Responsive image
博碩士論文 etd-0624114-154719 詳細資訊
Title page for etd-0624114-154719
論文名稱
Title
非晶碳電阻式記憶體之特性研究
Characterization of Amorphous Carbon Resistive Random Access Memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-18
繳交日期
Date of Submission
2014-07-24
關鍵字
Keywords
電阻式記憶體、sp3、sp2、類鑽碳、非晶碳、電阻切換機制、共軛雙鍵
sp2, conjugated double bond, DLC, sp3, amorphous carbon, resistance switching, RRAM
統計
Statistics
本論文已被瀏覽 5690 次,被下載 147
The thesis/dissertation has been browsed 5690 times, has been downloaded 147 times.
中文摘要
近年來由於記憶體的大量使用,因此必須微縮記憶體面積提高密度。因為電阻式記憶體(RRAM)有高密度與低功耗的特性,故有潛力成為下一世代非揮發性記憶體。最近SiO2摻雜石墨被發現亦具RRAM特性,而其電阻之記憶特性相較一般金屬氧化物具有奇異之氧化石墨烯切換機制。故本論文研究利用非晶碳做為RRAM的電阻切換材料,探討碳基(carbon based) RRAM反應機制與元件特性。

本論文所使用的非晶碳薄膜製作有濺鍍法與電漿輔助化學沉積法。元件的結構為在TiN下電極沉積非晶碳層再覆蓋Pt上電極。透過薄膜的材料特性與電性量測分析,發現濺鍍碳RRAM的電阻切換機制是以氫離子與碳-碳雙鍵反應造成阻絲的高低阻態(HRS與LRS)。元件在施予一大偏壓形成軟崩潰後(forming),於濺鍍碳層形成sp2碳為主的阻絲。在負偏壓下氫離子受到電場吸引並與碳-碳共軛雙鍵反應,將導通sp2結構轉換成絕緣的sp3結構之HRS。反之正偏壓下sp3結構中的氫離子受到電場排斥到Pt電極,而碳-碳之間再度形成sp2碳之LRS。此外CVD鍍膜DLC之RRAM實驗結果發現也具有與濺鍍碳相同的RRAM電子傳導機制,故非晶碳薄膜的電阻切換機制主要是由氫離子與碳-碳鍵反應所造成。

此外,不同HfO2與DLC堆疊主動層:DLC-T RRAM (DLC/HfO2) 與DLC-B RRAM (HfO2/DLC)用來研究Pt電極與TiN電極對於非晶碳的電阻切換機制所造成的影響。根據電性分析結果,DLC-T RRAM的電子傳導機制與DLC RRAM類似,顯示非晶碳薄膜的切換是發生在Pt電極端,符合所提出的氫離子造成的電阻切換模型。然而DLC-B RRAM的電子傳導機制與氧化石墨烯相同,係因元件經過forming後,HfO2層的氧離子受電場吸引並移動到TiN端,並與DLC層中sp2碳進行反應,改變電子跳躍所經碳-碳共軛雙鍵之鍵長,造成阻態切換。
Abstract
The increasing demand for flash memory densities by scaling dimension is a formidable challenge due to physical limitations. Recently, carbon-based resistive random access memory (RRAM) exhibits to be a promising candidate for high density and low power consumption. In this study, the resistive switching property of amorphous carbon material was investigated for RRAM application.

In this study, the amorphous carbon films were prepared by RF megetron sputtering and PECVD methods. The RRAM devices were constructed by an amorphous carbon layer between Pt top and TiN bottom electrodes. A bias was applied to the bottom electrode (TiN), and the top electrode (Pt) was grounded during the electrical measurement. Based on material characterization and electrical analysis, it is found that the switching of high and low resistive state (HRS and LRS) of sputtered carbon RRAM is attributed to hydrogenation and dehydrogenation reactions of C-C double bonds and hydrogen ions. After an electroformation, a sp2 carbon dominated filament was formed in the carbon layer. Appling a negative bias, hydrogen ions are attracted by electrical field and reacted with C-C conjugated double bonds, leading the transformation of conductive sp2 structure in to insulated sp3 structure. In contrast, hydrogen atoms in the sp3 structure are repelled into Pt electrode by a positive bias, which results the transformation of sp2 carbon. In addition, the experiment result of DLC RRAM also shows the same electron transport mechanism to the sputtered RRAM. Therefore, the resistance switching (RS) mechanism of amorphous carbon is concluded to hydrogen reacting with C-C double bonds.

Furthermore, the influences of Pt electrode and TiN electrode on the RS mechanism of amorphous carbon RRAM were investigated by two devices with HfO2 and DLC stacking, DLC-T RRAM (Pt/DLC/HfO2/TiN) and DLC-B RRAM (Pt/HfO2/DLC/TiN). By contrast, RS mechanism of DLC-T RRAM is similar to DLC RRAM. It demonstrates that the RS occurs in DLC layer near Pt electrode, which is consistent with the hydrogen induced RS model. Further, DLC-B RRAM is consistent to the RS model of graphine-oxide RRAM, that after a forming process, oxygen atoms in HfO2 are attracted by the positive electrical filed and then move to TiN electrode, in which oxygen ions absorb and eliminate with sp2 carbon (C-C conjugated double bonds), resulting to the RS in DLC-B RRAM.
目次 Table of Contents
致謝 iii
摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xiii
物理常數 xiii
符號表 xiv
縮寫表 xv
1. 序論 1
1.1. 前言 1
1.2. 研究動機 2
1.3. 文獻回顧 3
1.3.1. 鐵電式記憶體 3
1.3.2. 相變化記憶體 4
1.3.3. 磁阻式記憶體 5
1.3.4. 電阻式記憶體 6
2. 基本原理 7
2.1. 電阻式記憶體切換機制 7
2.2. 絕緣體載子傳導機制 9
2.2.1. 穿隧 9
2.2.2. 熱離子發射 11
2.2.3. 普爾-法蘭克發射 12
2.2.4. 歐姆傳導 13
2.2.5. 離子電導 14
2.2.6. 空間電荷限制電流 14
2.2.7. 跳躍傳導 15
3. 試片製作與分析 16
3.1. 製作過程 16
3.1.1. 薄膜沉積 16
3.1.2. 元件製作流程 18
3.2. 薄膜特性分析設備 20
3.2.1. N&K薄膜特性分析儀 20
3.2.2. 傅立葉轉換紅外光譜儀(FTIR) 20
3.2.3. 拉曼光譜(Raman) 23
3.2.4. X光光電子能譜儀(XPS) 25
3.3. 電性量測系統 27
4. 實驗I-非晶濺鍍碳電阻切換 28
4.1. 薄膜成份分析 28
4.1.1. XPS分析 28
4.1.2. Raman分析 29
4.1.3. FTIR分析 30
4.2. 濺鍍碳RRAM電性分析 32
4.2.1. Forming過程 32
4.2.2. RRAM切換特性量測 33
4.2.3. 不同面積的元件尺寸效應 35
4.2.4. 記憶窗之持久性 36
4.2.5. 元件耐受度 37
4.3. 濺鍍碳RRAM電流傳導機制擬合 38
4.4. 濺鍍碳RRAM電阻切換機制模型 40
5. 實驗II-DLC RRAM電阻切換 44
5.1. DLC薄膜成份分析 44
5.2. DLC薄膜電性量測與分析 47
5.3. DLC RRAM電流傳導機制擬合 51
5.4. DLC RRAM與濺鍍碳 RRAM特性比較 52
6. 實驗III-HfO2與DLC堆疊元件電阻切換 53
6.1. DLC-T RRAM之電性量測 53
6.2. DLC-B RRAM之電性量測 54
6.3. DLC RRAM與HfO2/DLC堆疊RRAMs傳導特性比較 55
6.4. 雙層RRAM的電阻切換機制模型 57
7. 結論 61
參考文獻 63
附錄A Fitting之I vs. V曲線 74
附錄B 電子傳導能障計算 80
簡歷 81
著作清單 82
參考文獻 References
[1] T.-C. Chang, F.-Y. Jian, S.-C. Chen, and Y.-T. Tsai, "Developments in nanocrystal memory," Materials today, vol. 14 (12), pp. 608-615, 2011.
[2] C.-T. Tsai, T.-C. Chang, S.-C. Chen, I. Lo, et al., "Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor," Appl. Phys. Lett., vol. 96 (24), p. 242105, 2010.
[3] Y. Xie, "Modeling, architecture, and applications for emerging memory technologies," IEEE Des. Test. Comput., vol. 28 (1), pp. 44-51, 2011.
[4] J. Liu, Q. Wang, S. Long, M. Zhang, and M. Liu, "A metal/Al2O3/ZrO2/SiO2/Si (MAZOS) structure for high-performance non-volatile memory application," Semicond. Sci. Technol., vol. 25 (5), p. 055013, 2010.
[5] C. Zhu, Z. Huo, Z. Xu, M. Zhang, et al., "Performance enhancement of multilevel cell nonvolatile memory by using a bandgap engineered high-κ trapping layer," Appl. Phys. Lett., vol. 97 (25), p. 253503, 2010.
[6] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges," Advanced Materials, vol. 21 (25‐26), pp. 2632-2663, 2009.
[7] F. Zhuge, W. Dai, C. L. He, A. Y. Wang, et al., "Nonvolatile resistive switching memory based on amorphous carbon," Appl. Phys. Lett., vol. 96 (16), p. 163505, 2010.
[8] S. Qin, J. Zhang, D. Fu, D. Xie, et al., "A physics/circuit-based switching model for carbon-based resistive memory with sp2/sp3 cluster conversion," Nanoscale, vol. 4 (20), pp. 6658-6663, 2012.
[9] A. Sebastian, A. Pauza, C. Rossel, R. M. Shelby, et al., "Resistance switching at the nanometre scale in amorphous carbon," New J. Phys., vol. 13 (1), p. 013020, 2011.
[10] G. N. Panin, O. O. Kapitanova, S. W. Lee, A. N. Baranov, and T. W. Kang, "Resistive switching in Al/graphene oxide/Al structure," Jpn. J. Appl. Phys., vol. 50 (7), p. 070110, 2011.
[11] P. Peng, D. Xie, Y. Yang, C. Zhou, et al., "Bipolar and unipolar resistive switching effects in Al/DLC/W structure," J. Phys. D: Appl. Phys., vol. 45 (42), p. 429501, 2012.
[12] K.-C. Chang, R. Zhang, T.-C. Chang, T.-M. Tsai, et al., "Origin of hopping conduction in graphene-oxide-doped silicon oxide resistance random access memory devices," IEEE Electron Dev. Lett., vol. 34 (5), pp. 677-679, 2013.
[13] B. Govoreanu, G. Kar, Y. Chen, V. Paraschiv, et al., "10×10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation," in IEDM, 2011, pp. 31.6. 1-31.6. 4.
[14] L. Goux, P. Czarnecki, Y. Y. Chen, L. Pantisano, et al., "Evidences of oxygen-mediated resistive-switching mechanism in TiNHfO2Pt cells," Appl. Phys. Lett., vol. 97 (24), p. 243509, 2010.
[15] D. A. Buck, "Ferroelectrics for digital information storage and switching," MIT Digital Computer Laboratory1952.
[16] 鄭佩慈, "鐵電材料之特性與應用," 儀科中心簡訊, vol. 68, pp. 10-11, 2005.
[17] J. Anderson, "Ferroelectric storage elements for digital computers and switching systems," Electr. Eng., vol. 71 (10), pp. 916-922, 1952.
[18] J. T. Evans and R. Womack, "An experimental 512-bit nonvolatile memory with ferroelectric storage cell," IEEE J. Solid-State Circuits, vol. 23 (5), pp. 1171-1175, 1988.
[19] R. Waser and A. Rüdiger, "Ferroelectrics: Pushing towards the digital storage limit," Nature materials, vol. 3 (2), pp. 81-82, 2004.
[20] S. Lai, "Current status of the phase change memory and its future," in IEDM, 2003, pp. 10.1.1-10.1.4.
[21] J. Oosthoek, D. Krebs, M. Salinga, D. Gravesteijn, G. Hurkx, and B. Kooi, "The influence of resistance drift on measurements of the activation energy of conduction for phase-change material in random access memory line cells," J. Appl. Phys., vol. 112 (8), p. 084506, 2012.
[22] 鍾朝安, "淺談相變化記憶體," 電子與材料雜誌, vol. 14, pp. 71-79, 2005.
[23] R. Simpson, P. Fons, A. Kolobov, T. Fukaya, et al., "Interfacial phase-change memory," Nat. Nanotech., vol. 6 (8), pp. 501-505, 2011.
[24] Y. Ha, J. Yi, H. Horii, J. Park, et al., "An edge contact type cell for phase change RAM featuring very low power consumption," in Symposium on VLSI Technology, 2003, pp. 175-176.
[25] K. Kim and S. J. Ahn, "Reliability investigations for manufacturable high density PRAM," in IEEE 43rd Annual International Reliability Physics Symposium, 2005, pp. 157-162.
[26] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, "Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange," Phys. Rev. B, vol. 39 (7), pp. 4828-4830, 1989.
[27] G. A. Prinz, "Magnetoelectronics," Science, vol. 282 (5394), pp. 1660-1663, 1998.
[28] S. Tehrani, E. Chen, M. Durlam, M. DeHerrera, et al., "High density submicron magnetoresistive random access memory," J. Appl. Phys., vol. 85 (8), p. 5822, 1999.
[29] J.-G. Zhu, Y. Zheng, and G. A. Prinz, "Ultrahigh density vertical magnetoresistive random access memory," J. Appl. Phys., vol. 87 (9), p. 6668, 2000.
[30] S. Tehrani, J. M. Slaughter, M. Deherrera, B. N. Engel, et al., "Magnetoresistive random access memory using magnetic tunnel junctions," Proceedings of the IEEE, vol. 91 (5), pp. 703-714, 2003.
[31] J. Åkerman, "Toward a universal memory," Science, vol. 308 (5721), pp. 508-510, 2005.
[32] A. Akrap, M. Angst, P. Khalifah, D. Mandrus, B. C. Sales, and L. Forró, "Electrical transport in charge-ordered Fe2OBO3: Resistive switching and pressure effects," Phys. Rev. B, vol. 82 (16), p. 165106, 2010.
[33] 葉林秀, 李佳謀, 徐明豐, and 吳德和, "磁阻式隨機存取記憶體技術的發展-現在與未來," 物理雙月刊, vol. 26 (4), pp. 607-619, 2004.
[34] J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices," Nat. Nanotech., vol. 3 (7), pp. 429-433, 2008.
[35] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, et al., "A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre," Nature, vol. 445 (7126), pp. 414-417, 2007.
[36] T. W. Hickmott, "Low-frequency negative resistance in thin anodic oxide films," J. Appl. Phys., vol. 33 (9), p. 2669, 1962.
[37] L. Chua, "Memristor-the missing circuit element," IEEE Trans. Circuit Theory, vol. 18 (5), pp. 507-519, 1971.
[38] L. O. Chua and S. M. Kang, "Memristive devices and systems," Proceedings of the IEEE, vol. 64 (2), pp. 209-223, 1976.
[39] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, vol. 453 (7191), pp. 80-83, 2008.
[40] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, "‘Memristive’ switches enable ‘stateful’ logic operations via material implication," Nature, vol. 464 (7290), pp. 873-876, 2010.
[41] S. Clima, Y. Chen, R. Degraeve, M. Mees, et al., "First-principles simulation of oxygen diffusion in HfOx: Role in the resistive switching mechanism," Appl. Phys. Lett., vol. 100 (13), p. 133102, 2012.
[42] Y.-E. Syu, T.-C. Chang, J.-H. Lou, T.-M. Tsai, et al., "Atomic-level quantized reaction of HfOx memristor," Appl. Phys. Lett., vol. 102 (17), p. 172903, 2013.
[43] Z. Zhang, Y. Wu, H.-P. Wong, and S. S. Wong, "Nanometer-Scale HfOx RRAM," IEEE Electron Device Lett., vol. 34 (8), pp. 1005-1007, 2013.
[44] S. Long, X. Lian, T. Ye, C. Cagli, et al., "Cycle-to-cycle intrinsic RESET statistics in HfO2-based unipolar RRAM devices," IEEE Electron Device Lett., vol. 34 (5), pp. 623-625, 2013.
[45] L.-E. Yu, S. Kim, M.-K. Ryu, S.-Y. Choi, and Y.-K. Choi, "Structure effects on resistive switching of Al/TiOx/Al devices for RRAM applications," IEEE Electron Device Lett., vol. 29 (4), pp. 331-333, 2008.
[46] V. Yarmarkin, S. Shul'man, and V. Lemanov, "Resistive switching in Au/TiO2/Pt thin film structures," Ferroelectrics, vol. 391 (1), pp. 139-150, 2009.
[47] D. Sacchetto, M. Zervas, Y. Temiz, G. De Micheli, and Y. Leblebici, "Resistive programmable through-silicon vias for reconfigurable 3-D fabrics," IEEE Trans. Nanotechnol., vol. 11 (1), pp. 8-11, 2012.
[48] C. Ho, E. Lai, M. Lee, C. Pan, et al., "A highly reliable self-aligned graded oxide WOx resistance memory: conduction mechanisms and reliability," in Symposium on VLSI Technology, 2007, pp. 228-229.
[49] Y.-E. Syu, T.-C. Chang, T.-M. Tsai, G.-W. Chang, et al., "Silicon introduced effect on resistive switching characteristics of WOX thin films," Appl. Phys. Lett., vol. 100 (2), p. 022904, 2012.
[50] B. Lee and H.-S. Wong, "Fabrication and characterization of nanoscale NiO resistance change memory (RRAM) cells with confined conduction paths," IEEE Trans. Electron Dev., vol. 58 (10), pp. 3270-3275, 2011.
[51] F. Nardi, D. Ielmini, C. Cagli, S. Spiga, et al., "Control of filament size and reduction of reset current below 10 μA in NiO resistance switching memories," Solid-State Electron., vol. 58 (1), pp. 42-47, 2011.
[52] L. Goux, J. Lisoni, M. Jurczak, D. Wouters, L. Courtade, and C. Muller, "Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers," J. Appl. Phys., vol. 107 (2), p. 024512, 2010.
[53] L. Goux, J. G. Lisoni, X. P. Wang, M. Jurczak, and D. J. Wouters, "Optimized Ni oxidation in 80-nm contact holes for integration of forming-free and low-power Ni/NiO/Ni memory cells," IEEE Trans. Electron Dev., vol. 56 (10), pp. 2363-2368, 2009.
[54] L. Goux, R. Degraeve, J. Meersschaut, B. Govoreanu, et al., "Role of the anode material in the unipolar switching of TiNNiONi cells," J. Appl. Phys., vol. 113 (5), p. 054505, 2013.
[55] K.-C. Chang, T.-M. Tsai, T.-C. Chang, Y.-E. Syu, et al., "Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment," Appl. Phys. Lett., vol. 99 (26), p. 263501, 2011.
[56] K.-C. Chang, T.-M. Tsai, T.-C. Chang, Y.-E. Syu, et al., "The effect of silicon oxide based RRAM with tin doping," Electrochem. Solid-State Lett., vol. 15 (3), p. H65, 2012.
[57] T.-M. Tsai, K.-C. Chang, T.-C. Chang, G.-W. Chang, et al., "Origin of hopping conduction in Sn-doped silicon oxide RRAM with supercritical fluid treatment," IEEE Electron Device Lett., vol. 33 (12), pp. 1693-1695, 2012.
[58] R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, "Polyaniline nanofiber/gold nanoparticle nonvolatile memory," Nano Letters, vol. 5 (6), pp. 1077-1080, 2005.
[59] Y. Kuang, R. Huang, Y. Tang, W. Ding, L. Zhang, and Y. Wang, "Flexible single-component-polymer resistive memory for ultrafast and highly compatible nonvolatile memory applications," IEEE Electron Device Lett., vol. 31 (7), pp. 758-760, 2010.
[60] W. Bai, R. Huang, Y. Cai, Y. Tang, X. Zhang, and Y. Wang, "Record low-power organic RRAM with sub-20-nA reset current," IEEE Electron Device Lett., vol. 34 (2), pp. 223-225, 2013.
[61] A. Belmonte, W. Kim, B. T. Chan, N. Heylen, et al., "A thermally stable and high-performance 90-nm Al2O3Cu-based 1T1R CBRAM cell," IEEE Trans. Electron Dev., vol. 60 (11), pp. 3690-3695, 2013.
[62] F. De Stefano, V. Afanas’ev, M. Houssa, A. Stesmans, et al., "Control of metal/oxide electron barriers in CBRAM cells by low work-function liners," Microelectron. Eng., vol. 109, pp. 156-159, 2013.
[63] W. Devulder, K. Opsomer, F. Seidel, A. Belmonte, et al., "Influence of carbon alloying on the thermal stability and resistive switching behavior of copper-telluride based CBRAM cells," ACS Appl. Mat. Interfaces, vol. 5 (15), pp. 6984-6989, 2013.
[64] U. Celano, L. Goux, K. Opsomer, A. Belmonte, et al., "Switching mechanism and reverse engineering of low-power Cu-based resistive switching devices," Nanoscale, vol. 5 (22), pp. 11187-11192, 2013.
[65] S. Dietrich, M. Angerbauer, M. Ivanov, D. GOG, et al., "A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control," IEEE J. Solid-State Circuits, vol. 42 (4), pp. 839-845, 2007.
[66] S.-S. Sheu, K.-H. Cheng, M.-F. Chang, P.-C. Chiang, et al., "Fast-write resistive RAM (RRAM) for embedded applications," IEEE Des. Test. Comput., vol. 28 (1), pp. 64-71, 2011.
[67] A. Sawa, "Resistive switching in transition metal oxides," Materials today, vol. 11 (6), pp. 28-36, 2008.
[68] J. J. Yang, F. Miao, M. D. Pickett, D. A. Ohlberg, et al., "The mechanism of electroforming of metal oxide memristive switches," Nanotechnology, vol. 20 (21), p. 215201, 2009.
[69] S. M. Sze and K. K. Ng, Physics of semiconductor devices, 3rd edition. Hoboken, New Jersey: John Wiley & Sons, 2007.
[70] D. Ielmini and Y. Zhang, "Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices," J. Appl. Phys., vol. 102 (5), p. 054517, 2007.
[71] 黃惠忠, 奈米材料分析: 滄海書局, 2004.
[72] D. A. Skoog and D. M. West, Principles of instrumental analysis: Saunders College Philadelphia, 1980.
[73] 方嘉德, 儀器分析: 滄海書局, 2002.
[74] E. Hecht, Optics, 4th Edition. San Francisco, CA: Addison Wesley Longman Inc, 1998.
[75] S. R. Sails, D. J. Gardiner, M. Bowden, J. Savage, and D. Rodway, "Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm," Diamond Relat. Mater., vol. 5 (6), pp. 589-591, 1996.
[76] 張振福, "微波化學氣相沉積及磁控濺鍍成長類鑽石之研究," 博士論文, 電機工程學系, 國立中山大學, 2002.
[77] C. Donnet and A. Erdemir, Tribology of diamond-like carbon films: fundamentals and applications: Springer New York, 2008.
[78] 許樹恩 and 吳泰伯, X 光繞射原理與材料結構分析: 民全書局, 1993.
[79] D. Brandon and W. D. Kaplan, Microstructural characterization of materials. New Youk, NY: John Wiley & Sons, 2008.
[80] X. B. Yan, T. Xu, S. R. Yang, H. W. Liu, and Q. J. Xue, "Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate," J. Phys. D: Appl. Phys., vol. 37 (17), pp. 2416-2424, 2004.
[81] N. Paik, "Raman and XPS studies of DLC films prepared by a magnetron sputter-type negative ion source," Surf. Coat. Technol., vol. 200 (7), pp. 2170-2174, 2005.
[82] D. J. Miller, M. C. Biesinger, and N. S. McIntyre, "Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination?," Surf. Interface Anal., vol. 33 (4), pp. 299-305, 2002.
[83] F. Tuinstra and J. L. Koenig, "Raman spectrum of graphite," J. Chem. Phys., vol. 53 (3), pp. 1126-1130, 2003.
[84] J. Schwan, S. Ulrich, V. Batori, and H. Ehrhardt, "Raman spectroscopy on amorphous carbon films," J. Appl. Phys., vol. 80 (1), pp. 440-447, 1996.
[85] B. K. Tay, X. Shi, H. S. Tan, H. S. Yang, and Z. Sun, "Raman studies of tetrahedral amorphous carbon films deposited by filtered cathodic vacuum arc," Surf. Coat. Technol., vol. 105, pp. 555-158, 1998.
[86] P. Crews, J. Rodriguez, and M. Jaspars, Organic Structure Analysis. New York, USA: Oxford University Press, 1998.
[87] S. Sternhell and J. R. Kalman, Organic structures from spectra: John Wiley & Sons, 1986.
[88] J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, "Highly luminescent silicon nanocrystals with discrete optical transitions," J. Am. Chem. Soc., vol. 123 (16), pp. 3743-3748, 2001.
[89] A. L. Smith, Analysis of silicones: Wiley, 1974.
[90] J. Robertson, "Diamond-like amorphous carbon," Mater. Sci. Eng., R, vol. 37 (4), pp. 129-281, 2002.
[91] T. Jiang and K. Xu, "FTIR study of ultradispersed diamond powder synthesized by explosive detonation," Carbon, vol. 33 (12), pp. 1663-1671, 1995.
[92] K. C. Chang, T. M. Tsai, T. C. Chang, H. H. Wu, et al., "Low temperature improvement method on Zn:SiOx resistive random access memory devices," IEEE Electron Device Lett., vol. 34 (4), pp. 511-513, 2013.
[93] T. W. G. Solomons and C. B. Fryhle, Organic Chemistry, 10th ed. New York: John Wiley&Sons. Inc, 2011.
[94] Y.-J. Chen, H.-L. Chen, T.-F. Young, T.-C. Chang, et al., "Hydrogen induced redox mechanism in amorphous carbon resistive random access memory," Nanoscale Res. Lett., vol. 9 (1), p. 52, 2014.
[95] A. Evtukh, V. Litovchenko, M. Semenenko, O. Yilmazoglu, et al., "Formation of conducting nanochannels in diamond-like carbon films," Semicond. Sci. Technol., vol. 21 (9), pp. 1326-1330, 2006.
[96] K. Shimakawa and K. Miyake, "Hopping transport of localized π electrons in amorphous carbon films," Phys. Rev. B, vol. 39 (11), pp. 7578-7584, 1989.
[97] A. C. Ferrari and J. Robertson, "Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon," Phys. Rev. B, vol. 64 (7), p. 075414, 2001.
[98] S. Long, X. Lian, C. Cagli, L. Perniola, et al., "A model for the set statistics of RRAM inspired in the percolation model of oxide breakdown," IEEE Electron Device Lett., vol. 34 (8), pp. 999-1001, 2013.
[99] Y.-E. Syu, T.-C. Chang, T.-M. Tsai, Y.-C. Hung, et al., "Redox reaction switching mechanism in RRAM devicewith Pt/CoSiO(X)/TiN structure," IEEE Electron Dev. Lett., vol. 32 (4), pp. 545-547, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code