Responsive image
博碩士論文 etd-0624114-122240 詳細資訊
Title page for etd-0624114-122240
論文名稱
Title
以不同泡綿生物濾床去除東港溪原水中之氨氮及有機物
Removal of NH3-N and organic matter from Tung-Gung River water using PU-net sponge mediated biofilter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-18
繳交日期
Date of Submission
2014-07-24
關鍵字
Keywords
東港溪、污水處理、生物濾床、泡綿、EBCT、氨氮
Tong-Kan river, Sponge, Ammonia nitrogen, EBCT, Biological filter
統計
Statistics
本論文已被瀏覽 5680 次,被下載 678
The thesis/dissertation has been browsed 5680 times, has been downloaded 678 times.
中文摘要
生活污水或畜牧廢水都含有過量的氨氮,不當的排放會消耗水中溶氧,造成優養化,產生藻類,對水體具有毒性,且氨氮易在淨水程序中,易形成消毒副產物,對環境造成影響,故如何有效的去除水中過量氨氮為近年來最重要的研究課題之一。
本研究採取東港溪原水點之氨氮濃度屬嚴重污染程度,以連續流方式將原水抽入填充不同孔隙、不同材質泡綿,即粗孔隙PU (Polyurethane)、細孔隙PU與 PS ( Polystyrene),等三種不同生物載體,本文目的為探討操作條件為(空床停留時間及溶氧量)對氨氮之轉化效率。實驗初期以TOC及氨氮濃度監測生物濾床系統出水,作為判斷泡綿表面之微生物馴養是否達到穩定。
結果顯示,生物濾床系統中細孔隙PU材質之泡綿在溶氧量4~6 ppm及水力停留時間2小時之氨氮轉化率達98.3%,TOC、DOC等有機物去除率約15至50%。而PS材質泡綿雖有不錯的氨氮轉化率,但經長時間使用下,容易耗損,本研究比較二者顯示PU濾材會比PS濾材耐用。生物濾床系統在相同空床停留時間及溶氧量之下,因為細孔隙PU泡綿比表面積較粗孔隙PU泡綿大,故在好氧狀態下,細孔隙PU泡綿的氨氮轉化率會比粗孔隙PU泡綿好,且溶氧量4~6ppm的氨氮及TOC去除率比溶氧量1~2 ppm為佳,故在高溶氧下以細孔隙PU材質之泡綿作為濾床載體同時對氨氮及有機物有效,水體經本生物濾床系統處理後,東港溪污染程度有相當大的改善。
Abstract
Due to the excess amounts of ammonia-nitrogen are found in effluent of domestic or sewer wastewater, it is to cause water pollution problems such as eutrophication, oxygen huge demand, disinfection by products in drinking water. So it is important to solve effectively the excess amounts of ammonia-nitrogen in wastewater.
In this work, we set a biological filter system (including two kinds of Polyurethane PU, and one kind Polystyrene sponge) in laboratory for treating the polluted wastewater of Tong-Kan River. The object of this study is to investigate effect of operating conditions (including empty bed contact time (EBCT) and oxygen content (DO)) on conversion of ammonia-nitrogen. In primary periods, monitoring of TOC and ammonia-nitrogen was conducted in effluent of biological filter (BACF) for checking the stability of microorganism cultivated in surface of sponge.
The conversion of biological filter with fine-pore PU was obtained 98% when DO at 4~6 mg/L and hydraulic retention time at 2 hr, and removal of TOC and DOC were achieved as ranging from 15% to 50%. Comparing two kinds of sponges’ results, the results of PS sponge + BACF showed sponge was easily broken after long term testing. At same operating conditions in BACF, the effect of pore size showed conversion of ammonia-nitrogen by fine pore- PU was better than that of thick pore-PU. Besides, the effect of DO showed removal of TOC at DO = 4~ 6 mg/L was better than that of DO = 1~ 2 mg/L. We suggested the good selection for treating polluted river is BACF + fine pore-PU in this work.
目次 Table of Contents
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
圖目錄 vii
表目錄 x
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
1-3研究內容 2
第二章 文獻回顧 3
2-1 水體中有機物概述 3
2-1-1 水體中有機物來源 3
2-1-2 水體中有機物基本特性 3
2-2 生物濾床處理自來水原水有機物 4
2-2-1 生物濾床前處理結合其他單元去除有機物 5
2-2-2 生物固定床介質評估 6
2-3 生物除氮 8
2-3-1 水中含氮污染物 9
2-3-2傳統除氮方法種類及原理 10
2-3-3 硝化作用 12
2-3-4 脫硝作用 15
2-4生物除氮最新技術 17
2-4-1部分硝化程序 18
2-4-2 SHARON程序 19
2-4-3厭氧氨氧化程序化 19
2-4-5固定式生物處理系統 21
2-5國內外氨氮與總氮之未來法規因應……………………………………..25
2-5-1國內廢水氨氮之去除與總氮控制之未來法規因應 25
2-5-2國外廢水氨氮之去除與總氮控制之未來法規因應 25
第三章 研究方法 26
3-1 研究流程之架構規畫 26
3-2 研究材料與方法 27
3-3 生物濾床介紹 29
3-4 原水水質現況 31
3-4-1 東港溪 31
3-4-2 氨氮 32
3-4-3 化學需氧量 32
3-4-4 總有機碳 34
3-5 水質分析項目與方法 35
3-5-1水溫與氫離子濃度指數 36
3-5-2導電度 36
3-5-3氨氮 37
3-5-4硝酸鹽氮 37
3-5-5亞硝酸鹽氮 37
3-5-6總有機碳 38
3-5-7溶解性有機碳 38
3-5-8化學需氧量 38
3-5-9鹼度 39
3-5-10溶氧 39
3-6實驗分析儀器設備 40
第四章 結果與討論 42
4-1 生物濾床入流水水質介紹 42
4-2 泡綿生物馴養 43
4-2-1 監測生物馴養槽出水NH3-N及TOC之變化 43
4-3生物濾床處理效能 46
4-3-1生物濾床對氮系污染物之去除率 46
4-3-1-1氨氮(NH3-N) 46
4-3-1-2亞硝酸鹽氮(NO2-N) 51
4-3-1-3硝酸鹽氮(NO3-N) 54
4-3-2生物濾床對有機物污染物之去除率 58
4-3-2-1化學需氧量(COD) 58
4-3-2-2總有機碳(TOC) 62
4-3-2-3溶解性有機碳(DOC) 67
4-4不同濾料之選擇 71
4-5生物濾床出水之鹼度變化 73
4-6生物濾床進出水之RPI變化 76
第五章 結論與建議 79
5-1結論 79
5-2建議 79
參考文獻 81
參考文獻 References
Almeida, J.S.,Reis, M.A. and Carrondo, J.T. (1995) Competition between nitrate and nitrite reduction in denitrification by pseudomonas fluorescens. Biotechnology and Bioengineering 46, 476-484.
Bouwer, E. J., and P. B. Crowe. (1988) “ Biological Processes in Drinking Water Treatment”, Jour. AWWA., 80:9:82.
Breitenbucher, K. (1990) “Open-Pore in Sintered Glass as a HighEfficiency Support Medium in Bioreactors: New Results and Long TermExperiences Achieved in High-Rate Anaerobic Digestion”, Water Sci.Technol., 22:1-2:25.
Bryers, J. D. (1992) “Application of Captured Cell Systems in Biological Treatment. in Bioenvironmental Systems”(Edited by Donald L. Wise), NewYork: CRC Press, Inc.
Chien, T. Y. , J. W. Chen, and W. E. Pitts. (1997)“Pilot Plant Demonstrates Biological Filtration for Ammonia Removal in Water Treatment” in Proc. AWWA Water Quality Technology Conf., (CD-Rom).
Ciudad et al., 2005G. Ciudad, O. Rubilar, P. Muñoz, G. Ruiz, R. Chamy, C. Vergara, D. JeisonPartial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal processProcess Biochem., 40 (5)(2005),
Carrera, Julian, Teresa Vicent, and Javier Lafuente. "Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater." Process Biochemistry 39.12 (2004): 2035-2041.
Choi, C., Lee, J., Lee, K., & Kim, M. (2008). The effects on operation conditions of sludge retention time and carbon/nitrogen ratio in an intermittently aerated membrane bioreactor (IAMBR). Bioresource technology, 99(13), 5397-5401.
Cabrol, Léa, et al. "Bacterial dynamics in steady‐state biofilters: beyond functional stability." FEMS microbiology ecology 79.1 (2012): 260-271.
Ersu, C.B., Ong, S.K., Arslankaya, E. and Lee, Y.W. (2010) Impact of solids residence time on biological nutrient removal performance of membrane bioreactor. Water research 44, 3192-3202.
Fujii, S., C. Niwa, M. Mouri and R. Jindal. (1997) “ Pilot-Plant Experimenters for Improvement of Polluted Canl/Klong Water by Rock-Bed Filtration”, Water Sci. Tech., 35:8:83.
Fox, P., M. T. Suidan and T. A. Bandy. (1990) “ Comparison of Media Types in Acetate Fed Expanded-Bed Anaerobic Reactors”, Water Res. 24:3:827
Huysman, P., P. V. Meenen, P. V. Assche and W. Verstraete. (1983)“ Factors Affecting the Colonization of Non Porous and Porous Packing Materials in Model Upflow Methane Reactors” ,Biotechnol. Lett. 5:9:643.
Harendranath, C. S., K. Anuja, A. Singh, A. Gunaseelan, K. Satish and K.Lala. (1996) “ Immobilization in Fixed Film Reactors: an UltrastructuralApproach”, Water Sci. Tech., 33:8:7.
Hippen et al., 1997A. Hippen, K.H. Rosenwinkel, G. Baumgarten, C.F. Seyfried Aerobic deammonification – a new experience in the treatment of wastewaters Water Science and Technology, 35 (1997), p. 111
Hellinga, C., et al. "The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water." Water Science and Technology37.9 (1998): 135-142.
Helmer, Christine, and Sabine Kunst. "Simultaneous nitrification/denitrification in an aerobic biofilm system." Water Science and Technology 37.4 (1998): 183-187.
Helmer, Christine, et al. "Nitrogen loss in a nitrifying biofilm system." Water Science and technology 39.7 (1999): 13-21.
Holman, J. B., and D. G. Wareham. "COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process."Biochemical Engineering Journal 22.2 (2005): 125-133.
He, Teng, et al. "Nanosized Co-and Ni-catalyzed ammonia borane for hydrogen storage." Chemistry of Materials 21.11 (2009): 2315-2318.
He, S.B., Xue, G. and Wang, B.Z. (2009) Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor. Journal of Hazardous Materials 168, 704-710.
James M. Montgomery, Consulting Engineers, Inc.(1985) “ WaterTreatment Principles and Design”, New York: John Wiley & Sons.
Kjelleberg, S., T. A. Stenström, and G. Odham. "Comparative study of different hydrophobic devices for sampling lipid surface films and adherent microorganisms." Marine Biology 53.1 (1979): 21-25.
Koki, M. (1993) “ The Existing State of the Advanced Water Purification Technology at CHATAN Water Purification Plant”, Jour. Japan Society on Water Environ, 16:12:854 (in Japanese).
Kawai, A., M. Eguchi, S. Kimura, T. Yasuna, T. Tsuji and T. Sudou. (1995)“ A Pilot Plant Study on Biological Treatment Systems for Drinking WaterTreatmen ” in IWSA Specilized Conference on Advanced Treatment and Integrated System Management Into the 21st Century, Osaka, Japan
Kim, W. H., W. Nishijima, E. Shoto and M. Okada. (1997) “ Pilot PlantStudy on Ozonation and Biological Activated Carbon Process for Drinking Water Treatment” in Water Sci. Tech., 35:8:21.
Kremen, A., Bear, J., Shavit, U., Shaviv, A., 2005. Model demonstrating the potential for coupled nitrification denitrification in soil aggregates. Environmental Science and Technology 39, 4180-4188.
Komorowska-Kaufman, Małgorzata, Hanna Majcherek, and Eugeniusz Klaczyński. "Factors affecting the biological nitrogen removal from wastewater."Process biochemistry 41.5 (2006): 1015-1021.
Kim, D., Kim, K.Y., Ryu, H.D., Min, K.K. and Lee, S.I. (2009) Long term operation of pilot-scale biological nutrient removal process in treating municipal wastewater. Bioresource Technology 100, 3180-3184.
Kartal, Boran, et al. ,(2006), "Adaptation of a freshwater anammox population to high salinity wastewater." Journal of Biotechnology 126.4: 546-553.
Kartal, Boran, et al., (2007),"Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium." Environmental microbiology 9.3: 635-642.
Kartal, Boran, et al. (2008)"Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium." FEMS microbiology ecology 63.1: 46-55.
Lim, K. H., and H. S. Shin. (1997) “ Operating Characteristics of Aerated Submerged Biofilm Reactors for Drinking Water Treatment”, Water Sci.Tech., 36:12:101.
Lee, J.K., Choi, C.K., Lee, K.H. and Yim, S.B. (2008) Mass balance of nitrogen, and estimates of COD, nitrogen and phosphorus used in microbial synthesis as a function of sludge retention time in a sequencing batch reactor system. Bioresource Technology 99, 7788-7796.
Marquet, R., P. M. Mietton, and A. D. Wheatley. (1999) “ Characterisation of Tricking Filter Effluent by Particle Size Distribution and High Performance Size Exclusion Chromatography ”, Wat. Res., 33:6:1415.
Mulder, A., et al. "Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor." FEMS Microbiology Ecology 16.3 (1995): 177-184.

Nohara, M., K. Nomura, T. Sekine, and I. Norimatsu. (1995) “ River Purification Method by Biological Contact Filtration”, Jour. Japan Societyon Water Environ., 24:7:30 (in Japanese)
Ng, H.Y., Tan, T.W., Ong, S.L., Toh, C.A. and Loo, Z.P. (2006) Effects of solid retention time on the performance of submerged anoxic/oxic membrane bioreactor. Water Science and Technology 53, 7-13.
Ozturk, Izzet, et al. "Advanced physico-chemical treatment experiences on young municipal landfill leachates." Waste Management 23.5 (2003): 441-446.
Poiger, T., Field, J. A., Field, T. M., Siegrist, H., & Giger, W. (1998). Behavior of fluorescent whitening agents during sewage treatment. Water Research,32(6), 1939-1947.
Prinčič, Alenka, et al. "Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater." Applied and environmental microbiology 64.10 (1998): 3584-3590.
Rachwal, A. J., M. J. Bauer, M. J. Chipps, J. S. Colbourne, and D. M. Foster. (1996) “ Comparisons Between Slow Sand and High RateBiofiltration” in Advances in Slow Sand and Alternative Biological Filtration. Edited by N. Graham, and R. Collins, John Wiley & Sons.
Srna, Richard F., and Anne Baggaley. "Kinetic response of perturbed marine nitrification systems." Journal (Water Pollution Control Federation) (1975): 472-486.
Sharma, Bhavender, and R. C. Ahlert. "Nitrification and nitrogen removal."Water Research 11.10 (1977): 897-925.
Snoeyink, V. L., and D. Jenkins (1985) “Coordination Chemistry”, Chap. 5 in Water Chermistry, Ann Arbor Science Press. Ann Arbor MI.
Shammas, Nazih Kh. "Interactions of temperature, pH, and biomass on the nitrification process." Journal (Water Pollution Control Federation) (1986): 52-59.
Sasa, T., T. Tsukiyama, H. Matoba, and S. Sugisawa (1995) “ DevelopingBiological Contact Filtration by Fibrous Microorganisms Support WaterTreatment” in IWSA Specilized Conference on Advanced Treatment and Integrated System Management Into the 21st Century, Osaka, Japan.
Stewart, M. H., and N. I. Lieu. "Nitrification in chloraminated drinking water and its association with biofilms." 1997 AWWA Water Quality Technology Conference. 1997.
Strous, Marc, et al. "Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations." Water Research 31.8 (1997): 1955-1962.
Schmid, Markus C., et al. ,(2007), "Anaerobic ammonium‐oxidizing bacteria in marine environments: widespread occurrence but low diversity." Environmental microbiology 9.6: 1476-1484.
Schmid, Markus C., et al. ,(2008), "Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium‐oxidizing bacteria." Environmental microbiology 10.11: 3140-3149.
Shen, J.Y., He, R., Han, W.Q., Sun, X.Y., Li, J.S. and Wang, L.J. (2009) Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Journal of Hazardous Materials 172, 595-600.
Song, Kyung-Guen, et al. "Characteristics of simultaneous nitrogen and phosphorus removal in a pilot-scale sequencing anoxic/anaerobic membrane bioreactor at various conditions." Desalination 250.2 (2010): 801-804.
Tanaka, H., and I. J. Dunn. "Kinetics of biofilm nitrification." Biotechnology and Bioengineering 24.3 (1982): 669-689.
Thurman E. M. (1985) “Organic geochemistry of nature water”, Martinus Nijhoff and Dr. W. Junk Publishers, Dordrecht, Netherlands, pp. 15-17.
Takasaki, M., R. Sudo, O. Nishimura, and H. Y, Kim. (1992)“ Simultaneous Removal of Nitrogen and THM Precursor by Developed Submerged Biofilm Process for Drinking Water”, Wat. Sci. Tech., 26:20:21.
Tchobanoglous, G., et al. "Decentralized wastewater management: challenges and opportunities for the twenty-first century." Water Science & Technology: Water Supply 4.1 (2004).
Nguyen, Tien Thanh, et al. "A new sponge tray bioreactor in primary treated sewage effluent treatment." Bioresource technology 102.9 (2011): 5444-5447.
Upadhyaya, Giridhar, et al. "Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixed-bed bioreactor system." Water research44.17 (2010): 4958-4969.
Randall C. W. and David B., “Nitrite built-up in activated sludge resulting from temperature effects”, Journal (Water Pollution Control Federation), 56, (1984) 1039-1044.
Rittmann, Bruce E., and Perry L. McCarty. Environmental biotechnology. New York: McGraw Hill, 2001.
Ruiz, G., D. Jeison, and R. Chamy. "Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration." Water Research 37.6 (2003): 1371-1377.
Wang, B., J. Tian, J. Yin, and G. Shi. (1989) “ Ammonia, Nitrite and Nitrate Nitrogen Removal from Polluted Source Water with Ozonation and BAC Processes”, Ozone Science & Engineering, 11:2:227.
Yeh, H. H. and S. K. Chen. (1988) “ Packed Bed Filters for Ammonia-Nitrogen Removal from Raw Waters ”, Water Supply, 6:3:219.
Yeh, H. H. and H. H. Kao. (1993) “ Testing a Coke Biofilter for the Pretreatment of Polluted Surface Water in Taiwan ”, Jour. AWWA., 85:5:96.
Yeh, H. H., W. J. Huang, C. J. Hung, and S. C. Wang. (1995) “Advanced Treatment Processes for Disinfection By-Products Control when treating Polluted Source Water”, 20th International Water Supply Congress, Durban,South Africa.
Yang, P. Y., Z. Q. Zhang, and B. G. Jeong. "Simultaneous removal of carbon and nitrogen using an entrapped-mixed-microbial-cell process." Water Research31.10 (1997): 2617-2625.
鄭幸雄 (1997) “台灣南部給水源污染特性及生物處理程序功能之探討",自來水會刊,第16 卷,第1 期。
葉宣顯(1998) “本省自來水水源中溶解性有機物成分之分析及現有淨水程序對其去除效率之評估”台灣省自來水股份有限公司委託國立成功大學研究報告.
王文革 (1999) “生物濾床處理澄清湖優氧化給水源之研究"國立成功大學環境工程研究所碩士論文。
陳國誠. "生物固定化技術與產業應用 茂昌出版社 台北市 570 頁." (2000).
楊曉奕,蔣展鵬,潘咸峰.膜法處理高濃度氨氮廢水的研究.水處理技術,2003,9(2):85
蔡云龙、臧维玲、姚庆祯、张钦江,「四种滤材去除氨氮的效果」,上海水产大学学报,14卷第2期,2005
余宗賢,2011,固定化生物技術對抗生素及非類固醇類消炎止痛藥之生物降解與生物吸附研究,博士論文,國立臺灣大學環境工程研究所。
台灣自來水公司(2013)”鳳山水庫原水為飲用水備用水源水源水質或淨水處理改善計畫書”
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code