Responsive image
博碩士論文 etd-0624114-200258 詳細資訊
Title page for etd-0624114-200258
論文名稱
Title
開發多功能之大氣壓力質譜法游離源及介面
Development of Multifunctional Ionization Sources and Interfaces for Ambient Mass Spectrometry
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
248
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-06
繳交日期
Date of Submission
2014-07-28
關鍵字
Keywords
ESI/APCI離子源、大氣壓力質譜法、脈衝式雷射、連續式雷射、GC/AMS、游離機制、旋轉式電噴灑游離法
rotating electrospray ionization mass spectrometry, pulsed laser, GC/AMS, ESI/APCI ion source, CW laser, ionization mechanisms
統計
Statistics
本論文已被瀏覽 5755 次,被下載 105
The thesis/dissertation has been browsed 5755 times, has been downloaded 105 times.
中文摘要
  隨著長久質譜發展,標榜不同功能之大氣壓力游離源也相繼開發出。又因產生離子方式不同,則可將其分類為電噴灑相關游離技術以及大氣壓力化學游離相關技術。其中電噴灑游離法則可以應用在極性物質之偵測上,其游離過程可以致使分析物帶有多價訊號,並且應用在較大質量偵測範圍。大氣壓力化學游離法則是被應用在弱極性以及非極性物質偵測,並且游離過程主會產生單價離子訊號,因此其質量範圍則是被侷限在2000 Da 以下。而在研究初期,則是藉由整合電噴灑游離系統以及介電質放電系統,來製成一體積小,構型簡單且操作方便之複合式離子源。其特點則可切換不同游離模式,來產生不同特性之反應物質(e.g.介穩態原子、水合離子以及帶電液珠等),以便用於不同極性範圍之分析上。接下來則是將此複合性離子源結合不同進樣技術,根據樣品特性來選擇性氣化、剝蝕以及霧化之進樣過程,最後再經由不同游離機制來形成分析物離子,以達到分析時間短、不需樣品前處理以及置換樣品快速之目的。最後再設計一介面來固定進樣系統,游離系統以及層析系統,並促使此介面可操作在不同模式底下進行分析。後續研究將可分為六大部分,第一部分及第二部分主要是利用此游離源探討氣相反應,並於第三部分將離子源與進樣系統進行結合,第四部份將前述系統應用於真實樣品-高分子聚合物的分析;第五部分則是更進一步地將層析系統與上述進樣系統整合,並以此作為一多功能性介面的基礎。此外,於第六部分研究製作一個承載系統來載承游離系統,藉由機械力作用來游離系統游離以及進樣效率。
 
  第一部分 利用ESI/APCI 離子源來進行電荷還原之探討
  第一個研究中則是經由同軸設計之ESI/APCI 離子源來進行電荷還原之探討。在進樣方式上,主要是利用電噴灑質譜法來進行胜肽溶液之霧化游離,液態樣品經由電噴灑機制,則可以產生帶有多價胜肽離子訊號,其中則包含有細胞緊張色素I (Angiotensin I)、細胞緊張色素II (Angiotensin II)以及胰島素(Insulin)。其經由介電質放電機制所產生反應物質,即包含帶有正電之反應物質、負電反應物質以及介穩態原子(分子),而本研究中則是經由調控交流電壓大小來產生不同比例之反應物質,並且藉由氣流導引將帶有負電之反應物質與多價電荷胜肽離子在氣相中進行電荷還原反應,藉由偵測分析物價術分佈來探討電荷還原之程度。
 
  第二部分 利用ESI/APCI 離子源進行游離機制之探討
  第二個研究則是藉由連續式雷射照射樣品盤表面,當雷射光束照射至樣品盤表面則會在照射區域快速地加熱,而致使沉積在樣品盤表面之分析物會經由高溫而造成分析物氣化。再藉由切換游離模式來產生不同特性之反應物質,致使中性分析物會經由不同游離機制來形成離子形式。在另一方面,藉由改變質譜入口的溫度,來探討游離區域之溫度對於反應物質之影響。上述兩種測試,都是根據偵測之離子形式來推測可能之游離機制,此研究中推測之游離機制,包含有質子轉移機制來形成質子化分子離子、潘尼游離機制行形成自由基陽離子以及插氫還原反應來形成[M+2H]+之離子形式。上述則是著重經由ESI/APCI 離子源來進行氣相反應的探討,並且經由反應後之離子訊號組成來了解反應機制。
 
  第三部分 將ESI/APCI 離子源結合不同進樣系統來進行分析
  第三個研究則是將ESI/APCI 離子源結合各式進樣方式,來進行不同大氣壓力質譜法之分析流程。並且藉由切換游離模式來選擇性地游離樣品中不同極性範圍之組成,而致使中性分析物可經由不同游離機制形成不同離子形式。此外,根據樣品的特則可經由選擇不同大氣壓力質譜法來進行分析,就揮發性物質可經由GC-ESI 之分析流程來進行分析。而對於非揮發性樣品則可以經由直接脫附游離法以及二段式游離法來進行分析。在實驗中,則藉由測試不同特性之標準品及真實樣品,,其中包含有二茂鐵、吲哚、多環芳香烴(PAH)、柴油、胜肽、精油以及95 無鉛汽油。上述測試,則突顯ESI/APCI 離子源之特點,並且可藉由空間上排列整合進樣系統,則可被利用來進行各式分析流程以分析不同特性之樣品。
 
  第四部份 利用LD ESI/APCI 質譜法分析各式聚合物
  第四個研究則是將脈衝雷射(pulsed laser)以及連續式雷射(CW laser)結合可切換多游離模式之ESI/APCI離子源,來對於不同特性之高分子聚合物進行探討,此技術又稱為LD ESI/APCI 質譜法。實驗過程則包含利用不同雷射系統來對丙二醇(polypropylene glycol, PPG)進行分析,其中包含利用脈衝式雷射(pulsed laser)進行樣品剝蝕以及連續式雷射進行樣品熱脫附,以達到霧化樣品以及氣化分析物之目的,最終再經ESI 游離系統或BDBI 系統所產生反應物質進行後游離,並且根據形成之離子形式來推測游離機制。而另一方面,將此技術被應用來檢視不同單體(PEG, Δ=44; PMMA, Δ=100; PS, Δ=104 以及PPG, Δ=58)以及不同平均分子量分佈(PEG 200-1000; PMMA 1300; PS 1000-4600; PPG 1000-4600)之高分子聚合物。在真實樣品之分析上,則可以應用在鑑定塑膠食品包裝之聚合物組成、兩種單體聚合以不同比例聚合之高分子聚合物(陳明教授提供)、不同單體聚合之共聚物(copolymer)之標準品分析以及由材料行購買橡膠製品分析。此外,在數據分析上也結合主成分分析法(principal component analysis,PCA)來進行資料統整。以便進行各式聚合物成品之區分以及檢視偵測上再現性好壞。
 
  第五部份 開發介面整合層析系統及大氣壓力質譜法分析阱油組成
  在第五個研究則是將大氣壓力質譜法整合在氣相層析質譜介面中。此套系統,又稱為氣相層析/大氣壓力質譜法介面(GC-AMS interface)。其裝置構型則是包含相似於ESI/APCI 離子源之同軸設計介電質放電離子源、金屬製加熱介面、固定介面以及兩套進樣系統,分別為熱脫附裝置以及氣相層析系統。其中,若是需要進行大量樣品篩檢,則可經熱脫附介電質放電游離模式(TD-DBDI mode)進行快速篩檢。若是,樣品含有複雜之基質則可以經由氣相層析介電質放電模式(GC-DBDI mode)模式來進行分離,簡化質譜複雜程度及減少離子壓抑效應。在實驗初期,則是TD-DBDI 模式來檢視直鏈烷類之游離機制,並且烷類離子訊號會經由碰撞誘導碎裂所得到之二次質譜圖來推測離分子結構。而在另一方面,則是利用烷類混合物(C12-C24)來進行GC-DBDI 參數探討,其中包含加熱介面溫度,放電氣體的流速以及靈敏度探討。在真實樣品分析上,則是分析阱油並分析結果也會與GC-EI 質譜法進行比較。在最後七種阱油的分析上,其實驗結果也結合主成分分析法來區分阱油種類的區分。
 
  第六部份 旋轉式電噴灑游離裝置及其應用
  第六個研究則是設計致動系統乘載電噴灑離子源,此套系統最大的特色則是可藉由機械力致使電噴灑離子源進行高速圓周運動。在本研究中則分別對於旋轉直徑、旋轉頻率、電噴灑噴嘴與質譜入口相對距離來進行探討,以了解高速旋轉時電噴灑系統之特性。此外,經由機械力來進行單管、雙管以及三管電噴灑皆裝置致動系統上,在單管電噴灑系統上來探討在高速旋轉下是否對於訊雜比是否有影響。並且藉由整合雙管以及三管電噴灑系統,因噴嘴間會因電場相互地排斥,而造成電噴灑雲分布不均的現象產生,因此欲利用機械力來改電噴灑分布不均的現象,解此來提升進樣的效率。
Abstract
  Ambient pressure ionization (API) techniques have accompanied the development of mass spectrometry since the 1970s. Based on the production of ion species, API techniques can be classified as ESI-based or APCI-based. Because multiply-charged analytes can be formed during ESI, ESI/MS can be applied for the detection of polar macromolecules (e.g. proteins and polymers). On the other hand, APCI can be used for the detection of less polar and nonpolar small molecules through ion-molecule reactions and Penning ionization with a mass scan range under 2000 Da. Herein, the development of a coaxial ESI/APCI source with several merits (e.g. small size, simple configuration and easy operation) was introduced. Due to the integration of ESI and DBDI, the coaxial design of the ESI/APCI source can be operated in ESI-only, ESI/APCI and APCI–only modes for characterizing different reactive species (e.g. charged droplets and hydronium ions). Based on sample characteristics, different sampling methods (e.g. laser ablation, laser thermal desorption and ultrasonic nebulization) can be integrated into the developed system for production of neutral intact molecules, fragmented structures and analyte droplets over a wide polarity range. The produced species were then directly ionized via different ionization mechanisms. Similar to other AMS techniques, this system also has short analysis times, quick sample switching and no need for sample pretreatment. The hybrid ionization system can be used for expanding ionization polarities so that multiple sampling systems can be used for analyzing compounds with different characteristics. Finally, an interface was designed that integrated sampling, ionization and chromatographic systems, and operated in different operational modes for rapid chromatographic analysis.
 
  This study is comprised of six parts; parts I and II discuss different gas phase reactions (e.g. charged reduction mechanisms, proton transfer reactions and fused droplet reactions) using the coaxial ESI/APCI source. Part III combines different sampling methods (nebulization, laser desorption and laser thermal desorption) and ionization systems (ESI and DBDI) to directly analyze samples through direct desorption ionization (direct DI) and two-step ionization. Part IV validates the aforementioned systems for polymer analyses. Part V integrates an aforementioned system with gas chromatography for building a versatile interface that can operate in separation and rapid screening modes. Part VI discusses the development of an analytical system to perform ionization through mechanical force to improve sampling and ionization efficiencies.
目次 Table of Contents
中文摘要 i
英文摘要 v
圖目錄 xiii
表目錄 xxv
第1章 緒論 1
 1.1 質譜儀的誕生 1
  1.1.1 電子的發現 1
  1.1.2 第一台質譜儀 2
  1.1.3 質譜領域的開啟 3
 1.2 傳統質譜方法 4
  1.2.1 熱脫附之傳統質譜法 4
  1.2.2 脫附游離之傳統質譜法 5
  1.2.3 早期液相層析質譜儀介面之發展 6
 1.3 大氣游離源起源 11
  1.3.1 chemical ionization 11
  1.3.2 電噴灑游離質譜法的興起 13
  1.3.3 電噴灑游離的基本理論與離子產生機構 15
  1.3.4 現今液相層析質譜儀介面之發展 17
  1.3.5 現今可供使用的商業化游離源 20
  1.3.6 多管道游離裝置設計 25
 1.4 大氣壓力質譜法的起源 29
  1.4.1 直接游離法(direct ionization) 31
  1.4.2 直接脫附游離法 (Direct desorption and Ionization) 32
  1.4.3 二段式游離法(two-step ionization) 38
  1.4.1 不同游離系統所產生反應物質之特性 50
 1.5 研究目標 52
 1.6 參考文獻: 53
第2章 設計ESI/APCI游離源並進行電荷還原反應之探討 61
 2.1 前言:  61
  2.1.1 氣相反應之起源與應用 61
  2.1.2 在大氣壓力下經由氣相反應裝置進行離子/離子反應之探討 62
  2.1.3 研究目的 69
 2.2 藥品配置及實驗裝置: 69
  2.2.1 藥品: 69
  2.2.2 藥品配置: 69
  2.2.3 實驗裝置: 70
  2.2.4 實驗過程: 72
   2.2.4.1 利用ESI/APCI 離子源來進行氣相電荷還原 72
 2.3 結果與討論:  73
 2.4 結論:  81
 2.5 參考文獻: 81
第3章 利用ESI/APCI離子源進行各式游離機制之探討  83
 3.1 前言:  83
  3.1.1 介電質放電、輝光放電及電暈放電 83
  3.1.2 游離機制的探討 84
  3.1.3 研究目的 86
 3.2 樣品配置及實驗裝置: 87
  3.2.1 藥品: 87
  3.2.2 藥品製備: 87
  3.2.3 實驗裝置: 88
  3.2.4 實驗過程: 89
 3.3 結果與討論 89
  3.3.1 切換游離模式對於carbazole 離子形式的探討 89
  3.3.2 探討溫度對於反應物質之影響: 93
  3.3.3 切換游離模式進行pyrene 離子形式的探討: 96
  3.3.4 探討利用APCI 相關的反應物質來進行芘(pyrene)的游離效應: 101
 3.4 結論: 106
 3.5 參考文獻: 106
第4章 將ESI/APCI離子源結合不同進樣系統來進行分析  110
 4.1 前言: 110
  4.1.1 大氣壓力質譜法 110
  4.1.2 將電噴灑游離法以及大氣壓力游離法來進行整合之游離介面 111
  4.1.3 研究目的 113
 4.2 藥品配置與實驗裝置:  114
  4.2.1 藥品: 114
  4.2.2 藥品制備:  115
  4.2.3 實驗裝置:  116
  4.2.4 實驗過程:  120
 4.3 結果與討論 121
  4.3.1 二段式脫附游離法-利用ESI/APCI 質譜法來檢測進行不同特性樣品之偵測 121
  4.3.2 二段式脫附游離法 124
  4.3.3 利用直接脫附電噴灑/大氣壓力化學游離法來對於95 無鉛汽油進行分析 133
 4.4 結論: 137
 4.5 參考文獻: 137
第5章 利用LD ESI/APCI質譜法分析各式聚合物 139
 5.1 前言: 139
  5.1.1 傳統分析高分子聚合物之方法 139
  5.1.2 利用熱裂解氣相層析質譜法來分析高分子聚合物 139
  5.1.3 利用大氣壓力質譜法來分析高分子聚合物 140
  5.1.4 研究目的 141
 5.2 藥品配置與實驗裝置:  141
  5.2.1 藥品: 141
  5.2.2 實驗裝置:  144
  5.2.3 實驗過程:  145
 5.3 結果與討論 146
  5.3.1 利用LD ESI/APCI 質譜法分析聚丙二醇來進行離子形式探討  146
  5.3.2 利用LD ESI/APCI 質譜法分析聚甲基丙烯酸甲酯來進行離子形式探討 148
  5.3.3 利用LD ESI/APCI 質譜法來進行合成共聚物之分析 153
  5.3.4 利用LD ESI/APCI 質譜法進行共聚物標準品之分析 156
  5.3.5 利用LD ESI/APCI 質譜法來進行橡膠樣品之分析 158
 5.4 結論: 161
 5.5 參考文獻: 161
第6章 開發介面整合層析系統及大氣壓力質譜法分析阱油組成 163
 6.1 前言: 163
  6.1.1 傳統分析原油之方法 163
  6.1.2 大氣壓力化學游離法與氣相層析介面的發展 164
  6.1.3 研究目的 164
 6.2 藥品配置與實驗裝置 165
  6.2.1 藥品: 165
  6.2.2 藥品配置:  167
  6.2.3 裝置裝構:  167
  6.2.4 實驗過程:  169
 6.3 結果與討論 172
  6.3.1 烷類游離機制探討 172
  6.3.2 直鏈烷類樣品經由 TD-DBDI 模式來進行分析 174
  6.3.3 探討側流之最佳流速 179
  6.3.4 探討加熱腔體之最佳溫度 180
  6.3.5 透過GC-DBDI 模式來探討13 種烷類混合溶液之偵測極限 181
  6.3.6 探討經由GC-DBDI 模式分析後直鏈烷類之質譜圖  183
  6.3.7 經由GC/AMS 以及GC/EI 來進行原油中直鏈烷類之成份分析 186
  6.3.8 利用GC-DBDI 模式來分析不同原油樣品並結合主成份分析法來區分 188
 6.4 結論: 194
 6.5 參考文獻: 195
第7章 旋轉式電噴灑游離裝置及其應用 197
 7.1 前言: 197
  7.1.1 離子噴灑 197
  7.1.2 奈流電噴灑游離法 197
  7.1.3 多管道電噴灑游離法 198
  7.1.4 增益離子傳輸之裝置 199
  7.1.5 研究目的 199
 7.2 藥品配置與實驗裝置 200
  7.2.1 藥品: 200
  7.2.2 實驗裝置:  201
  7.2.3 實驗過程:  202
 7.3 結果與討論 203
 7.4 結論: 209
 7.5 參考文獻: 209
第8章 總結 212
參考文獻 References
第1章
1. Thomson, J. J., XL. Cathode Rays. Philosophical Magazine Series 5 1897, 44 (269), 293-316.
2. http://thomson.iqm.unicamp.br/thomson.php.
3. Thomson, J. J., Rays of positive electricity and their application to chemical analyses. 1921.
4. Posthumus, M. A.; Kistemaker, P. G.; Meuzelaar, H. L. C.; Ten Noever de Brauw, M. C., Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules. Anal. Chem. 1978, 50 (7), 985-991.
5. Field Desorption Mass Spectrometry. Anal. Chem. 1979, 51 (2), 283A-293A.
6. Barber, M.; Bordoli, R. S.; Sedgwick, R. D.; Tyler, A. N., Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry. J. Chem. Soc., Chem. Commun. 1981, 2(7), 325-327.
7. McFadden, W. H.; Schwartz, H. L.; Evans, S., Direct analysis of liquid chromatographic effluents. J. Chromatogr. A 1976, 122, 389-396.
8. Mcfadden, W. H.; Lammert, S. A.; Wellby, J., Lcms Analysis of an Antioxidant Mixture - Comparison of Results Obtained Using a Thermospray Interface and a Moving Belt Interface. Abstr. Pap. Am. Chem. S 1985, 189 (Apr-), 36-Anyl.
9. Willoughby, R. C.; Browner, R. F., Monodisperse aerosol generation interface for combining liquid chromatography with mass spectroscopy. Anal. Chem. 1984, 56 (14), 2626-2631.
10. Jones, G. G.; Pauls, R. E.; Willoughby, R. C., Analysis of Styrene Oligomers by Particle Beam Liquid-Chromatography Mass-Spectrometry. Anal. Chem. 1991, 63 (5), 460-463.
11. Sanders, P. E.; Willoughby, R.; Buchner, J., Particle Beam Lc Ms, Sfc Ms of Environmental and Pharmaceutical Compounds. Abstr. Pap. Am. Chem. S 1989, 198, 57-Anyl.
12. Willoughby, R. C.; Sheehan, E. S.; Sanders, P. E.; Dilts, M., Particle Beam-Liquid Chromatography-Mass Spectrometry with the Thermabeam Interface. Abstr. Pap. Am. Chem. S 1989, 197, 52-Agro.
13. Blakley, C. R.; Vestal, M. L., Thermospray interface for liquid chromatography/mass spectrometry. Anal. Chem. 1983, 55 (4), 750-754.
14. Vestal, M. L., Studies of ionization mechanisms involved in thermospray LC-MS. Int.. J. Mass Spectrom. 1983, 46, 193-196.
15. Ito, Y.; Takeuchi, T.; Ishii, D.; Goto, M., Direct coupling of micro high-performance liquid chromatography with fast atom bombardment mass spectrometry. J.Chromatogr. A 1985, 346, 161-166.
16. Caprioli, R. M.; Fan, T.; Cottrell, J. S., A continuous-flow sample probe for fast atom bombardment mass spectrometry. Anal. Chem. 1986, 58 (14), 2949-2954.
17. Boulenguer, P.; Leroy, Y.; Alonso, J. M.; Montreuil, J.; Ricart, G.; Colbert, C.; Duquet, D.; Dewaele, C.; Fournet, B., Continuous-flow fast atom bombardment-mass spectrometry of permethylated oligosaccharides: A comparative study of direct mixture analysis with packed capillary column liquid chromatography-fast atom bombardment-mass spectrometry. Anal. Biochem. 1988, 168 (1), 164-170.
18. Horning, E. C.; Horning, M. G.; Carroll, D. I.; Dzidic, I.; Stillwel.Rn, New Picogram Detection System Based on a Mass-Spectrometer with an External Ionization Source at Atmospheric-Pressure. Anal. Chem. 1973, 45 (6), 936-943.
19. Horning, E. C.; Carroll, D. I.; Dzidic, I.; Haegele, K. D.; Horning, M. G.; Stillwel.Rn, Atmospheric-Pressure Ionization (Api) Mass-Spectrometry - Solvent-Mediated Ionization of Samples Introduced in Solution and in a Liquid Chromatograph Effluent Stream. J. Chromatogra. Sci. 1974, 12 (11), 725-729.
20. Dole, M.; Mack, L. L.; Hines, R. L., Molecular Beams of Macroions. J. Chem. Phys. 1968, 49 (5), 2240-&.
21. Yamashita, M.; Fenn, J. B., Electrospray ion source. Another variation on the free-jet theme. J. Chem. Phys. 1984, 88 (20), 4451-4459.
22. Abbas, M. A.; Latham, J., Disintegration and Electrification of Charged Water Drops Falling in an Electric Field. Q. J. R. Meteorol. Soc. 1969, 95 (403), 63-65.
23. Cole, R. B., Some tenets pertaining to electrospray ionization mass spectrometry. J. Mass Spectrom. 2000, 35 (7), 763-772.
24. Iribarne, J. V.; Thomson, B. A., On the evaporation of small ions from charged droplets. J. Chem. Phys 1976, 64 (6), 2287-2294.
25. Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B., Molecular Beams of Macroions. J. Chem. Phys. 1968, 49 (5), 2240-2249.
26. Mack, L. L.; Kralik, P.; Rheude, A.; Dole, M., Molecular Beams of Macroions. II. J. Chem. Phys. 1970, 52 (10), 4977-4986.
27. Schmelzeisen-Redeker, G.; Bütfering, L.; Röllgen, F. W., Desolvation of ions and molecules in thermospray mass spectrometry. Int.. J. Mass Spectrom. 1989, 90 (2), 139-150.
28. Jochen Franzen, B. Method and device for transport of ions in gas through a capillary. US 5736740, 1998.
29. Michael J. Tomany, G. C. T.; Joseph A. Jarrell, N. H. M. A. Housing for converting an electrospray to an ion stream. US 5304798, 1994.
30. Ian C. Mylchreest, S. C. C. C. A.; Mark E. Hail, A. C. C. A. Electrospray ion source with reduced neutral noise and method. US 5171990, 1992.
31. Alexander Mordehai, M. V. C. A.; Sidney E. Buttrill, J. P. A. C. A. Mass spectrometer system and method for transporting and analyzing ions. US 5672868, 1997.
32. Bruins, A. P.; Covey, T. R.; Henion, J. D., Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal.Chem. 1987, 59 (22), 2642-2646.
33. Bruins, A. P., Mass spectrometry with ion sources operating at atmospheric pressure. Mass Spectrom. Rev. 1991, 10 (1), 53-77.
34. Kostiainen, R.; Bruins, A. P., Effect of multiple sprayers on dynamic range and flow rate limitations in electrospray and ionspray mass spectrometry. Rapid Commun. Mass Spectrom. 1994, 8 (7), 549-558.
35. Vanhoutte, K.; Van Dongen, W.; Esmans, E. L., On-line nanoscale liquid chromatography nano-electrospray mass spectrometry: effect of the mobile phase composition and the electrospray tip design on the performance of a nanoflowTM electrospray probe. Rapid Commun. Mass Spectrom. 1998, 12 (1), 15-24.
36. Smith, R. D.; Shen, Y.; Tang, K., Ultrasensitive and Quantitative Analyses from Combined Separations−Mass Spectrometry for the Characterization of Proteomes. Acc. Chem. Res. 2004, 37 (4), 269-278.
37. Bertsch, J. L.; Fischer, S. M.; Henry, K. D.; Wong, E. M., Ionization chamber and mass spectrometry system containing an asymmetric electrode. 1998.
38. McComb, M. E.; Donald, L. J.; Perreault, H., Electrospray ionization mass spectrometry and on-line capillary zone electrophoresis - mass spectrometry for the characterization of citrate synthase. Can. J. Chem.1999, 77 (11), 1752-1760.
39. Bantan, T.; Milacic, R.; Mitrovic, B.; Pihlar, B., Investigation of low molecular weight Al complexes in human serum by fast protein liquid chromatography (FPLC)-ETAAS and electrospray (ES)-MS-MS techniques. J. Anal. At. Spectrom. 1999, 14 (11), 1743-1748.
40. Holčapek, M.; Volná, K.; Jandera, P.; Kolářová, L.; Lemr, K.; Exner, M.; Církva, A., Effects of ion-pairing reagents on the electrospray signal suppression of sulphonated dyes and intermediates. J. Mass Spectrom. 2004, 39 (1), 43-50.
41. Manisali, I.; Chen, D. D. Y.; Schneider, B. B., Electrospray ionization source geometry for mass spectrometry: past, present, and future. Trends Anal. Chem. 2006, 25 (3), 243-256.
42. Li, L. Y. T.; Campbell, D. A.; Bennett, P. K.; Henion, J., Acceptance Criteria for Ultratrace HPLC−Tandem Mass Spectrometry:  Quantitative and Qualitative Determination of Sulfonylurea Herbicides in Soil. Anal. Chem. 1996, 68 (19), 3397-3404.
43. Allanson, J. P.; Biddlecombe, R. A.; Jones, A. E.; Pleasance, S., The Use of Automated Solid Phase Extraction in the '96 well' Format for High Throughput Bioanalysis using Liquid Chromatography Coupled to Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10 (7), 811-816.
44. Feng, B.; Patel, A. H.; Keller, P. M.; Slemmon, J. R., Fast characterization of intact proteins using a high-throughput eight-channel parallel liquid chromatography/mass spectrometry system. Rapid Commun. Mass Spectrom. 2001, 15 (10), 821-826.
45. Feng, B.; McQueney, M. S.; Mezzasalma, T. M.; Slemmon, J. R., An Integrated Ten-Pump, Eight-Channel Parallel LC/MS System for Automated High-Throughput Analysis of Proteins. Anal. Chem. 2001, 73 (23), 5691-5697.
46. Morrison, D.; Davies, A. E.; Watt, A. P., An Evaluation of a Four-Channel Multiplexed Electrospray Tandem Mass Spectrometry for Higher Throughput Quantitative Analysis. Anal. Chem. 2002, 74 (8), 1896-1902.
47. Loo, R. R. O.; Udseth, H. R.; Smith, R. D., Evidence of charge inversion in the reaction of singly charged anions with multiply charged macroions. J. Am. Soc. Mass Spectrom. 1991, 95 (17), 6412-6415.
48. Ogorzalek Loo, R. R.; Udseth, H. R.; Smith, R. D., A new approach for the study of gas-phase ion-ion reactions using electrospray ionization. J. Am. Soc. Mass Spectrom. 1992, 3 (7), 695-705.
49. Shia, J.; Wang, C.-H., JMS Letters. J. Mass Spectrom. 1997, 32 (2), 247-250.
50. Lee, C.-Y.; Shiea, J., Gas Chromatography Connected to Multiple Channel Electrospray Ionization Mass Spectrometry for the Detection of Volatile Organic Compounds. Anal. Chem. 1998, 70 (13), 2757-2761.
51. Cooks, R. G.; Ouyang, Z.; Takats, Z.; Wiseman, J. M., Ambient Mass Spectrometry. Science 2006, 311 (5767), 1566-1570.
52. Van Berkel, G. J.; Pasilis, S. P.; Ovchinnikova, O., Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J. Mass Spectrom. 2008, 43 (9), 1161-1180.
53. Venter, A.; Nefliu, M.; Graham Cooks, R., Ambient desorption ionization mass spectrometry. TrAC, Trends Anal. Chem. 2008, 27 (4), 284-290.
54. Cole, R. B., Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications. John Wiley & Sons: 1999.
55. Harrison, A. G., Chemical Ionization Mass Spectrometry, Second Edition. 1992.
56. Robb, D. B.; Covey, T. R.; Bruins, A. P., Atmospheric Pressure Photoionization:  An Ionization Method for Liquid Chromatography−Mass Spectrometry. Anal. Chem. 2000, 72 (15), 3653-3659.
57. Huang, M.-Z.; Yuan, C.-H.; Cheng, S.-C.; Cho, Y.-T.; Shiea, J., Ambient Ionization Mass Spectrometry. Annu. Rev. Anal. Chem. 2010, 3, 43-65.
58. Kuo, C.-P.; Shiea, J., Application of Direct Electrospray Probe To Analyze Biological Compounds and To Couple to Solid-Phase Microextraction To Detect Trace Surfactants in Aqueous Solution. Anal. Chem. 1999, 71 (19), 4413-4417.
59. Hiraoka, K.; Nishidate, K.; Mori, K.; Asakawa, D.; Suzuki, S., Development of probe electrospray using a solid needle. Rapid Commun. Mass Spectrom. 2007, 21 (18), 3139-3144.
60. Wang, H.; Liu, J.; Cooks, R. G.; Ouyang, Z., Paper Spray for Direct Analysis of Complex Mixtures Using Mass Spectrometry. Angew. Chem. Int. Ed. 2010, 49 (5), 877-880.
61. Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G., Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306 (5695), 471-473.
62. Venter, A.; Sojka, P. E.; Cooks, R. G., Droplet Dynamics and Ionization Mechanisms in Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78 (24), 8549-8555.
63. Costa, A. B.; Cooks, R. G., Simulation of atmospheric transport and droplet-thin film collisions in desorption electrospray ionization. Chem. Commun. 2007, (38), 3915-3917.
64. Costa, A. B.; Graham Cooks, R., Simulated splashes: Elucidating the mechanism of desorption electrospray ionization mass spectrometry. Chem. Phys. Lett. 2008, 464 (1–3), 1-8.
65. Özdemir, A.; Chen, C.-H., Electrode-assisted desorption electrospray ionization mass spectrometry. J. Mass Spectrom. 2010, 45 (10), 1203-1211.
66. Haddad, R.; Sparrapan, R.; Eberlin, M. N., Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20 (19), 2901-2905.
67. Haddad, R.; Catharino, R. R.; Marques, L. A.; Eberlin, M. N., Perfume fingerprinting by easy ambient sonic-spray ionization mass spectrometry: nearly instantaneous typification and counterfeit detection. Rapid Commun. Mass Spectrom. 2008, 22 (22), 3662-3666.
68. Song, Y.; Cooks, R. G., Atmospheric pressure ion/molecule reactions for the selective detection of nitroaromatic explosives using acetonitrile and air as reagents. Rapid Commun. Mass Spectrom. 2006, 20 (20), 3130-3138.
69. McLuckey, S. A.; Glish, G. L.; Asano, K. G.; Grant, B. C., Atmospheric sampling glow discharge ionization source for the determination of trace organic compounds in ambient air. Anal. Chem. 1988, 60 (20), 2220-2227.
70. Wang, H.; Sun, W.; Zhang, J.; Yang, X.; Lin, T.; Ding, L., Desorption corona beam ionization source for mass spectrometry. Analyst 2010, 135 (4), 688-695.
71. Na, N.; Zhao, M.; Zhang, S.; Yang, C.; Zhang, X., Development of a Dielectric Barrier Discharge Ion Source for Ambient Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18 (10), 1859-1862.
72. Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X.; Cooks, R. G.; Ouyang, Z., Low-Temperature Plasma Probe for Ambient Desorption Ionization. Anal. Chem. 2008, 80 (23), 9097-9104.
73. Ratcliffe, L. V.; Rutten, F. J. M.; Barrett, D. A.; Whitmore, T.; Seymour, D.; Greenwood, C.; Aranda-Gonzalvo, Y.; Robinson, S.; McCoustra, M., Surface Analysis under Ambient Conditions Using Plasma-Assisted Desorption/Ionization Mass Spectrometry. Anal. Chem. 2007, 79 (16), 6094-6101.
74. Hiraoka, K.; Murata, K.; Aizawa, K.; Matsushita, F.; Fukasawa, H.; Sato, T., Explosive Vaporization of a Liquid Water Beam by Irradiation with a 10.6 μm Infrared Laser. Rapid Commun. Mass Spectrom. 1997, 11 (5), 474-478.
75. Brenner, N.; Haapala, M.; Vuorensola, K.; Kostiainen, R., Simple Coupling of Gas Chromatography to Electrospray Ionization Mass Spectrometry. Anal. Chem. 2008, 80 (21), 8334-8339.
76. Lee, C.-C.; Chang, D.-Y.; Jeng, J.; Shiea, J., Generating multiply charged protein ions via two-step electrospray ionization mass spectrometry. J. Mass Spectrom. 2002, 37 (1), 115-117.
77. Chen, H.; Venter, A.; Cooks, R. G., Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem. Commun. 2006, 2(19), 2042-2044.
78. Shiea, J.; Huang, M.-Z.; Hsu, H.-J.; Lee, C.-Y.; Yuan, C.-H.; Beech, I.; Sunner, J., Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Spectrom. 2005, 19 (24), 3701-3704.
79. Huang, M.-Z.; Jhang, S.-S.; Cheng, C.-N.; Cheng, S.-C.; Shiea, J., Effects of matrix, electrospray solution, and laser light on the desorption and ionization mechanisms in electrospray-assisted laser desorption ionization mass spectrometry. Analyst 2010, 135 (4), 759-766.
80. Lin, S.-Y.; Huang, M.-Z.; Chang, H.-C.; Shiea, J., Using Electrospray-Assisted Laser Desorption/Ionization Mass Spectrometry To Characterize Organic Compounds Separated on Thin-Layer Chromatography Plates. Anal. Chem. 2007, 79 (22), 8789-8795.
81. Minzong, H.; Wang, H.-Y.; Lo, L.-H.; Shiea, J. Proc. Am. Soc. Mass Spectrom., 56th, Denver. Santa Fe, 56th, Denver. Santa Fe, 2008, MP138.
82. Nemes, P.; Vertes, A., Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry. Anal. Chem. 2007, 79 (21), 8098-8106.
83. Cheng, S.-C.; Cheng, T.-L.; Chang, H.-C.; Shiea, J., Using Laser-Induced Acoustic Desorption/Electrospray Ionization Mass Spectrometry To Characterize Small Organic and Large Biological Compounds in the Solid State and in Solution Under Ambient Conditions. Anal. Chem. 2008, 81 (3), 868-874.
84. Coon, J. J.; Harrison, W. W., Laser Desorption-Atmospheric Pressure Chemical Ionization Mass Spectrometry for the Analysis of Peptides from Aqueous Solutions. Anal. Chem. 2002, 74 (21), 5600-5605.
85. Shelley, J. T.; Ray, S. J.; Hieftje, G. M., Laser Ablation Coupled to a Flowing Atmospheric Pressure Afterglow for Ambient Mass Spectral Imaging. Anal. Chem. 2008, 80 (21), 8308-8313.
86. Zhang, J.; Zhou, Z.; Yang, J.; Zhang, W.; Bai, Y.; Liu, H., Thin Layer Chromatography/Plasma Assisted Multiwavelength Laser Desorption Ionization Mass Spectrometry for Facile Separation and Selective Identification of Low Molecular Weight Compounds. Anal. Chem. 2011, 84 (3), 1496-1503.
87. Hsu, H.-J.; Kuo, T.-L.; Wu, S.-H.; Oung, J.-N.; Shiea, J., Characterization of Synthetic Polymers by Electrospray-Assisted Pyrolysis Ionization-Mass Spectrometry. Anal. Chem. 2005, 77 (23), 7744-7749.
88. Hsu, H.-J.; Oung, J.-N.; Kuo, T.-L.; Wu, S.-H.; Shiea, J., Using electrospray-assisted pyrolysis ionization/mass spectrometry for the rapid characterization of trace polar components in crude oil, amber, humic substances, and rubber samples. Rapid Commun. Mass Spectrom. 2007, 21 (3), 375-384.
89. Huang, M.-Z.; Zhou, C.-C.; Liu, D.-L.; Jhang, S.-S.; Cheng, S.-C.; Shiea, J., Rapid Characterization of Chemical Compounds in Liquid and Solid States Using Thermal Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2013, 85 (19), 8956-8963.
90. McEwen, C. N.; McKay, R. G.; Larsen, B. S., Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments. Anal. Chem. 2005, 77 (23), 7826-7831.
91. McEwen, C.; Gutteridge, S., Analysis of the Inhibition of the Ergosterol Pathway in Fungi Using the Atmospheric Solids Analysis Probe (ASAP) Method. J. Am. Soc. Mass Spectrom. 2007, 18 (7), 1274-1278.
92. Cody, R. B.; Laramée, J. A.; Durst, H. D., Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77 (8), 2297-2302.

第2章
1. Thomson, J. J.; Rutherford, E., On the passage of electricity through gases exposed to Röntgen rays. Philo. Mag. 1896, 42 (258), 392-407.
2. Rutherford, E., LIV. The velocity and rate of recombination of the ions of gases exposed to Röntgen radiation. Philo. Mag. 1897, 44 (270), 422-440.
3. Mahan, B. H., Recombination of Gaseous Ions. In Advances in Chemical Physics, John Wiley & Sons, Inc.: 2007, 1-40.
4. Bardsley, J. N., Theory of Electron Collisions in Partially Ionized Gases. In Nonequilibrium Processes in Partially Ionized Gases, Capitelli, M.; Bardsley, J. N., Eds. Springer US: 1990, 220, 1-18.
5. McLuckey, S. A.; Stephenson, J. L., Ion/ion chemistry of high-mass multiply charged ions. Mass Spectrom. Rev. 1998, 17 (6), 369-407.
6. Scalf, M.; Westphall, M. S.; Krause, J.; Kaufman, S. L.; Smith, L. M., Controlling Charge States of Large Ions. Science 1999, 283 (5399), 194-197.
7. Ebeling, D. D.; Westphall, M. S.; Scalf, M.; Smith, L. M., Corona Discharge in Charge Reduction Electrospray Mass Spectrometry. Anal. Chem. 2000, 72 (21), 5158-5161.
8. Frey, B.; Lin, Y.; Westphall, M.; Smith, L., Controlling gas-phase reactions for efficient charge reduction electrospray mass spectrometry of intact proteins. J. Am. Soc. Mass Spectrom. 2005, 16 (11), 1876-1887.
9. Pitteri, S. J.; McLuckey, S. A., Recent developments in the ion/ion chemistry of high-mass multiply charged ions. Mass Spectrom. Rev. 2005, 24 (6), 931-958.
10. Mcluckey, S. A.; Vanberkel, G. J.; Glish, G. L., Reactions of Dimethylamine with Multiply Charged Ions of Cytochrome-C. J. Am. Chem. Soc. 1990, 112 (14), 5668-5670.
11. Loo, R. R. O.; Loo, J. A.; Udseth, H. R.; Fulton, J. L.; Smith, R. D., Protein structural effects in gas phase ion/molecule reactions with diethylamine. Rapid Commun. Mass Spectrom. 1992, 6 (3), 159-165.
12. Kharlamova, A.; McLuckey, S. A., Negative Electrospray Droplet Exposure to Gaseous Bases for the Manipulation of Protein Charge State Distributions. Anal. Chem. 2010, 83 (1), 431-437.
13. Loo, R. R. O.; Udseth, H. R.; Smith, R. D., Evidence of charge inversion in the reaction of singly charged anions with multiply charged macroions. J. Phys. Chem. 1991, 95 (17), 6412-6415.
14. Scalf, M.; Westphall, M. S.; Smith, L. M., Charge Reduction Electrospray Mass Spectrometry. Anal. Chem. 1999, 72 (1), 52-60.
15. Na, N.; Zhao, M.; Zhang, S.; Yang, C.; Zhang, X., Development of a Dielectric Barrier Discharge Ion Source for Ambient Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18 (10), 1859-1862.
16. Cooks, R. G.; Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X. R.; Ouyang, Z., Low-Temperature Plasma Probe for Ambient Desorption Ionization. Anal. Chem. 2008, 80 (23), 9097-9104.

第3章
1. Cody, R. B., Observation of Molecular Ions and Analysis of Nonpolar Compounds with the Direct Analysis in Real Time Ion Source. Anal. Chem. 2008, 81 (3), 1101-1107.
2. Laramee, J. A.; Cody, R. B., Method for atmospheric pressure analyte ionization. 2006.
3. Cody, R. B.; Laramée, J. A.; Nilles, J. M.; Durst, H. D., Direct analysis in real time (DARTTM) mass spectrometry. JEOL News 2005, 40 (8).
4. Cody, R. B.; Laramée, J. A.; Durst, H. D., Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77 (8), 2297-2302.
5. Laramee, J. A.; Cody, R. B., Chemi-ionization and direct analysis in real time (DART) mass spectrometry. Encyclopedia of Mass Spectrometry 2007, 6, 377-387.
6. Petucci, C.; Diffendal, J.; Kaufman, D.; Mekonnen, B.; Terefenko, G.; Musselman, B., Direct Analysis in Real Time for Reaction Monitoring in Drug Discovery. Anal. Chem. 2007, 79 (13), 5064-5070.
7. Morlock, G.; Ueda, Y., New coupling of planar chromatography with direct analysis in real time mass spectrometry. J .Chromatogr. A 2007, 1143 (1–2), 243-251.
8. Smith, N. J.; Domin, M. A.; Scott, L. T., HRMS Directly From TLC Slides. A Powerful Tool for Rapid Analysis of Organic Mixtures. Org. Lett. 2008, 10 (16), 3493-3496.
9. Pierce, C. Y.; Barr, J. R.; Cody, R. B.; Massung, R. F.; Woolfitt, A. R.; Moura, H.; Thompson, H. A.; Fernandez, F. M., Ambient generation of fatty acid methyl ester ions from bacterial whole cells by direct analysis in real time (DART) mass spectrometry. Chem. Commun. 2007, (8), 807-809.
10. Fernández, F. M.; Cody, R. B.; Green, M. D.; Hampton, C. Y.; McGready, R.; Sengaloundeth, S.; White, N. J.; Newton, P. N., Characterization of Solid Counterfeit Drug Samples by Desorption Electrospray Ionization and Direct-analysis-in-real-time Coupled to Time-of-flight Mass Spectrometry. ChemMedChem 2006, 1 (7), 702-705.
11. Newton, P. N.; Fernández, F. M.; Plançon, A.; Mildenhall, D. C.; Green, M. D.; Li, Z.; Christophel, E. M.; Phanouvong, S.; Howells, S.; McIntosh, E.; Laurin, P.; Blum, N.; Hampton, C. Y.; Faure, K.; Nyadong, L.; Soong, C. W. R.; Santoso, B.; Wang, Z.; Newton, J.; Palmer, K., A Collaborative Epidemiological Investigation into the Criminal Fake Artesunate Trade in South East Asia. PLoS Medicine 2008, 5 (2), e32.
12. Haefliger, O. P.; Jeckelmann, N., Direct mass spectrometric analysis of flavors and fragrances in real applications using DART. Rapid Commun. Mass Spectrom. 2007, 21 (8), 1361-1366.
13. Vail, T. M.; Jones, P. R.; Sparkman, O. D., Rapid and Unambiguous Identification of Melamine in Contaminated Pet Food Based on Mass Spectrometry with Four Degrees of Confirmation. J. Anal. Toxicol. 2007, 31 (6), 304-312.
14. Cajka, T.; Vaclavik, L.; Riddellova, K.; Hajslova, J., GC-TOF-MS and DART-TOF-MS: Challenges in the Analysis of Soft Drinks. LC-GC Europe 2008, 21 (5), 250-256.
15. Kpegba, K.; Spadaro, T.; Cody, R. B.; Nesnas, N.; Olson, J. A., Analysis of Self-Assembled Monolayers on Gold Surfaces Using Direct Analysis in Real Time Mass Spectrometry. Anal. Chem. 2007, 79 (14), 5479-5483.
16. Yew, J. Y.; Cody, R. B.; Kravitz, E. A., Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time time-of-flight mass spectrometry. Proc. Natl. Acad. Sci. U.S.A 2008, 105 (20), 7135-7140.
17. Andrade, F. J.; Shelley, J. T.; Wetzel, W. C.; Webb, M. R.; Gamez, G.; Ray, S. J.; Hieftje, G. M., Atmospheric Pressure Chemical Ionization Source. 2. Desorption−Ionization for the Direct Analysis of Solid Compounds. Anal. Chem. 2008, 80 (8), 2654-2663.
18. Penning, F. M., Über Ionisation durch metastabile Atome. Naturwissenschaften 1927, 15 (40), 818-818.
19. Laramee, J. A.; Cody, R. B., Chemi-ionization and direct analysis in real time (DART) mass spectrometry. The encyclopedia of mass spectrometry 2007, 6, 377-387.
20. Laramée, J. A.; Cody, R. B.; Nilles, J. M.; Durst, H. D., Forensic Application of DARTTM (Direct Analysis in Real Time) Mass Spectrometry. In Forensic Analysis on the Cutting Edge, John Wiley & Sons, Inc.: 2007; pp 175-195.
21. Robb, D. B.; Covey, T. R.; Bruins, A. P., Atmospheric Pressure Photoionization:  An Ionization Method for Liquid Chromatography−Mass Spectrometry. Anal. Chem. 2000, 72 (15), 3653-3659.
22. Vaclavik, L.; Cajka, T.; Hrbek, V.; Hajslova, J., Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment. Anal. Chimi. Acta 2009, 645 (1–2), 56-63.
23. Perez, J. J.; Harris, G. A.; Chipuk, J. E.; Brodbelt, J. S.; Green, M. D.; Hampton, C. Y.; Fernandez, F. M., Transmission-mode direct analysis in real time and desorption electrospray ionization mass spectrometry of insecticide-treated bednets for malaria control. Analyst 2010, 135 (4), 712-719.
24. Laramee, J. A.; Durst, H. D.; Connell, T. R.; Nilles, J. M., Detection of Chemical Warfare Agents on Surfaces Relevant to Homeland Security by Direct Analysis in Real-Time Spectrometry. American Laboratory 2008, 40 (16), 16-20
25. Rothenbacher, T.; Schwack, W., Rapid identification of additives in poly(vinyl chloride) lid gaskets by direct analysis in real time ionisation and single-quadrupole mass spectrometry. Rapid Commun. in Mass Spectrom. 2010, 24 (1), 21-29.
26. Grange, A. H.; Sovocool, G. W., Automated determination of precursor ion, product ion, and neutral loss compositions and deconvolution of composite mass spectra using ion correlation based on exact masses and relative isotopic abundances. Rapid Commun. in Mass Spectrom. 2008, 22 (15), 2375-2390.
27. Block, E.; Cody, R. B.; Dane, A. J.; Sheridan, R.; Vattekkatte, A.; Wang, K., Allium chemistry: Use of new instrumental techniques to “see” reactive organosulfur species formed upon crushing garlic and onion. Pure and Applied Chemistry 2010, 82 (3), 535-539.
28. Harrison, A. G., Chemical Ionization Mass Spectrometry, Second Edition. 1992.
29. Na, N.; Xia, Y.; Zhu, Z.; Zhang, X.; Cooks, R. G., Birch Reduction of Benzene in a Low-Temperature Plasma. Angew. Chem. Int. Ed. 2009, 48 (11), 2017-2019.

第4章
1. http://www.shimadzu.com/an/lcms/lcms/duis.html.
2. Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G., Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306 (5695), 471-473.
3. Cody, R. B.; Laramée, J. A.; Durst, H. D., Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77 (8), 2297-2302.
4. Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X.; Cooks, R. G.; Ouyang, Z., Low-Temperature Plasma Probe for Ambient Desorption Ionization. Anal. Chem. 2008, 80 (23), 9097-9104.
5. Lee, C.-Y.; Shiea, J., Gas Chromatography Connected to Multiple Channel Electrospray Ionization Mass Spectrometry for the Detection of Volatile Organic Compounds. Anal. Chem. 1998, 70 (13), 2757-2761.
6. Chang, D.-Y.; Lee, C.-C.; Shiea, J., Detecting Large Biomolecules from High-Salt Solutions by Fused-Droplet Electrospray Ionization Mass Spectrometry. Anal. Chem. 2002, 74 (11), 2465-2469.
7. Shiea, J.; Huang, M.-Z.; Hsu, H.-J.; Lee, C.-Y.; Yuan, C.-H.; Beech, I.; Sunner, J., Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Spectrom. 2005, 19 (24), 3701-3704.

第五章
1. Hanton, S. D., Mass Spectrometry of Polymers and Polymer Surfaces. Chem. Rev. 2001, 101 (2), 527-570.
2. Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G., Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306 (5695), 471-473.
3. Cody, R. B.; Laramée, J. A.; Durst, H. D., Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77 (8), 2297-2302.
4. Andrade, F. J.; Shelley, J. T.; Wetzel, W. C.; Webb, M. R.; Gamez, G.; Ray, S. J.; Hieftje, G. M., Atmospheric Pressure Chemical Ionization Source. 1. Ionization of Compounds in the Gas Phase. Anal. Chem. 2008, 80 (8), 2646-2653.
5. Andrade, F. J.; Shelley, J. T.; Wetzel, W. C.; Webb, M. R.; Gamez, G.; Ray, S. J.; Hieftje, G. M., Atmospheric Pressure Chemical Ionization Source. 2. Desorption−Ionization for the Direct Analysis of Solid Compounds. Anal. Chem. 2008, 80 (8), 2654-2663.
6. Jecklin, M. C.; Gamez, G.; Zenobi, R., Fast polymer fingerprinting using flowing afterglow atmospheric pressure glow discharge mass spectrometry. Analyst 2009, 134 (8), 1629-1636.
7. Nefliu, M.; Venter, A.; Cooks, R. G., Desorption electrospray ionization and electrosonic spray ionization for solid- and solution-phase analysis of industrial polymers. Chem. Commun. 2006, (8), 888-890.
8. Zhang, S. F.; Shin, Y. S.; Mayer, R.; Basile, F., On-probe pyrolysis desorption electrospray ionization (DESI) mass spectrometry for the analysis of non-volatile pyrolysis products. J. Anal. Appl. Pyrol. 2007, 80 (2), 353-359.
9. Haunschmidt, M.; Klampfl, C. W.; Buchberger, W.; Hertsens, R., Rapid identification of stabilisers in polypropylene using time-of-flight mass spectrometry and DART as ion source. Analyst 2010, 135 (1), 80-85.
10. Ackerman, L. K.; Noonan, G. O.; Begley, T. H., Assessing direct analysis in real-time-mass spectrometry (DART-MS) for the rapid identification of additives in food packaging. Food Addit. Contam. Part A 2009, 26 (12), 1611-1618.

第6章
1. Beens, J.; Brinkman, U. A. T., The role of gas chromatography in compositional analyses in the petroleum industry. Trends in Anal. Chem. 2000, 19 (4), 260-275.
2. Horning, E. C.; Horning, M. G.; Carroll, D. I.; Dzidic, I.; Stillwell, R. N., New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure. Anal. Chem. 1973, 45 (6), 936-943.
3. Carroll, D. I.; Dzidic, I.; Stillwell, R. N.; Haegele, K. D.; Horning, E. C., Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system. Anal. Chem. 1975, 47 (14), 2369-2373.
4. Dzidic, I.; Carroll, D. I.; Stillwell, R. N.; Horning, E. C., Comparison of positive ions formed in nickel-63 and corona discharge ion sources using nitrogen, argon, isobutane, ammonia and nitric oxide as reagents in atmospheric pressure ionization mass spectrometry. Anal. Chem. 1976, 48 (12), 1763-1768.
5. Harrison, A. G., Chemical Ionization Mass Spectrometry. 2nd ed.; CRC Press:Boca Raton, FL: 1992.
6. Cody, R. B., Observation of Molecular Ions and Analysis of Nonpolar Compounds with the Direct Analysis in Real Time Ion Source. Anal. Chem. 2009, 81 (3), 1101-1107.
7. Wu, C.; Qian, K.; Nefliu, M.; Cooks, R. G., Ambient Analysis of Saturated Hydrocarbons Using Discharge-Induced Oxidation in Desorption Electrospray Ionization. J. Am. Soc. Mass Spectr. 2010, 21 (2), 261-267.
8. Li, A.; Wang, H.; Ouyang, Z.; Cooks, R. G., Paper spray ionization of polar analytes using non-polar solvents. Chem. Commun. 2011, 47 (10), 2811-2813.
9. Hourani, N.; Kuhnert, N., Development of a novel direct-infusion atmospheric pressure chemical ionization mass spectrometry method for the analysis of heavy hydrocarbons in light shredder waste. Anal Methods-Uk 2012, 4 (3), 730-735.
10. Gao, J.; Owen, B.; Borton, D.; Jin, Z.; Kenttämaa, H., HPLC/APCI Mass Spectrometry of Saturated and Unsaturated Hydrocarbons by Using Hydrocarbon Solvents as the APCI Reagent and HPLC Mobile Phase. J. Am. Soc. Mass Spectr. 2012, 23 (5), 816-822.
11. Yang, Z. H.; Attygalle, A. B., Aliphatic Hydrocarbon Spectra by Helium Ionization Mass Spectrometry (HIMS) on a Modified Atmospheric-Pressure Source Designed for Electrospray Ionization. J. Am. Soc. Mass Spectr. 2011, 22 (8), 1395-1402.

第7章
1. Yamashita, M.; Fenn, J. B., Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 1984, 88 (20), 4451-4459.
2. Voyksner, R. D.; Lee, H., Improvements in LC/Electrospray Ion Trap Mass Spectrometry Performance Using an Off-Axis Nebulizer. Anal. Chem. 1999, 71 (7), 1441-1447.
3. Smith, R. D.; Shen, Y.; Tang, K., Ultrasensitive and Quantitative Analyses from Combined Separations−Mass Spectrometry for the Characterization of Proteomes. Acc. Chem. Res. 2004, 37 (4), 269-278.
4. Blay, P. K. S.; Brombacher, S.; Volmer, D. A., Studies on azaspiracid biotoxins. III. Instrumental validation for rapid quantification of AZA 1 in complex biological matrices. Rapid Commun. Mass Spectrom. 2003, 17 (18), 2153-2159.
5. Allanson, J. P.; Biddlecombe, R. A.; Jones, A. E.; Pleasance, S., The Use of Automated Solid Phase Extraction in the '96 well' Format for High Throughput Bioanalysis using Liquid Chromatography Coupled to Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10 (7), 811-816.
6. Li, L. Y. T.; Campbell, D. A.; Bennett, P. K.; Henion, J., Acceptance Criteria for Ultratrace HPLC−Tandem Mass Spectrometry:  Quantitative and Qualitative Determination of Sulfonylurea Herbicides in Soil. Anal. Chem. 1996, 68 (19), 3397-3404.
7. McComb, M. E.; Donald, L. J.; Perreault, H., Electrospray ionization mass spectrometry and on-line capillary zone electrophoresis - mass spectrometry for the characterization of citrate synthase. Can. J. Chem. 1999, 77 (11), 1752-1760.
8. Wilm, M. S.; Mann, M., Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last? Int. J. Mass Spectrom. Ion Processes 1994, 136 (2–3), 167-180.
9. Wilm, M.; Mann, M., Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996, 68 (1), 1-8.
10. Shia, J.; Wang, C.-H., JMS Letters. J. Mass Spectrom. 1997, 32 (2), 247-250.
11. Lee, C.-Y.; Shiea, J., Gas Chromatography Connected to Multiple Channel Electrospray Ionization Mass Spectrometry for the Detection of Volatile Organic Compounds. Anal. Chem. 1998, 70 (13), 2757-2761.
12. Feng, B.; Patel, A. H.; Keller, P. M.; Slemmon, J. R., Fast characterization of intact proteins using a high-throughput eight-channel parallel liquid chromatography/mass spectrometry system. Rapid Commun. in Mass Spectrom. 2001, 15 (10), 821-826.
13. Feng, B.; McQueney, M. S.; Mezzasalma, T. M.; Slemmon, J. R., An Integrated Ten-Pump, Eight-Channel Parallel LC/MS System for Automated High-Throughput Analysis of Proteins. Anal. Chem. 2001, 73 (23), 5691-5697.
14. Morrison, D.; Davies, A. E.; Watt, A. P., An Evaluation of a Four-Channel Multiplexed Electrospray Tandem Mass Spectrometry for Higher Throughput Quantitative Analysis. Anal. Chem. 2002, 74 (8), 1896-1902.
15. Tang, K.; Lin, Y.; Matson, D. W.; Kim, T.; Smith, R. D., Generation of Multiple Electrosprays Using Microfabricated Emitter Arrays for Improved Mass Spectrometric Sensitivity. Anal. Chem. 2001, 73 (8), 1658-1663.
16. Zhou, L.; Yue, B.; Dearden, D. V.; Lee, E. D.; Rockwood, A. L.; Lee, M. L., Incorporation of a Venturi Device in Electrospray Ionization. Anal. Chem. 2003, 75 (21), 5978-5983.
17. Schneider, B. B.; Douglas, D. J.; Chen, D. D. Y., An atmospheric pressure ion lens to improve electrospray ionization at low solution flow-rates. Rapid Commun. Mass Spectrom. 2001, 15 (22), 2168-2175.
18. Kim, T.; Tang, K. Q.; Udseth, H. R.; Smith, R. D., A multicapillary inlet jet disruption electrodynamic ion funnel interface for improved sensitivity using atmospheric pressure ion sources. Anal. Chem. 2001, 73 (17), 4162-4170.
19. Kim, T.; Udseth, H. R.; Smith, R. D., Improved ion transmission from atmospheric pressure to high vacuum using a multicapillary inlet and electrodynamic ion funnel interface. Anal. Chem. 2000, 72 (20), 5014-5019.
20. Kelly, R. T.; Page, J. S.; Zhao, R.; Qian, W. J.; Mottaz, H. M.; Tang, K. Q.; Smith, R. D., Capillary-based multi nanoelectrospray emitters: Improvements in ion transmission efficiency and implementation with capillary reversed-phase LC-ESI-MS. Anal. Chem. 2008, 80 (1), 143-149.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code