Responsive image
博碩士論文 etd-0624114-155544 詳細資訊
Title page for etd-0624114-155544
論文名稱
Title
60-GHz高增益寬頻天線陣列整合電磁帶隙反射板於手持式裝置與右手/左手傳輸線於天線陣列之應用
60-GHz High-gain and Wideband Antenna Arrays with Electromagnetic Band-Gap Reflector for Handset Applications and Antenna Arrays Based on Composite Right/Left-Handed Transmission Line
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-01
繳交日期
Date of Submission
2014-07-25
關鍵字
Keywords
60 GHz、增益、EBG反射板、陣列天線、複合右手/左手傳輸線
60-GHz, Gain, Antenna array, CRLH, EBG reflector
統計
Statistics
本論文已被瀏覽 5719 次,被下載 2300
The thesis/dissertation has been browsed 5719 times, has been downloaded 2300 times.
中文摘要
近年來,由於無線通訊的快速發展,為了因應整合高速傳輸數位產品的需求, IEEE制定的新一代無線網路通訊技術標準802.11ad,採用60 GHz無線頻段來進行無線傳輸。然而毫米波在空氣中傳播距離較短,其通訊傳輸距離遠小於目前的WLAN(Wireless Local Area Network)技術,因此我們需要高增益天線來克服此問題。本論文中,我們提出設計於57-66 GHz頻段內,具有高增益的天線。且將之整合於手機機殼內,以作為未來無線影音傳輸、高資料率傳輸的手持式裝置應用,
首先,提出具有寬頻且高增益特性的1×4天線陣列,並加入覆板及電磁帶隙(electromagnetic band–gap, EBG)反射板,分別置於天線陣列的上方及下方。在此設計下,天線陣列的增益在操作頻帶內至少可以增加5 dB。除此之外,在實際應用上,我們所設計的天線更具有高指向性,且最大增益可達15.5 dBi的優點。
為了改變天線陣列場型的最大輻射方向,我們將複合右手/左手傳輸線整合於其中。由於複合右手/左手傳輸線具有可以產生領先相位的優點,但在傳統傳輸線並不能產生此現象。藉由此設計方法,天線陣列場型可以由原本的End-fire變成Broad-side,且可以藉由相位的大小來決定最大輻射方向。所以在天線陣列場型的設計上,會具有更大的自由度。
Abstract
In recent years, the development of wireless communication system has grown rapidly. To meet the requirements of high speed data rate transmission, the IEEE association defined the standard of 802.11ad for new wireless communication technology. It uses the band of 60-GHz to provide wireless communications. However, the range that the millimeter wave can travel is shorter than that of the WLAN (Wireless Local Area Network) technology. Therefore, a high gain antenna is required to overcome this problem. In this thesis, we propose the antenna which has the property of high gain and the operating band from 57 to 66 GHz. We also take the phone casing into account in order to meet the practical applications of handset devices for wireless video transmission and high data rate transmission.
A 1×4 antenna array with wideband and high-gain characteristics was designed and then a superstrate and an electromagnetic band–gap structure (EBG) reflector were placed on the top and bottom sides of the antenna arrays respectively. Under this circumstance, the antenna peak gain increases by at least 5 dB in the operating band. In addition, the antenna achieves high directivity and the peak gain of 15.5 dBi which is sufficient for practical applications.
A composite right/left-handed (CRLH) based circuit was integrated with the transmission line of the antenna arrays in order to change maximum radiation direction. The circuit provides the property of phase lead which the conventional transmission line cannot be realized. Utilizing the method, the radiation pattern can vary from end-fire to broad-side. Also, maximum radiation direction can be altered by changing CRLH phase. In conclusion, it offers more freedom of adjusting radiation pattern design.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 xi
第一章 緒論 1
1.1 研究動機及背景 1
1.2 研究方法 2
1.3 相關研究概況 2
1.4 論文大鋼 3
第二章 天線設計 4
2.1 槽孔天線介紹 4
2.2 槽孔天線設計 5
第三章 電磁帶隙反射板之設計 8
3.1 電磁帶隙基本理論及應用 8
3.2 單一晶胞設計 8
3.3 天線與反射板之整合設計 12
第四章 高增天線陣列設計 15
4.1 天線陣列理論 15
4.2 1 4天線陣列設計 17
4.3 高增益天線陣列設計 19
4.4 天線置於手機殼環境中 26
4.5 天線陣列縮小化 32
第五章 天線實做及量測 35
5.1 天線陣列於印刷電路板實做及量測模擬 35
5.2 天線陣列量測結果與分析 40
5.3 相關文獻比較 49
第六章 複合右/左手傳輸線於天線陣列之應用 51
6.1 複合右/左手傳輸線簡介 51
6.2 複合右/左手傳輸線與天線陣列之整合設計 54
第七章 結論 61
參考文獻 62
參考文獻 References
[1] http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=10&Cat=30&Cat1=&id=290753
[2] S. Pinel, P. Sen, S. Sarkar, B. Perumana, D. Dawn, D. Yeh, F. Barale, M. Leung, E. Juntunen, P. Vadivelu, K. Chuang, P. Melet, G. Iyer and J. Laskar, "60GHz single-chip CMOS digital radios and phased array solutions for gaming and connectivity," IEEE J. Sel. Areas Commun., vol.27, no.8, pp.1347–1357, Oct. 2009.
[3] http://cacm.acm.org/news/169528-nsf-grant-to-help-point-way-to-5g-wireless/fulltext
[4] T. Zwick, D. Liu, J. Grzyb and B. Gaucher, "A Coplanar patch antenna for integration with mmWave SiGe transceiver," IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, pp.416–419, Mar. 2006.
[5] J. Grzyb, D. Liu and B. Gaucher, "Packaging effects of a broadband 60 GHz cavity-backed folded dipole superstrate antenna," in Proc. Int. Symp. Antennas Propag., pp.4365–4368, Jun. 2007.
[6] X.-Y. Bao, Y.-X. Guo and Y.-Z. Xiong, "60-GHz AMC-Based circularly polarized on-chip antenna using standard 0.18-um CMOS technology," IEEE Trans. Antennas Propag., vol.60, no.5, pp.2234–2241, May 2012
[7] W. Byun, B.-S. Kim, K.-S. Kim, M.-S. Kang and M.-S. Song, "60GHz 2×4 low temperature co-fired ceramic cavity backed array antenna," in Proc. Int. Symp. Antennas Propag., Jun. 2009.
[8] L. Wang, Y. X. Guo and W. X. Sheng, "Wideband high-gain 60-GHz LTCC L-probe patch antenna array with a soft surface," IEEE Trans. Antennas Propag., vol.61, no.4, pp.1802–1809, Apr. 2013.
[9] D. M. Pozar,"Microstrip antennas," Proc.IEEE,vol.80,no.1, pp.70–91, 1992.
[10] K. F. Lee, K. M. Luk, K. F. Tong, S.M. Shum, T. Huynh and R.Q. Lee, "Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna," IEEE Proc. Microw. Antennas Propag., vol.144, no.5, pp.354–358,1997.
[11] C. P. Wen, "Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Trans. Microw. Theory Techn., vol.17, no.12, pp.1087–1090, Dec. 1969.
[12] S. Shahparnia, Ramahi and M. Omar, "Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures," IEEE Trans. Electromagn. Compat., vol.46, no.4, pp.580–587, Nov. 2004.
[13] M. Coulombe, Koodiani, S. F. and C. Caloz, "Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances," IEEE Trans. Antennas Propag., vol.58, no.4, pp.1076–1086, Apr. 2010.
[14] F. Yang and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering. New York: Cambridge University Press, 2009.
[15] L. Leger, T. Monediere and B. Jecko, "Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna," IEEE Microw. Wireless Compon. Lett., vol.15, no.9, pp.573–575, Sep. 2005.
[16] C. A. Balanis, Antenna theory analysis and design, 2nd ed., John Wiley & Sons, 1997.
[17] E. Leevine, G. Malamud, S. Shtrikman and D. Treves, “A study of microstrip antenna with the feed network,” IEEE Trans. Antennas Propag., vol. 37, pp.426–434, Apr. 1989.
[18] R. Chadha and K.C. Gupta, "Compensation of discontinuities in planar transmission lines," IEEE Trans. Microw. Theory Techn., vol.30, no.12, pp.2151–2156, Dec. 1982.
[19] E. A. Soliman, S. Brebels, E. Beyne and G. A. E. Vandenbosch, "2×2 and 4×4 arrays of annular slot antennas in MCM-D technology fed by coplanar CPW networks," IEEE Proc. Microw. Antennas Propag., vol.146, no.5, pp.335–338, Oct. 1999.
[20] Y. Ito, M. Ameya, M. Yamamoto and T. Nojima, "Unidirectional UWB array antenna using leaf-shaped bowtie elements and flat reflector,“ Electron. Lett. , vol.44, no.1, pp.9–11, Jan. 2008.
[21] D. Nashaat, H.A. Elsadek, E.A. Abdallah, M.F. Iskander and H.M. Elhenawy, "Ultrawide bandwidth 2×2 microstrip patch array antenna using electromagnetic band-gap structure (EBG)," IEEE Trans. Antennas Propag., vol.59, no.5, pp.1528–1534, May 2011.
[22] T.J. Brockett and Y. Rahmat-Samii, "Subarray design diagnostics for the suppression of undesirable grating lobes," IEEE Trans. Antennas Propag., vol.60, no.3, pp.1373–1380, Mar. 2012
[23] http://mpd.southwestmicrowave.com/products/product.php?need=endLaunch&item=54
[24] D. Liu, Akkermans, A. G. A. Johannes, H. C. Chen and B. Floyd, "Packages with integrated 60-GHz aperture-coupled patch antennas," IEEE Trans. Antennas Propag., vol.59, no.10, pp.3607–3616, Oct. 2011.
[25] O. Kramer, T. Djerafi and K. Wu, "Very small foot print 60 GHz stacked yagi antenna array," IEEE Trans. Antennas Propag., vol.59, no.9, pp.3204–3210, Sep. 2011.
[26] K. Gong, Z.N. Chen, X. Qing, P. Chen and W. Hong, "Substrate integrated waveguide cavity-backed wide slot antenna for 60-GHz bands," IEEE Trans. Antennas Propag., vol.60, no.12, pp.6023–6026, Dec. 2012
[27] Y. Li and K.M. Luk, "A 60-GHz dense dielectric patch antenna array," IEEE Trans. Antennas Propag., vol.62, no.2, pp.960–963, Feb. 2014.
[28] C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. New York: Wiley, 2004.
[29] M. A. Antoniades and G. V. Eleftheriades, “Compact linear lead/lag metamaterial phase shifters for broadband applications,” IEEE Antennas Wireless Propag. Lett., vol. 2, no. 7, pp. 103–106, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code