Responsive image
博碩士論文 etd-0624114-140057 詳細資訊
Title page for etd-0624114-140057
論文名稱
Title
液相層析結合感應耦合電漿質譜儀於魚肉中砷物種及功能性飲料和營養補給品中鈷物種之分析應用
Determination of Arsenic Species in Fishes and Cobalt Species in Functional drinks & Nutritive supplements Using High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
133
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-17
繳交日期
Date of Submission
2014-07-24
關鍵字
Keywords
液相層析、含砷化合物、含鈷化合物、感應耦合電漿質譜儀、陰離子層析、逆相層析、鈷胺素
vitamin B12, cobalamin, Arsenic species, functional drinks, ion-exchange chromatogram
統計
Statistics
本論文已被瀏覽 5662 次,被下載 638
The thesis/dissertation has been browsed 5662 times, has been downloaded 638 times.
中文摘要
由於元素的不同物種型態具有不同特性,對於生物體來說其作用也大不同,因此真實樣品中的物種分析是相當重要的,可以幫助了解不同物種間的分佈情形,避免對樣品的性質造成誤判。感應耦合電漿質譜儀(Inductively coupled plasma mass spectrometry, ICP-MS)對於元素分析來說是一個具有高靈敏度、線性範圍廣及同位素分析的元素選擇性儀器,適合應用於真實樣品的分析。由於樣品進入 ICP 後會先經過原子化的步驟,所以使得ICP-MS無法分辨同一元素的不同物種,因此在做物種分析的時必須搭配分離技術進行物種分離。液相層析(Liquid chromatography, LC)具有高分離效率、低樣品載入量、高重複性及高再現性等優點,此研究中使用液相層析做為分離系統分別對砷物種以及鈷物種進行分離及分析應用。
第一部份研究中針對砷物種含量進行分析,砷為一種有毒元素,其不同物種具有不同的毒性,目前在工業上仍然被廣泛地使用,若廢棄物處理不慎進入環境中可能經由食物鏈進入生物體進而累積放大而危害到人體,因此本篇利用陰離子交換樹脂層析法(Anion-exchange chromatography)結合ICP-MS 對魚肉當中的砷物種型態及含量進行研究。本實驗系統在最適化條件下能夠在8分鐘內分離 6 個砷物種,波峰面積及高度RSD小於5.1%、偵測極限為0.005-0.011 μg L-1。真實樣品對不同養殖方式的吳郭魚及標準參考樣品做分析,利用甲醇/動相A[ 1%甲醇、0.5 mM碳酸銨、pH值8.5 ]混合液以及1% 硝酸作為萃取試劑結合微波輔助萃取,萃取效率皆可達94% 以上,並在萃取前添加砷物種,確認物種不會進行形態轉換,證實此萃取方法的可行性。
第二部份研究對鈷物種進行分析,鈷是一種有毒元素,當人體攝入過多的鈷則會導致鈷中毒引發中樞神經受損、心血管衰弱及四肢無力顫抖等現象;但是鈷也是人體必需的元素之一,人體必須物質維生素B12就是由鈷為核心的複合體結構,所以維生素B12又被稱為鈷胺素(Cobalamin),核心鈷可以接上不同官能基而有不同衍生物。第二篇研究採用逆相層析法(Reversed phase chromatography)對鈷胺素有機大分子進行分離,由於鈷胺素與管柱作用力極強需使用高濃度的乙腈沖堤使得電漿不穩定並壓抑訊號,所以在管柱後連接上薄膜去溶劑系統(Membrane desolvation sample introduction system, Aridus)去除高有機溶劑。本實驗系統在最適化條件下能夠在15分鐘內分離5個鈷物種,波峰面積及高度RSD小於4.5%、偵測極限為0.007-0.031 μg L-1。真實樣品則是對市面上販售的功能性飲料、營養補給品和海藻等樣品進行分析,以0.5% 硝酸作為萃取試劑結合微波輔助萃取,萃取效率皆可達91-98% 之間,並在萃取前添加Cobalt(II)、Hydroxycobalamin、Cyanocobalamin等三個較穩定的鈷物種,添加回收率皆可達94-101% 之間,確認物種不會進行形態轉換,證實此萃取方法的可行性。
Abstract
The purpose of the first study was to assess the arsenic species content in the fishes and hoped for using the principal component analysis (PCA) to discriminate the different fishes. The determination of arsenic species in fishes was performed using ion exchange chromatography on a PRP X-100 column with inductively coupled plasma mass spectrometry detection after two step microwave assisted extraction. The arsenic species studied were arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC). Chromatographic separation of all the species was achieved in <8 min in gradient elution mode using (NH4)2CO3 and methanol at pH 8.5. The six extraction methods on arsenic extraction recoveries was evaluated in real sample. The recovery of arsenic species with the two step extraction ( MeOH / Mobile phase A and 1% nitric acid) in real samples were up to 94%. The limits of detection were in the range of 0.005−0.011 μg L−1 for various arsenic species based on peak height.
The purpose of the second study was to develop a method for separating the cobalt species and assess the species content in the functional drinks, nutritive supplements and seaweeds. The determination of cobalt species in functional drinks and nutritive supplements was performed using reversed phase chromatography on C8 micropore column with inductively coupled plasma mass spectrometry detection after microwave assisted extraction. The cobalt species studied were cobalt [Co(II)], hydroxocobalamin (OH-Cbl), cyanocobalamin (CN-Cbl), 5’-deoxyladenosylcobalamin (Ado-Cbl) and methylcobalamin (Me-Cbl). The species were separated by using NH4OAc and acetonitrile at pH 4.0 as elution solution, operated in a stepwise mode, yielded well resolved chromatograms of all the species within 15 min. The five extraction methods on cobalt extraction recoveries was evaluated in real sample. The recovery of arsenic species with the two step extraction (0.5% nitric acid) in real samples were up to 91%. The detection limits of the procedure were 0.007−0.031 μg L−1 for various cobalt species based on peak height.
目次 Table of Contents
目錄
論文審定書 i
謝誌 ii
摘要 iii
目錄 vi
圖目錄 viii
表目錄 x
縮寫表 xii

第一章 液相層析結合感應耦合電漿質譜儀於魚肉中砷物種分析之應用
壹、前言 1
貳、實驗部分
一、儀器裝置 5
二、試藥與溶液配製 7
參、實驗過程
一、液相層析分離條件探討 9
二、再現性 10
三、校正曲線與偵測極限預估 10
四、真實樣品分析 10
肆、結果與討論
一、液相層析條件最適化探討 17
二、再現性 27
三、校正曲線與偵測極限的預估 27
四、萃取條件 27
五、真實樣品分析 31
伍、未來工作 51
陸、結論 57
柒、參考文獻 58

第二章 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於功能性飲料和營養補給品中鈷物種分析之應用
壹、前言 64
貳、薄膜去溶劑進樣裝置及與液相層析之串聯方法 68
參、實驗部分
一、儀器裝置 70
二、試藥與溶液配製 72
肆、實驗過程
一、液相層析分離條件探討 74
二、薄膜去溶劑進樣系統條件探討 74
三、再現性 75
四、校正曲線與偵測極限的預估 75
五、真實樣品分析 75
伍、結果與討論
一、液相層析條件最適化探討 80
二、薄膜去溶劑系統條件最適化探討 87
三、再現性 98
四、校正曲線與偵測極限的預估 98
五、萃取條件 98
六、真實樣品分析 102
陸、結論 105
柒、參考文獻 106

圖目錄
第一章 液相層析結合感應耦合電漿質譜儀於魚肉中砷物種分析之應用
圖1-1 HPLC-ICP-MS之示意圖 6
圖1-2 各砷物種之結構式 11
圖1-3 砷物種於各pH值環境下之化學式及pKa值 12
圖1-4 實驗流程圖 13
圖1-5 樣品萃取流程圖 16
圖1-6 砷物種在不同pH值下之表徵電荷變化圖 18
圖1-7 砷物種在不同pH值下之滯留時間變化圖 19
圖1-8 改變動相pH值對層析分離的影響 20
圖1-9 改變動相B中碳酸銨濃度 22
圖1-10 改變動相中甲醇濃度對層析分離的影響 26
圖1-11 注入5 μg L-1砷物種與100 mg L-1氯離子之層析圖 26
圖1-12 不同萃取方法萃取淡水吳郭魚#1之萃取效率 32
圖1-13 DORM-3萃取層析圖 34
圖1-14 DOLT-3萃取層析圖 36
圖1-15 淡水吳郭魚#1(Oreochromis mossambicus)萃取層析圖 39
圖1-16 淡水吳郭魚#2萃取層析圖 40
圖1-17 淡水吳郭魚#3(野生)萃取層析圖 41
圖1-18 海水吳郭魚#1萃取層析圖 42
圖1-19 海水吳郭魚#2萃取層析圖 43
圖1-20 珍珠石斑(Cichlasoma managuense)萃取層析圖 44
圖1-21 加州鱸魚(Micropterus salmoides)萃取層析圖 45
圖1-22 香魚(Plecoglossus altivelis)萃取層析圖 46
圖1-23 尼羅紅魚(Oreochromis nilotica)萃取層析圖 47
圖1-24 旗魚(Istiophoridae)萃取層析圖 48
圖1-25 魚類暴露於不同砷濃度環境其體內總砷濃度變化 52
圖1-26 各魚種中砷物種含量比例長條圖 53
圖1-27 海洋生物體內砷醣生成過程 54
圖1-28 海洋生物體內砷酸甜菜鹼生成過程 55

第二章 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於功能性飲料和營養補給品中鈷物種分析之應用
圖2-1 各種鈷胺素之結構式 66
圖2-2 薄膜去溶劑系統Aridus II儀器構造圖 69
圖2-3 HPLC-Aridus-ICP-MS之示意圖 71
圖2-4 實驗流程圖 77
圖2-5 樣品萃取流程圖 79
圖2-6 改變動相B中乙腈濃度對層析分離的影響 81
圖2-7 改變動相流速對層析分離的影響 83
圖2-8 改變動相A中乙腈濃度對層析分離的影響 85
圖2-9 改變動相切換時間對層析分離的影響 86
圖2-10 改變動相梯度時間對層析分離的影響 88
圖2-11 改變動相B持續時間對層析分離的影響 89
圖2-12 使用Aridus進樣系統探討Sweep gas flow rate 對鈷物種訊號的影響 90
圖2-13 使用Aridus進樣系統探討Oxygen gas flow rate 對鈷物種訊號的影響 92
圖2-14 使用Aridus進樣系統探討Spray chamber temperature對鈷物種訊號的影響 93
圖2-15 使用Aridus進樣系統探討Menbrane temperature對鈷物種訊號的影響 94
圖2-16 注入2 μg L-1的Co(II)、OH-Cbl、CN -Cbl、Ado-Cbl以及Me-Cbl層析圖和Void volume時間 97
圖2-17 以不同萃取試劑萃取海帶根之萃取效率 103
圖2-18 功能性飲料#1層析圖 105
圖2-19 功能性飲料#2層析圖 106
圖2-20 維他命錠萃取層析圖 107
圖2-21 藍綠藻錠萃取層析圖 108
圖2-22 澎湖海菜萃取層析圖 109
圖2-23 日本昆布萃取層析圖 110

表目錄
第一章 液相層析結合感應耦合電漿質譜儀於魚肉中砷物種分析之應用
表1-1 各種含砷化物之LD50 4
表1-2 微波消化步驟設定參數 15
表1-3 HPLC-ICP-MS系統操作條件 25
表1-4 以HPLC-ICP-MS測定1 μg L-1砷物種之滯留時間與分析訊號再現性 28
表1-5 以HPLC-ICP-MS測定砷物種之校正曲線與偵測極限 29
表1-6 砷物種偵測極限之比較 30
表1-7 以HPLC-ICP-MS測定NRCC DORM-3標準參考樣品中砷物種含量 35
表1-8 以HPLC-ICP-MS測定NRCC DOLT-3標準參考樣品中砷物種含量 37
表1-9 不同魚類樣品之砷物種含量及分佈比例 49
表1-10 魚類暴露於不同砷濃度環境其體內砷物種濃度變化 56

第二章 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於功能性飲料和營養補給品中鈷物種分析之應用
表2-1 微波消化步驟設定參數 78
表2-2 動相流速對各物種波峰高度與背景高度之比值(S / B)的影響 84
表2-3 HPLC-Aridus-ICP-MS系統操作條件 96
表2-4 以HPLC-Aridus-ICP-MS測定2 μg L-1 鈷物種之滯留時間與分析訊號再現性 99
表2-5 以HPLC-Aridus-ICP-MS測定鈷物種之校正曲線與偵測極限 100
表2-6 鈷物種偵測極限之比較 101
表2-7 HPLC-Aridus-ICP-MS測定功能性飲料#1、#2中鈷物種之含量 111
表2-8 HPLC-Aridus-ICP-MS測定綜合維他命錠及藍綠藻錠中鈷物種之含量
112
表2-9 HPLC-Aridus-ICP-MS測定澎湖海菜及日本昆布中鈷物種之含量 113
參考文獻 References
1. Qi, Y. O.; Donahoe, R. J., The environmental fate of arsenic in surface soil contaminated by historical herbicide application. Sci. Total Environ., 2008, 405, 246.
2. Fowler, B. A.; Goering, P. L., Antimony in metals and their compounds in the environment: occurrence, analysis and biological relevance. Ed. M. Ernest, 1997, 743.
3. Cao, X.; Hao, C. L.; Wang, G.; Yang, H. H.; Chen, D. Y.; Wang, X. R., Sequential extraction combined with HPLC-ICP-MS for As speciation in dry seafood products. Food Chem., 2009, 113, 720.
4. Yang, G.; Xuan, C.; Yu, J. J.; Lee, F. S.; Wang, X. R., Determination of arsenic and it’s species in dry seafood by high performance liquid chromatography inductively coupled plasma mass spectrometry. Chin. J. Anal. Chem., 2009, 37, 1738.
5. Le, X. C.; Lu, X. F.; Li, X. F., Arsenic speciation. Anal. Chem., 2004, 76, 26-33.
6. Kaise, T.; Fukui, S., The chemical form and acute toxicity of arsenic compounds in marine organisms. Appl. Organomet. Chem., 1992, 6, 155.
7. Le, X. C.; Lu, X. F.; Ma, M. S.; Cullen, W. R.; Aposhian, H. V.; Zheng, B. S., Speciation of key arsenic metabolic intermediates in human urine. Anal. Chem., 2000, 72, 5172.
8. Tetsushi, S.;Yoshinori, I.; Yukiko,D.; Tetsuya, A.; Kaoru, Y.; Ginji, E., Simultaneous determination of neutral, anionic and cationic compounds within one chromatographic run using an inductively coupled plasma mass spectrometer as element-specific detector. Appl. Organometal. Chem., 2001, 15, 285.
9. Chen, B.;Hu, B.;He, M.;Mao, X.; Zu, W., Synthesis of mixed coating with multi-functional groups for in-tube hollow fibersolid phase microextraction–high performance liquid chromatography–inductively coupled plasma mass spectrometry speciation ofarsenic in human urine. J. Chromatogr. A, 2012, 1227, 19.
10. Liu, L.;He, B.;Yun, Z.;Sun, J.;Jiang, G., Speciation analysis of arsenic compounds by capillary electrophoresis on-line coupled with inductively coupled plasma mass spectrometry using a novel interface. J. Chromatogr. A, 2013, 1304, 227.
11. Liu, G.;Cai, Y., Studying arsenite–humic acid complexation using size exclusion
Chromatography-inductively coupled plasma mass spectrometry. J. Hazard. Mater., 2013, 262, 1223.
12. Reyes, H. L.; Guzmán Mar, L. J.; Mizanur Rahman, M. G.;Seybert, B.;Fahrenholz, T.; Skip Kingston, M. H., Simultaneous determination of arsenic and selenium species in fish tissues using microwave-assisted enzymatic extraction and ion chromatography–inductively coupled plasma mass spectrometry. Talanta , 2009, 78, 983.
13. Cao, X.; Hao, C. L.; Wang, G.; Yang, H. H.; Chen, D. Y.; Wang, X. R., Sequential extraction combined with HPLC-ICP-MS for As speciation in dry seafood products. Food Chem., 2009, 113, 720.
14. Rodolfo, G. W.; Jorgelina, C. A.; Patricia, N. S.; Douglas, T. H., Investigation of arsenic speciation in algae of the Antarctic region by HPLC-ICP-MS and HPLC-ESI-Ion Trap MS. J. Anal. At. Spectrom., 2006, 21, 1214.
15. Volker, N.; Spiros, A. P., Optimisation of an HPLC selected reaction monitoring electrospray tandem mass spectrometry method for the detection of 50 arsenic species. J. Anal. At. Spectrom., 2006, 21, 1277.
16. Yang, L.;Ding, J.;Maxwell, P.;McCooeye, M.;Windust, A.;Ouerdane, L.;Bakirdere, S.; Willie, S.;Mester, S., Determination of Arsenobetaine in Fish Tissue by Species Specific Isotope Dilution LC-LTQ-Orbitrap-MS and Standard Addition LC-ICPMS. Anal. Chem., 2011, 83, 3371.
17. Taleshi, M. ; Edmonds, J. ; Mariajoseruiz-chancho, W.; Raber, G.; Kenneth, B. J.; Francesconi, A. K ., Arsenic-Containing Lipids Are Natural Constituents of Sashimi Tuna. Environ. Sci. Technol. 2010, 44, 1478.
18. Cheajesadagul, P.; Arnaudguilhem, C.;Shiowatana, J.;Siripinyanond, A.;Szpunar, J., Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry. Food Chem., 2013, 141, 3504.
19. Shen, F.; Wuc, J.;Ying, Y.;Li, B.;Jiang, T., Differentiation of Chinese rice wines from different wineries based on mineral elemental fingerprinting. Food Chem., 2013, 141, 4026.
20. Chu, Y. L.; Jiang, S. J., Speciation analysis of arsenic compounds in edible oil by ion chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A, 2011, 1218, 5175.
21. Hsieh, Y. J.; Jiang, S. J., Application of HPLC-ICP-MS and HPLC-ESI-MS Procedures for Arsenic Speciation in Seaweeds. J. Agric. Food Chem., 2012, 60, 2083.
22. Suner, M. A.; Devesa, V.; Munoz, O.; Velez, D.; Montoro, R., Application of column switching in high-performance liquid chromatography with on-line thermo-oxidation and detection by HG-AAS and HG-AFS for the analysis of organoarsenical species in seafood samples. J. Anal. At. Spectrom. 2001, 16, 390.
23. Zheng, J.; Goessler, W.; Kosmus, W., The chromatographic behavior of arsenic compounds on anion exchange columns with binary organic acids as mobile phases. Chromatographia. 1998, 47, 257.
24. 劉恆嚴. 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於人體尿液中含砷及硒化合物與營養補給品中含鉻及砷化合物之分析應用. 國立中山大學. 高雄市.
25. Wangkarn, S.; Pergantis, A. S., High-speed separation of arsenic compounds using narrow-bore high-performance liquid chromatography on-line with inductively
coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2000, 15, 627.
26. Heitkemper, T. D.; Vela, P. N.; Stewart, R. K.; Westphal, S. C., Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2001, 16, 299.
27. Raber, G.; Raml, R.; Goessler, W.; Francesconi, K. A., Quantitative speciation of arsenic compounds when using organic solvent gradients in HPLC-ICPMS. J. Anal. At. Spectrom., 2010, 25, 570.
28. Larsen, E. H.; Sturup, S., Carbon-enhanced inductively-coupled plasma-mass
spectrometric detection of arsenic and selenium and its application to arsenic speciation. J. Anal. At. Spectrom., 1994, 9, 1099.
29. Leermakers, M.;Baeyens, W.;De Gieter, M.;Smedts, B.;Meert, C.;De Bisschop, H.C.;Morabito, R.; Quevauviller, Ph., Toxic arsenic compounds in environmental samples : Speciation and validation. Trends in Analytical Chemistry, 2006, 25.
30. Lai, W. M. V.;Kanaki, K.; Pergantis, A. S.; Cullen R. W.;Reimerc, J. K., Arsenic speciation in freshwater snails and its life cycle variation. J. Environ. Monit., 2012, 14, 743.
31. Namera, A.;Takeuchi, A.;Saito T.;Miyazaki, S.;Oikawa, H.;Saruwatari, T.;Nagao, M., Sequential extraction of inorganic arsenic compounds and methyl arsenate in human urine using mixed-mode monolithic silica spin column coupled with gas
chromatography-mass spectrometry. J. Sep. Sci., 2012, 35, 2506.
32. Amayo, O. K.; Raab, A.;Krupp, M. E.;Feldmann, J., Identification of arsenolipids and their degradation products in cod-liver oil. Talanta, 2014, 118, 217.
33. Fukuda, S.;Terasawa, M.;Shiomi, K., Phosphatidylarsenocholine, one of the major arsenolipids in marine organisms: Synthesis and metabolism in mice. Food Chem, Toxicol.,2011, 49, 1598.
34. Foster, S.; Maher, W.; Krikowa, F.; Apte, S., A microwave-assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues, Talanta, 2007, 71, 537.
35. Dufailly, V.;Gue´rin, T.;Noe¨l, L.;Fre´my, J. M.;Beauchemin, D., A simple method for the speciation analysis of bio-accessible arsenic in seafood using on-line continuous leaching and ion exchange chromatography coupled to inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2008, 23, 1263.
36. Leufroy, A.;Noël, L.; Dufailly, V.; Beauchemin, D.; Gue´rin, T., Determination of seven arsenic species in seafood by ion exchange chromatography coupled to inductively coupled plasma-mass spectrometry following microwave assisted extraction: Method validation and occurrence data. Talanta, 2011, 83, 770.
37. Batista, B. L.;Nacano, L.R.;De Souza, S.S.; Barbosa Jr, F., Rapid sample preparation procedure for As speciation in food samples by LC-ICP-MS. Food Addit. Contam., 2012, Vol. 29, No. 5, 780.
38. Sloth, J. J.;Larsen, H. E.;Julshamn, K., Survey of Inorganic Arsenic in Marine Animals and Marine Certified Reference Materials by Anion Exchange High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. J. Agric. Food Chem. 2005, 53, 6011.
39. Arroyo-Abada, U.;Mattusch, J.;Mothes, S.;Möder, M.;Wennrich, R.; Elizalde-Gonzáleza, P. M.;Matysik, F. M.; Detection of arsenic-containing hydrocarbons in canned cod liver tissue. Talanta, 2010, 82, 38.
40. Amayo, O. K.;Petursdottir, A.;Newcombe, C.;Gunnlaugsdottir, H.; Raab, A.; Krupp, M. E.; Feldmann, J., Identification and Quantification of Arsenolipids Using Reversed-Phase HPLC Coupled Simultaneously to High-Resolution ICPMS and High-Resolution Electrospray MS without Species-Specific Standards. Anal. Chem. 2011, 83, 3589.
41. Hanaoka, K.;Tanaka, Y.;Nagata, Y.;Yoshida, K.; Kaise, T., Water-soluble arsenic
residues from several arsenolipids occurring in the tissues of the starspotted shark
Musterus manazo. Appl. Organometal. Chem., 2001, 15, 299.
42. Soeroes, C.; Goessler, W.; Francesconi, A. K.;Kienzl, N.;Schaeffer, R.;Foder, P.;
Kuehnelt, D., Arsenic Speciation in Farmed Hungarian Freshwater Fish. J. Agric. Food Chem., 2005, 53, 9238.
43. Geiszinger, E. A.; Goessler, W.; Francesconi, A. K., The marine polychaete Arenicola marina: its unusual arsenic compound pattern and its uptake of arsenate from seawater. Mar. Environ. Res., 2002, 53, 37.
44. Caumette, G.;Koch, I.;Reimer, J. K., Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. J. Environ. Monit., 2012, 14, 2841.
45. 廖書翎. 感應耦合電漿質譜儀於食品中多重微量元素分析與鉻、砷及硒物種型態分析之應用. 國立中山大學, 高雄市, 2011.
45. Lintschinge, J.; Kalcher, K; Gössler, W.; Kolbl, G.; Novic, M., Simultaneous determination of chromium (III) and chromium (VI) by reversed-phase ion-pair HPLC with chromium-specific detection. Fresenius J. Anal. Chem. 1995, 351, 604.
47. Castillo, A.; Roig-Navarro, A. F.; Pozo, O. J., Capabilities of microbore columns coupled to inductively coupled plasma mass spectrometry in speciation of arsenic and selenium. J. Chromatogr. A 2008, 1202, 132.

1. U.S. Geological Survey, Cobalt, 2014.
2. U.S. Geological Survey, Mineral Commodity Summaries, February 2014.
3. Pei, L. K.;Kinniburgh, W. D.;Butlin, L.;Faris, P.;Lee, D.;Marshall, A. D.;Oliver, C. M.; Parker, R.;Powell, N.J.;Railton, P.;Smith, J. An ORS-ICP-MS method for monitoring trace levels of cobalt and chromium in whole blood samples from hip arthroplasty patients with metal-on-metal prostheses. Clin. Biochem., 2012, 45, 806.
4. Schreiner, L. J.;Joshi, P. C.;Darko, J.;Kerr, A.;Salomons, G.;Dhanesar, S. The role of Cobalt-60 in modern radiation therapy: Dose delivery and image guidance. J Med Phys. 2009, 34, 133.
5. Jovanovic, T. M.;Lukic, B.;Miskovic, Z.;Bobic, I.; Cvijovic, I.;Dimcic, B. PROCESSING AND SOME APPLICATIONS OF NICKEL, COBALT AND TITANIUM-BASED ALLOYS. Assoc. Metall. Engi. Serb., review.
6. IARC., Monographs on the Evaluation of Carcinogenic Risks to Humans, 2006, 86, 1.
7. Barry, J.;Lavigne, M.; Vendittoli, P. A. Evaluation of the Method for Analyzing
Chromium, Cobalt and Titanium Ion Levels in the Blood Following Hip Replacement with a Metal-on-Metal Prosthesis. J. Anal. Toxicol., 2013, 37, 90.
8. Bradley, W. G. J.;Scalzo, D.;Queralt, J.;Nitz, W. N. Normal-pressure hydrocephalus: Evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology, 1996, 198, 523.
9. Baik, H. W.; Russell, R. M. Vitamin B-12 deficiency in the elderly. Annu. Rev. Nutr., 1999, 19, 357.
10. Stabler, S. P. Vitamin B-12 deficiency in older people: Improving diagnosis and preventing disability. J. Am. Geriatr. Soc., 1998, 46, 1317.
11. Malouf, R. ; Areosa, S. A. Vitamin B12 for cognition. Cochrane Database Syst. Rev., 2003, 3, CD004394.
12. 行政院衛生署,“國人膳食營養素參考攝取量”, 民國九十一年.
13. 林宜璁, 劉瑞瑤, 黃信彰, 老年人的維他命b12缺乏, 基層醫學, 2007, 22, 70.
14. 行政院衛生署,“國民營養建康狀況調查1997~2002”, 民國九十一年.
15. Dorothy Crowfoot Hodgkin, J. K.; Mackay, M.; Pickworth, J. Structure of Vitamin B12: X-ray Crystallographic Evidence on the Structure of Vitamin B12. Nature, 1956, 178, 64.
16. Aguilar, F.; Charrondiere, U.; Dusemund, B.;Galtier, P.;Gilbert, J.;Gott, D. M.; Grilli, S.;Guertler, R.; Kass, G. E. N.; Koenig, J.; Lambré, C.; Larsen, J. C.; Leblanc, J. C.; Mortensen, A.; Parent-Massin, D.; Pratt, I.; Rietjens, I.; Stankovic, I,; Tobback, P.; Verguieva, T.; Woutersen. R. On 5’-deoxyadenosylcobalamin and methylcobalamin as sources for Vitamin B12 added as a nutritional substance in food supplements. The EFSA Journal, 2008, 815, 1.
17. Kelly, G. The coenzyme forms of vitamin B12: toward an understanding of their
therapeutic potential. Alt Med Rev, 1997, 2, 459.
18. Polec-Pawlak, K.; Lipiec, E.; Ruzik, L.; Zhou, Y.; Jarosz, M., Study of Chicken Egg Protein Influence on Bioavailability of Vitamin B(12) by Sec-Icp Ms and Esi Ms. J. Anal. At. Spectrom.,2011, 26, 608.
19. Taga, M. E.; Walker, G. C. Pseudo-B12 Joins the Cofactor Family. J. Bacteriol.,2008, 190, 1157.
20. Suárez-Suárez, A.; Tovar-Sánchez, A.; Rosselló-Mora, R. Determination of cobalamins (hydroxo-, cyano-, adenosyl- and methyl-cobalamins) in seawater using reversed-phase liquid chromatography with diode-array detection. Anal. Chim. Acta, 2011, 701, 81.
21. Heudi, O.; Kilinc¸, T.; Fontannaz, P. Separation of water-soluble vitamins by reversed-phase high performance liquid chromatography with ultra-violet detection: Application to polyvitaminated premixes. J. Chromatogr. A, 2005, 1070, 49-56.
22. Yang, S. D.; Feng,Y. J.; Fu, W., Determination of Cobalamin in Chlorella Food by Cation Exchange Column and Graphite Furnace Atomic Absorption Spectrometry. J. Food Drug Anal.,2006, 14, 50.
23. Zafra-Gómez, A.; Garballo, A.; Morales, J. C.; García-Ayuso, L. E. Simultaneous Determination of Eight Water-Soluble Vitamins in Supplemented Foods by Liquid Chromatography. J. Agric. Food. Chem.,2006, 54, 4531.
24. Hwang, E. K.; Amano, H.; & Chan, S. P. Assessment of the nutritional value of Capsosiphon fulvescens (Chlorophyta): developing a new species of marine macroalgae for cultivation in Korea. J. Appl. Phycol., 2008, 20, 147.
25. Liu, D.Y.;Gu, J.;Ma, Y. J.; Ji, W. L.; Liu, H. L. Determination of Vitamin B12 in Functional Drink, Multivitamin Tablets, Infant Milk Powder by Size Exclusion Chromatography-Inductively Coupled Plasma Mass Spectrometry. Chin. J. Anal. Chem., 2014, 42, 197.
26. Viñas, P.; Campillo, N.; García, I. L.; Córdoba, M. H. Speciation of Vitamin B12 Analogues by Liquid Chromatography with Flame Atomic Absorption Spectrometric Detection. Anal. Chim. Acta,1996, 318, 319.
27. Szterk, A.; Roszko, M.; Małek, K.; Czerwonka, M.; Waszkiewicz-Robak, B. Application of the SPE reversed phase HPLC/MS technique to determine vitamin B12 bio-active forms in beef. Meat Science, 2012, 91, 408.
28. Baker, S. A.; Miller-Ihli, N. J. Determination of Cobalamins Using Capillary Electrophoresis Inductively Coupled Plasma Mass Spectrometry. Spectrochim. Acta, Part B, 2000, 55, 1823.
29. Chen, J. H.; Jiang, S. J. Determination of Cobalamin in Nutritive Supplements and Chlorella Foods by Capillary Electrophoresis−Inductively Coupled Plasma Mass Spectrometry. J. Agric. Food. Chem., 2008, 56, 1210.
30. Yang, H.J.; Jiang, S.J.; Yang, Y.J.; Hwang, C.J.; Speciation of Tin by Reversed Phase Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometric Detection. Anal. Chim. Acta, 1995, 312, 141.
31. Chassaigne, H.; Lobinski, R. Determination of Cobalamins and Cobinamides by Microbore Reversed-Phase Hplc with Spectrophotometric, Ion-Spray Ionization Ms and Inductively Coupled Plasma Ms Detection. Anal. Chim. Acta,1998, 359, 227.
32. Tu, Q.; Wang, T. B.; Welch, C. J.; Wang, P.; Jia, X. J.; Raab, C.; Bu, X. D.; Bykowski, D.; Hohenstaufen, B.; Doyle, M. P. Identification and Characterization of Isomeric Intermediates in a Catalyst Formation Reaction by Means of Speciation Analysis Using HPLC-ICPMS and HPLC-ESI-MS. Anal. Chem., 2006, 78, 1282.
33. Yang, F. Y.; Jiang, S. J.; Sahayam, A. C. Combined use of HPLC–ICP-MS and microwave-assisted extraction for the determination of cobalt compounds in nutritive supplements. Food Chem., 2014, 147, 215.
34. Makarov, A.; Szpunar, J. Species-Selective Determination of Cobalamin Analogues by Reversed-Phase HPLC with ICP-MS Detection. J. Anal. At. Spectrom.,1999, 14, 1323.
35. 賴佩珊,“感應耦合電漿質譜儀於水樣中砷與硒之物種分析以及魚肉樣品中有機錫物種之分析”, 民國九十三年六月.
36. Jensen, B. P.; Gammelgaard, B.; Hansen, S. H.; Andersen, J. V. Comparison of Direct Injection Nebulizer and Desolvating Microconcentric Nebulizer for Analysis of Chlorine-, Bromine-and Iodine-Containing Compounds by Reversed Phase Hplc with Icp-Ms Detection. J. Anal. At. Spectrom.,2003, 18, 891.
37. Jacobsen, D. W.; GREEN, R.; Quadros, E. V.; Montejano, D. Rapid Analysis of Cobalamin Coenzymes and Related Corrinoid Analogs by High-Performance Liquid Chromatography. Anal. Biochem., 1982, 120, 394.
38. Kunkely, H.; Vogler, A. Photolysis of methylcobalamin. Nature of the reactive excited state. J. of Organomet. Chem., 1993, 453, 269.
39. Yanes, E.; Millerihli, N. Cobalamin Speciation Using Reversed-Phase Micro-High-
Performance Liquid Chromatography Interfaced to Inductively Coupled Plasma Mass Spectrometry. Spectrochim. Acta, Part B, 2004, 59, 891.
40. Watanabe, F.; Yabuta, Y.; Tanioka, Y.; Bito, T. Biologically Active Vitamin B12 Compounds in Foods for Preventing Deficiency among Vegetarians and Elderly Subjects. J. Agric. Food Chem., 2013, 61, 6769.
41. Zhang, N.; Wang, W.; Wang, K.; Ding, Z.; Zeng, W. Rapid Determination of Vitamin B12 by Inductively Coupled Plasma Mass Spectrometry in Multivitamin Tablets. Spectrosc. Lett., 2008, 41, 332.
42. Kwak, C. S.; Lee, M. S.; Lee, H. J.; Whang, J. Y.; Park, S. C. Dietary source of vitamin B12 intake and vitamin B12 status in female elderly Koreans aged 85 and older living in rural area. Nutr. Res. Pract., 2010, 4, 229.
43. Takenaka, S.; Takubo, K.; Watanabe, F.; Tanno, T.; Tsuyama, S.; Nanano, Y.; Tamura, Y. Occurrence of Coenzyme Forms of Vitamin B12 in a Cultured Purple Laver (Porphyla yezoensis ). Biosci. Biotechnol. Biochem., 2003, 67, 2480.
44. Raju, C. S. K.; Lee, L. Y.; Schiel, E. J.; Long, E. S.; A simple and sensitive LC-ICP-MS method for the accurate determination of vitamin B12 in fortified breakfast cereals and multivitamin tablets. J. Anal. At. Spectrom., 2013, 28, 901.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code