Responsive image
博碩士論文 etd-0624114-162927 詳細資訊
Title page for etd-0624114-162927
論文名稱
Title
新型非線性波導材料Ta2O5與微環之研製
Novel Nonlinear Waveguide Material Tantalum Pentoxide & MicroRing Fabrication
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-22
繳交日期
Date of Submission
2014-09-05
關鍵字
Keywords
五氧化二鉭、磁式濺鍍法、四波混頻、波導、微環
Waveguide, Micro-Ring devices, Ta2O5, Tantalum pentoxide, Magentron sputter, Four-wave mixing
統計
Statistics
本論文已被瀏覽 5674 次,被下載 0
The thesis/dissertation has been browsed 5674 times, has been downloaded 0 times.
中文摘要
本論文中,我們利用無毒的磁式濺鍍法成長高光學品質的五氧化二鉭薄膜,我們藉由微拉曼光譜以及XRD確認材料正確性,以及分析其晶相,薄膜折射率高達2.08~2.1,且具有高透明性。其表面粗糙度最低可以到達0.12 nm,由TEM也確認薄膜截面非常緻密,且在三萬倍的電子顯微鏡下沒有任何的裂痕被觀察到,n2值高達3.5×10-12 cm2/W,為四波混頻振盪提供一個新穎的非線性材料選項。在模擬方面,我們計算材料及波導色散曲線。為了驗證其計算的正確性,我們將計算結果與文獻比較,並分析結果。我們以此計算方式計算我們的Ta2O5波導以及材料色散曲線、並估算非線性係數造成色散曲線貢獻,並得到最佳的四波混頻pump光的波長範圍,進而得到最佳的色散補償效應。在製程方面,我們已擬出研製五氧化二鉭微環的製程程序與配方。目前的製程成果尚未得到最佳化的微環元件品質,我們也陳列了幾個改善製程的因素,期望在未來會有突破性的發展。
Abstract
In this work, high optical properties were grown by non-toxic magnetron sputter system, using XRD measurements and Micro-Raman spectrum, the crtstalline state of Ta2O5 were confirmed. The refractive index of the Ta2O5 thin film was around 2.1~2.08 and the extinction coefficient is extremely low. The optimized surface roughness as low as 0.12nm was obtained as annealing with three hours at temperature of 650C, and the profile of cross section is extremely dense with no pinhole observed. We further estimated the crack density by using 30k X SEM image and no cracks were found. The n2 value of the thin film is as high as 3.5×10-12 cm2/W, Ta2O5 provide an novel option for FWM-OPO. In our calculation, we estimated the dispersion contribution from bulk material and waveguide. By verified the past work by other team data to confirm the correctness of our motheds.We also calculate in our Ta2O5 case and obtained the dispersion curve. In the fabrication process, we haven’t obtained the best quality of Micro-Ring structure.As the result, the hint were proposed to optimize the quality of our devices.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1-1材料背景 1
1-2光學背景介紹: 6
1-3論文動機: 9
1-4論文架構: 11
第二章 四波混頻光參量放大與震盪介紹 12
2-1非線性光學簡介 13
2-2四波混頻光參量放大與光參量震盪 19
2-3四波混頻文獻回顧 23
第三章 Ta2O5薄膜成長與光學特性檢測 25
3-1材料介紹 26
3-2材料各種製備方式 30
3-3 Ta2O5薄膜沉積 32
3-4 Ta2O5表面形貌量測以及基本性質量測 37
3-5 Ta2O5非線性係數n2值 46
3-6章節結論 49
第四章 四波混頻色散補償計算 50
4-1長直波導對微環的能量耦合與穿透係數 51
4-2共振腔基本參數 53
4.3色散補償議題 54
4-4非線性係數(n2)對色散造成的貢獻 59
第五章 元件製程 60
5-1薄膜沉積製程 61
5-2電子束微影(ebeam Lithography) 73
5-3蝕刻製程 78
5-4製程步驟以及結果分析 79
第六章 結論與未來工作展望 90
6-1綜合本文工作: 90
6-2未來工作與展望: 91
參考文獻 92
參考文獻 References
[1] H. J. R. Dutton, “Understanding optical communications”, http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245230.pdf, IBM Redbooks (1998)
[2]http://zh.wikipedia.org/wiki/同轴电缆
[3] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs”, Science 332, 555-559 (2011)
[4] http://www.ti.com/corp/docs/kilbyctr/jackbuilt.shtml
[5]http://zh.wikipedia.org/wiki/集成电路#mediaviewer/File:Conroe_die.png
[6] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Foster, A. L. Gaeta and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects”, Nature Photon. 4, 37-40 (2010)
[7] M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires”, Opt. Express 16, 1300-1320 (2008)
[8] J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics”, Nature Photon. 4, 535-544 (2010)
[9] Y. Nishi, and R. Doering, “Handbook of semiconductor manufacturing technology”, CRC press, ISBN: 0-8247-8783-8 (2012)
[10] T. Steinmetz, T. Wilken, C. Araujo,R. Holzwarth,T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico,M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations”, Science 321, 1335-1337 (2008)
[11] I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range”, Nature Photon. 3, 351-356 (2009)
[12] C. B. Huang , Z. Jiang , D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations”, Laser Photon. Rev. 2, 227-248 (2008)
[13] http://www.fluorochem.co.uk/Products/Silanes
[14] S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion”, Science 293, 825-828 (2001)
[15] L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyperparametric oscillator”, Nature 4, 41-45 (2010)
[16] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator”, Nature 450, 1214-1217 (2007)
[17] Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip”, Opt. Lett. 36, 3398-3400 (2011)
[18] Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators”, Phys. Rev. Lett. 104, 103902 (2010)
[19] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator”, Phys. Rev. Lett. 101, 093902 (2008)
[20]http://www.extremetech.com/computing/123391-globalfoundries-hits-32nm-milestone-but-amds-still-refusing-to-commit-to-28nm-production
[21] R. H. Stolen, and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers”, IEEE J. Quantum Electron. 18, 1062-1072 (1982)
[22] T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers application to residual dispersion monitoring”, J. Lightw. Technol. 23, 818-826 (2005)
[23] D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber”, Opt. Lett. 34, 3499-3501 (2009)
[24] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip”, Nature 441, 960-963 (2006)
[25] M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source”, Opt. Express 19, 14233-14239 (2011)
[26] T. J. Kippenberg, “Nonlinear optics in ultra-high-Q whispering gallery optical microcavities”, California Institute of Technology, Ph.D thesis (2004)
[27] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity”, Phys. Rev. Lett. 93, 083904 (2004)
[28] C. Chaneliere ,J. L. Autran, R. A. B. Devine, B. Balland, “Tantalum pentoxide thin films for advanced dielectric applications”, Mater. Sci. Eng. R22, 269-322 (1998)
[29] C. Y. Tai, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation”, Opt.Express 12, 5110-5116 (2004)
[30] 趙聖之, “非線性光學”, 濟南 山東大學出版社, ISBN: 978-7-5607-3414-9 (2007)
[31] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics”, Phys. Rev. Lett. 7, 118-119 (1961)
[32] J. A. Giordmaine, “Mixing of light beams in crystals”, Phys. Rev. Lett. 8, 19-20 (1962)
[33] P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effect of dispersion and focusing on product of optical harmonics”, Phys. Rev. Lett. 8, 21-22 (1962)
[34] C. C. Wang, and G. W. Racette, “Measurement of parametric gain accompanying optical difference frequency generation”, Appl. Phys. Lett. 6, 169-170 (1965)
[35] J. A. Giordmaine, and R. C. Miller, “Tumable coherent parametric oscillation in LiNbO3 at optical frequencies”, Phys. Rev. Lett. 14, 973-976 (1965)
[36] P. D. Maker, and R. W. Terhune, “Study of optical effects due to an induced polarization third order in electric field strength”, Phys. Rev. 137, A801-A818 (1965)
[37] G. P. Agrawal, “Nonlinear Fiber optics”, 3rd ed San Diega, 195-211 (2000)
[38] B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror”, Electron. Lett. 27, 704-705 (1991)
[39] F. Chiarello, L. Palmieri, A. Galtarossa, and M. Santagiustina, “Widely time-dispersion-tuned fiber optical oscillator and frequency comb based on multiple nonlinear processes”, Opt. Express 38, 4621-4624 (2013)
[40] H. Fukuda, K. Yamada, T. Shoji, M. Takahashi,T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides”, Opt. Express 13, 4630-4637 (2005)
[41] H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength”, Appl. Phys. Lett. 80, 416-418 (2002)
[42] M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths”, Appl. Phys. Lett. 82, 2954-2956 (2003)
[43] I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides”, Opt. Express 37, 2997-2999 (2012)
[44] D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides”, Opt. Express 17, 1865-1870 (2009)
[45] F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Choi, S. Madden, B. Luther, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguide for broadband FWM based wavelength conversion of 40 Gbs signals”, Opt. Express 17, 3514-3520 (2009)
[46] D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinum generation in highly nonlinear chalcogenide nanowires”, Opt. Lett. 33, 660-662 (2008)
[47] M. R. E. Lamont, B. Luther, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip”, Opt. Express 16, 20374-20381 (2008)
[48] L. G. Helt, M. J. Steel, and J. E. Sipe, “Parasitic nonlinearities in photon pair generation via integrated spontaneous four-wave mixing critical problem or distraction”, Appl. Phys. Lett. 102, 201106 (2013)
[49] J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators”, Opt. Express 29, 769-771 (2004)
[50] D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range”, Opt. Express 22, 1244-1246 (1997)
[51] P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Wavelength conversion in GaAs micro-ring resonators”, Opt. Express 25, 554-556 (2000)
[52] K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides – A Review”, Sensor 8, 711-738 (2008)
[53] B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index tantalum pentoxide waveguides for optical propulsion of microparticles”, IEEE Photonics Technol. Lett. 21, 1408-1410 (2009)
[54] A. K. Chu, M. J. Chuang, K. Y. Hsieh, H. L. Huang, Y. C. Yu, C. W. Wang, and E. K. Lin, “Microstructure and corrosion resistance of room-temperature rf sputtered Ta2O5 thin films”, J. Electron. Mater. 28, 1457-1460 (1999)
[55] S. Kakio, T. Mitsui, A. Tsuchiya, and Y. Nakagawa, “Highly oriented Ta2O5 piezoelectric thin films prepared by rf-magnetron sputtering”, IEEE ULTSYM 0656, 2643-2646 (2009)
[56] S. Iwamoto, R. Saigusa, and S. Kakio, “Evaluation of piezoelectric Ta2O5 thin films deposited on sapphire substrates”, IEEE ULTSYM 0432, 1696-1699 (2013)
[57] B. R. Sahu, and L. Kleinman, “Theoretical study of structural and electronic properties of β-Ta2O5 and α-Ta2O5”, Phys. Rev. B 69, 165202 (2004)
[58] S. J. Pearce, M. D. B. Charlton, J. Hiltunen, J. Puustinen, J. Lappalainen, and J. S. Wilkinson, “Structural characteristics and optical properties of dielectric thin films for planar waveguiding applications”, Surf. Coat. Technol. 206, 4930-4939 (2012)
[59] Y. Zhao, Q. Du, X. Cao, B. Chi, J. Zhang, C. Zhang, T. Liu, X. Wang, and Y. Su, “Electronic structure and electrocatalytic activity of cerium-doped tantalum oxide”, J. Electroanal. Chem. 681, 139-143 (2012)
[60] C. Joseph, P. Bourson, and M. D. Fontana, “Amorphous to crystalline transformation in Ta2O5 studied by raman spectroscopy”, J. Raman Spectrosc. 43, 1146-1150 (2012)
[61] T. Blanquart, V. Longo, J. Niinisto, M. Heikkila, K. Kukli, M. Ritala, and Markku Leskela, “High-performance imido–amido precursor for the atomic layer deposition of Ta2O5”, Semicond. Sci. Technol. 27, 074003 (2012)
[62] G. S. Oehrlein, “Oxidation temperature dependence of the dc electrical conduction characteristics and dielectric strength of thin Ta2O5 films on silicon”, J. Appl. Phys. 59, 1587-1595 (1986)
[63] J. C. Zhou, D. T. Luo, Y. Z. Li, and Z. Liu, “Effect of sputtering pressure and rapid thermal annealing on optical properties of Ta2O5 thin films”, Trans. Nonferrous Met. Soc. China 19, 359−363 (2009)
[64]http://wccftech.com/nvidia-pascal-architecture-detailed-technical-analysis-stacked-dram-nv-link/
[65] O. D. Vol'pyan, P. P. Yakovlev, B. B. Meshkov, and Y. A. Obod, “Optical properties of Ta2O5 films obtained by reactive magnetron sputtering”, J. Opt. Technol. 70, 669-672 (2003)
[66] G. Eftekhari, “MIS diodes on n-InP with tantalum oxide interfacial layer grown by rapid thermal oxidation of tantalum”, Phys. Status Solidi (A) 146, 867-871 (1994)
[67] J. Hirvonen, A. G. Revesz, and T. D. Kirkendall, “Rutherford backscattering investigation of thermally oxidized tantalum on silicon”, Thin Solid Films 33, 315-322 (1976)
[68] A. K. Chu, Y. S. Huang, and S. H. Tang, “Room-temperature radio frequency sputtered Ta2O5 a new etch mask for bulk silicon dissolved processes”, J. Vac. Sci. Technol. B 17, 455-459 (1999)
[69] S. H. Woo, C. K. Hwangbo, Y. B. Son, I. C. Moon, G. M. Kang, and K. S. Lee, “Optical properties of Ta2O5 thin films deposited by plasma ion-assisted deposition”, J. Korean Phys. Soc. 46, 187-191 (2005)
[70] M. Ylilammi, “Mass transport in atomic layer deposition carrier gas reactors”, J. Electrochem. Soc. 142, 2474-2479 (1995)
[71] Y. Kavanagha, M. J. Alama, and D. C. Camerona, “The characteristics of thin film electroluminescent displays produced using sol–gel produced tantalum pentoxide and zinc sulfide”, Thin Solid Films 447, 85-89 (2004)
[72] J. P. Masse, H. Szymanowski, O. Zabeida, A. Amassian, J. E. Klemberg, and L. Martinu, “Stability and effect of annealing on the optical properties of plasma-deposited Ta2O5 and Nb2O5 films”, Thin Solid Films 515, 1674–1682 (2006)
[73]嚴文隆, "PECVD方法成長之石墨烯及Ta2O5薄膜之非線性研究", 國立中山大學, 碩士論文 (2014)
[74] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides”, Opt. Express 14, 4357-4362 (2006)
[75] D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides”, Appl. Phys. Lett. 96, 061101 (2010)
[76] I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres”, Phys. Rev. A 76, 043837 (2007)
[77] L. Tonks, and I. Langmuir, “Oscillations in ionized gases”, Phys. Rev. 33, 195-210 (1929)
[78] M. Sheik, A. A. Said, and E. W. V. Stryland, “High-sensitivity, single-beam n2 measurements”, Opt. Lett. 14 (1989)
[79]http://imhwind.pixnet.net/blog/post/33994897-壓力換算表
[80] http://www.msi-pse.com/PDF/Sales Literature/MC 402A_0112.pdf
[81] http://www.msi-pse.com/Polaris.htm
[82] http://big5.taiwan.cn/xwzx/Technology/201104/t20110411_1817471.htm
[83] http://finance.takungpao.com.hk/tech/q/2013/0118/1265991_7.html
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.233.221.42
論文開放下載的時間是 校外不公開

Your IP address is 3.233.221.42
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code