenz, Y.K. Hong, Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis, Br J Cancer, 106 (2012) 1833-1841.
[128] C. Chavey, F. Bibeau, S. Gourgou-Bourgade, S. Burlinchon, F. Boissiere, D. Laune, S. Roques, G. Lazennec, Oestrogen receptor negative breast cancers exhibit high cytokine content, Breast Cancer Res, 9 (2007) R15.
[129] A. Freund, C. Chauveau, J.P. Brouillet, A. Lucas, M. Lacroix, A. Licznar, F. Vignon, G. Lazennec, IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells, Oncogene, 22 (2003) 256-265.
[130] A. Freund, V. Jolivel, S. Durand, N. Kersual, D. Chalbos, C. Chavey, F. Vignon, G. Lazennec, Mechanisms underlying differential expression of interleukin-8 in breast cancer cells, Oncogene, 23 (2004) 6105-6114.
[131] M.S. Bendre, D.C. Montague, T. Peery, N.S. Akel, D. Gaddy, L.J. Suva, Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease, Bone, 33 (2003) 28-37.
[132] B. Singh, J.A. Berry, L.E. Vincent, A. Lucci, Involvement of IL-8 in COX-2-mediated bone metastases from breast cancer, J Surg Res, 134 (2006) 44-51.
[133] D.R. Smith, P.J. Polverini, S.L. Kunkel, M.B. Orringer, R.I. Whyte, M.D. Burdick, C.A. Wilke, R.M. Strieter, Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma, J Exp Med, 179 (1994) 1409-1415.
[134] R.M. Strieter, P.J. Polverini, D.A. Arenberg, A. Walz, G. Opdenakker, J. Van Damme, S.L. Kunkel, Role of C-X-C chemokines as regulators of angiogenesis in lung cancer, J Leukoc Biol, 57 (1995) 752-762.
[135] J.E. Nor, J. Christensen, D.J. Mooney, P.J. Polverini, Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression, Am J Pathol, 154 (1999) 375-384.
[136] J. Heidemann, H. Ogawa, M.B. Dwinell, P. Rafiee, C. Maaser, H.R. Gockel, M.F. Otterson, D.M. Ota, N. Lugering, W. Domschke, D.G. Binion, Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2, J Biol Chem, 278 (2003) 8508-8515.
[137] J. Li, F. Li, H. Wang, X. Wang, Y. Jiang, D. Li, Wortmannin reduces metastasis and angiogenesis of human breast cancer cells via nuclear factor-kappaB-dependent matrix metalloproteinase-9 and interleukin-8 pathways, J Int Med Res, 40 (2012) 867-876.
[138] K.S. Hill, I. Gaziova, L. Harrigal, Y.A. Guerra, S. Qiu, S.K. Sastry, T. Arumugam, C.D. Logsdon, L.A. Elferink, Met receptor tyrosine kinase signaling induces secretion of the angiogenic chemokine interleukin-8/CXCL8 in pancreatic cancer, PLoS One, 7 (2012) e40420.
[139] M.S. Ebert, J.R. Neilson, P.A. Sharp, MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells, Nat Methods, 4 (2007) 721-726.
[140] C. Scotton, D. Milliken, J. Wilson, S. Raju, F. Balkwill, Analysis of CC chemokine and chemokine receptor expression in solid ovarian tumours, Br J Cancer, 85 (2001) 891-897.
[141] A. Sica, A. Saccani, B. Bottazzi, N. Polentarutti, A. Vecchi, J. van Damme, A. Mantovani, Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages, J Immunol, 164 (2000) 762-767.
[142] A. Mantovani, S. Sozzani, M. Locati, P. Allavena, A. Sica, Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes, Trends Immunol, 23 (2002) 549-555.
[143] E.Y. Lin, A.V. Nguyen, R.G. Russell, J.W. Pollard, Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy, J Exp Med, 193 (2001) 727-740.
[144] B. Vicinus, C. Rubie, S.K. Faust, V.O. Frick, P. Ghadjar, M. Wagner, S. Graeber, M.K. Schilling, miR-21 functionally interacts with the 3'UTR of chemokine CCL20 and down-regulates CCL20 expression in miR-21 transfected colorectal cancer cells, Cancer Lett, 316 (2012) 105-112.
[145] C.L. Elliott, V.C. Allport, J.A. Loudon, G.D. Wu, P.R. Bennett, Nuclear factor-kappa B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells, Mol Hum Reprod, 7 (2001) 787-790.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code