Responsive image
博碩士論文 etd-0624115-110609 詳細資訊
Title page for etd-0624115-110609
論文名稱
Title
氧、水和甲醇分子與二氧化鈦單晶表面之交互作用研究
Interactions of Oxygen, Water and Methanol with Rutile TiO2(110)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-22
繳交日期
Date of Submission
2015-07-27
關鍵字
Keywords
超高真空系統、二氧化鈦、程溫脫附質譜、氧、水、甲醇
ultrahigh vacuum system, rutile TiO2(110), TPD, water, oxygen, methanol
統計
Statistics
本論文已被瀏覽 5674 次,被下載 40
The thesis/dissertation has been browsed 5674 times, has been downloaded 40 times.
中文摘要
二氧化鈦(TiO2)是一種廣為人知的光觸媒,這幾年因為能源以及環境相關議題崛起,其應用和研究更備受重視。一般來說,研究TiO2多以粉末樣品為題,討論其催化活性,但若要清楚了解反應機制,單晶(single crystal)樣品的單純結構較能清楚呈現活性位點所在。本論文以rutile TiO2(110)單晶作為研究材料,在超高真空系統中,以程溫脫附、反射吸收式紅外光譜、歐傑電子能譜配合密度泛涵理論計算等技術與方法,研究氧、水和甲醇分子的表面吸附與反應現象。
氧與單晶表面的作用顯示,270 K才出現O2分子脫附,實驗證明單晶表面的oxygen vacancy (Ov),使O2分子吸附其上而形成oxygen adatom (Oa)。水分子在單晶表面的熱脫附實驗顯示,在157 K、180 K與190 K分別觀察到多層、第二層以及單層分子脫附峰,而於400-500 K看見來自Ov位點的水分子脫附訊號。光化學部分是以365 nm的UV光照射樣品,證實吸附在rutile TiO2(110)上的水分子並不會發生反應。甲醇分子吸附在rutile TiO2(110)的反應顯示照光會形成甲醛並在209 K脫附。若將氧氣與甲醇分子共吸附於表面,則因氧裂解生成Oa與甲醇反應形成methoxy中間體,在照光後分別於較低溫看見甲醛(216 K)和甲醇(260 K)生成;若不照光則在500-600 K看見因自身氧化還原(disproportionation)而同時生成的甲醛和甲醇。
Abstract
In consideration of recent trend in environmental and economical issues of green-process chemistry, the eco-friendly and recyclable titanium oxide has received much attention with the aim of establishing greener, more sustainable photocatalysts. However, the quality of commercial or bench-made TiO2 is somewhat uncontrollable, and thus frequently affects the reproducibility of TiO2-mediated reactions. In order to understand the reaction mechanisms of TiO2-catalyzed interactions of oxygen, water, and methanol, as well as their cross interactions, a single crystal rutile TiO2(110) was selected in this study in order to exclude the complexity caused by powder samples. Ultrahigh vacuum in combination with temperature programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), auger electron spectroscopy (AES), LED UV source and density function theory (DFT) calculations were used to study the TiO2 thermal and photo-chemistry.
O2 desorbs molecularly at 270 K and oxygen vacancies (Ov) are responsible for the dissociative adsorption of O2 molecules to form O adatoms (Oa). In the study of water molecules, the multilayer, the second layer and the monolayer molecular desorption peaks were found at 157 K, 180 K and 190 K, respectively. Under 365 nm UV light irradiation, water remained inactive. Methanol was found to turn into formaldehyde which desorbed at 209 K in TPD, once adsorbed on surface and followed by UV irradiation. Coadsorbed O2 and methanol can create methoxy intermediates by OH bond breaking with Oa. Under UV irradiation, formaldehyde and methanol were observed to desorb at 216 K and 260 K. Without UV irradiation, disproportionation of methoxy affords formaldehyde and methanol simultaneously at 500-600 K.
目次 Table of Contents
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 v
圖次 viii
表次 xi
第壹章、介紹 1
第貳章、實驗設備與方法 6
2-1 超高真空系統與實驗裝置 6
2-1-1程溫脫附實驗 (TPD) 8
2-1-2反射式吸收紅外光譜 (RAIRS) 10
2-1-3歐傑電子光譜(AES) 13
2-2 rutile TiO2 (110)單晶與實驗藥品 13
2-2-1 rutile TiO2(110)試片 13
2-2-2實驗藥品 14
2-3 密度泛涵理論計算(Density Functional Theory Calculations,DFT) 15
第參章、實驗結果與詮釋 16
3-1 瞭解rutile TiO2(110)表面性質 16
3-1-1 利用Auger電子能譜鑑定rutile TiO2(110)表面 16
3-1-2 rutile TiO2(110)氧化態不同導致顏色改變 18
3-2 氧氣在單晶表面之熱化學研究 20
3-2-1 氧氣在rutile TiO2(110)表面之TPD實驗 20
3-2-2 anneal溫度及時間對氧在rutile TiO2(110)表面上吸附行為的影響 23
3-2-3 比較sputter 與anneal對O2吸附的影響 26
3-2-4 比較不同吸附溫度的影響 28
3-2-5 O2與oxygen vacancy在rutile TiO2 (110)表面的重要性 30
3-3 水分子在rutile TiO2(110)表面之研究 31
3-3-1 水分子在rutile TiO2(110)表面之熱化學 31
3-3-2 水分子在rutile TiO2(110)表面之光化學 34
3-4 甲醇在rutile TiO2(110)表面之研究 36
3-4-1甲醇在rutile TiO2(110)表面之熱化學 36
3-4-2甲醇在rutile TiO2(110)表面之光化學 39
3-4-3 甲醇與氧在rutile TiO2(110)表面共吸附 42
3-5 甲醇與乙醛在rutile TiO2(110)上RAIR光譜之研究 45
3-5-1甲醇在rutile TiO2(110)上RAIR光譜之研究 45
3-5-2乙醛在rutile TiO2(110)上RAIR光譜之研究 48
3-5-3 RAIR光譜在rutile TiO2(110)的應用及討論 50
3-6 密度泛涵理論計算(DFT):優化分子結構與模擬IR振動光譜 51
3-6-1 利用DFT計算甲醇在TiO2(110)的優化結構與光譜 51
3-6-2 利用DFT 模擬計算methoxy優化結構與光譜 54
3-6-3 利用DFT模擬計算乙醛優化結構與光譜 57
第肆章、討論與結論 59
4-1 單晶基本性質 59
4-2 各種不同形式氧分子與其反應性 60
4-3 甲醇的氧化反應 60
4-4 結論 62
第伍章、參考文獻 64

圖次
圖1-1 rutile TiO2(110)與 anatase TiO2(101)模型 2
圖1-2 rutile TiO2(110)表面結構 3
圖1-3 Oxygen vacancy 和 Interstitial Ti 4
圖2-1 完整系統裝置示意圖 7
圖2-2 LED-UV點光源 9
圖2-3 分子在金屬表面產生鏡像偶極矩 10
圖2-4 s-與p-polarized偏極光 11
圖2-5 RAIR裝置示意圖 12
圖2-6 單晶規格與實體樣品 13
圖3-1 rutile TiO2(110)經過(a) 0 (b) 1 次清潔步驟後所測得之AES能譜 17
圖3-2 rutile TiO2(110)經過 (a) 0 (b) 3 (c) 40次清潔步驟所呈現顏色變化 (d) 單晶於500 K所呈現的顏色 19
圖3-3 (a) 40 L O2於130 K 在單晶表面不同離子碎片峰之TPD譜 (b) 不同曝氣量(0.1 L、0.5 L、1.0 L、2.0 L、10 L、40 L) m/z = 32之TPD譜 22
圖3-4 (a) 單晶於不同溫度(470 K、510 K、600 K、790 K) anneal 10分鐘 (b) 單晶於不同溫度(340 K、750 K、780 K) anneal 10分鐘及30分鐘之TPD譜 24
圖3-5 單晶分別經過300 K sputter 10分鐘、750 K anneal 10分鐘、300 K sputter 10 分鐘接著750 K anneal 10分鐘之TPD譜 27
圖3-6單晶分別在130 K、200 K、300 K下吸附O2 40 L之TPD譜 (a) m/z = 32 (b) m/z = 16 29
圖3-7 不同D2O (m/z = 20)曝氣量(0.05 L、0.1 L、0.2 L、0.5 L、0.8 L)之TPD圖譜 32
圖3-8 0.1 L D2O於130 K吸附在單晶表面,照射365 nm UV光1小時前後(a) m/z = 20 (b) m/z = 4 TPD比較 35
圖3-9 (a) 0.1 L CH3OD 於130 K吸附在單晶表面不同離子脫附峰之TPD譜 (b) 不同曝氣量(0.02 L、0.05 L、0.1 L、0.2 L、0.3 L、0.8 L)之TPD譜 38
圖3-10 0.1 L CH3OD 於130 K吸附在單晶表面經不同照光時間之TPD譜 (a) m/z = 29 (b) m/z = 33 40
圖3-11 (a) 0.1 L CH3OD與40 L O2共吸附表面後經anneal以及照光之TPD比較 (b) 新單晶上0.08 L CH3OD與40 L O2 共吸附經anneal以及照光之TPD比較 44
圖3-12 (a) 不同CH3OD曝氣量(0.1 L、0.3 L、0.8 L、1.3 L)之RAIR光譜 (b) 1.3 L CH3OD經不同照光時間(dark、0.5 hr、1 hr、1.5 hr)之RAIR光譜 (c) 照射0分鐘及30分鐘UV光後以s-polarized 偏極光偵測所得RAIR光譜 47
圖3-13 (a) 以p-polarized 偏極光偵測acetaldehyde於不同曝氣量(0.5 L、1.5 L、5.5 L)之RAIR光譜 (b) 固定acetaldehyde曝氣量為5.5 L比較s-和p-polarized偏極光所得RAIR光譜 49
圖3-14 (a) CH3OH分子在rutile TiO2(110)表面優化後的結構 (b) CH3OD自由分子優化後的結構 52
圖3-15 (a) 自由CH3OD分子計算光譜 (b) 曝氣量1.3 L CH3OD之RAIR光譜 (c) CH3OH分子在rutile TiO2(110)模型上計算光譜 (d) CH3OH分子計算光譜 (e) NIST標準光譜-氣相CH3OH分子 53
圖3-16 (a) CH2O分子在rutile TiO2(110)模型上計算光譜 (b) 自由CH2O分子計算光譜 (c) NIST標準光譜-氣相CH2O分子 56
圖3-17 acetaldehyde分子在rutile TiO2(110)模型上優化後的結構 57
圖3-18 (a) 自由 CH3CHO分子計算光譜 (b) CH3CHO分子在rutile TiO2(110)模型上計算光譜 (c) 曝氣量5.5 L CH3CHO之RAIR光譜 (d) NIST標準質譜-氣相CH3CHO分子 58

表次
表2-1 14
參考文獻 References
1. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38.
2. Henderson , M. A. A Surface Science Perspective on TiO2 Photocatalysis. Surf. Sci.Rep. 2011, 66, 185–297.
3. Jiang, D.; Xu, Y.; Wu, D.; Sun, Y. Isocyanate-Modified TiO2 Visible-Light-Activated Photocatalyst. Appl. Catal., B 2009, 88,165-172.
4. Asahi, R.; Morikawa, T.; Ohwaki, K.; Aoki,Y.; Taga Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293,269.
5. Wang, J.; Tafen, D. N.; Lewis, J. P. ; Hong, Z.; Manivannan, A.; Zhi, M.; Wu, N. Origin of Photocatalytic Activity of Nitrogen –Doped TiO2 Nanobelts. J. Am. Chem. Soc. 2009, 131, 12290-12297.
6. Tao, J.; Yang, M.; Chai, J. W.; Pan, J. S.; Feng, Y. P.; Wang, S. J. Atomic N Modified Rutile TiO2(110) Surface Layer with Significant Visible Light Photoactivity. J. Phys. Chem. C 2014, 118, 994−1000
7. Wu. W. C.; Chung, C. C. Lin. J. L. Bonding Geometry and Reactivity of Methoxy and Ethoxy Groups Adsorbed on Powdered TiO2. J. Phys. Chem. B 2000, 104, 8719-8724.
8. Almelda, A. R.; Moulijn, J. A.; Mul, G. Photocatalytic Oxidation of Cyclohexane over TiO2: Evidence for Mars-van Krevelen Mechanism. J. Phys. Chem. C 2011, 115, 1330-1338.
9. Carneiro, J. T.; Moulijn J. A.; Mul, G. Photocatalytic Oxidation of Cyclohexane by Titanium Dioxide: Catalyst Deactivation and Regeneration. J. Catal. 2010, 273,199-210.
10. Haruta, M; Kobayashi, T.; Sano, H.; Yamada, N. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far below 0. DEG. C. Chem. Lett. 1987, 405-408.
11. Henderson, M. A. Photooxidation and Photodesorption in the Photochemistry of Isobutene on TiO2(110). J. Phys. Chem. C 2013, 117, 14113−14124.
12. Henderson, M. A.; Sary, O. T.; Castro, M. E. The Chemistry of Methanol on the TiO2(110) Surface: The Influence of vacancies and coadsorbed species. Faraday Discuss 1999, 114, 313-329.
13. Li, S. C.; Losovyj, Y.; Paliwal, V. K.; Dieblod, U. Photoemission Study of Azobenzene and Aniline Adsorbed TiO2 Anatase(101) and Rutile (110) Surface. J. Phys. Chem. C 2011, 115, 10173–10179.
14. Hung C. J. Adsorption and Reactions of Aniline on Copper and Titania Single Crystal Surfaces. Department of Chemistry National Sun Yat-sen University Master Thesis, 2013.
15. Yuan, Q.; Wu Z.; Jin, Y.; Xu, L. Xiong, F. Ma, Y.; Huang, W. Photocatalytic Cross-Coupling of Methanol and Formaldehyde on a Rutile TiO2(110) Surface. J. Am. Chem. Soc. 2013, 135, 5212−5219.
16. Guo, Q.; Xu, C.; Ren, Z.; Yang, W.; Ma, Z.; Dai, D.; Fan, H.; Miton, T. K.; Yang, X. Stepwise Photocatalytic Dissociation of Methanol and Water on TiO2(110). J. Am. Chem. Soc. 2012, 134, 13366−13373.
17. Xu, C.; Yang, W.; Guo, Q.; Dai, D.; Chen, M.; Yang, X. Molecular Hydrogen Formation from Photocatalysis of Methanol on TiO2(110). J. Am. Chem. Soc. 2013, 135, 10206−10209.
18. Henderson , M. A.; Epling, W. S.; Perkins, C, L.; Peden, C. H. F.; Diebold, U. Interaction of Molecular Oxygen with the Vacuum-Annealed TiO2(110) Surface: Molecular and Dissociative Channels. J. Phys. Chem. B 1999, 103, 5328-5337.
19. Epling, W. S.; Peden, C. H. F.; Henderson , M. A. Diebold, U. Evidence for Oxygen Adatoms on TiO2(110) resulting from O2 Dissociation at Vacancy Sites. Sur. Sci. 1998, 412/413, 333–343.
20. Lira. E.; Hansen, J.; Huo, P.; Bechstein, R.; Galliker, P.; Lægsgaard, E.; Hammer, B.; Wendt, S.; Besenbacher, F. Dissociative and Molecular Oxygen Chemisorption Channels on Reduced Rutile TiO2(110): An STM and TPD Study. Surf. Sci. 2010, 604, 1945–1960.
21. Kimmel, G. A.; Petrik, N. Tetraoxygen on Reduced TiO2(110): Oxygen Adsorption and Reactions with Bridging Oxygen Vacancies. Phys. Rev. Lett. 2008, 100, 196102.
22. Du, Y.; Deskins, N. A.; Zhang, Z.; Dohnalek, Z; Dupuis, M.; Lyubinetsky, I. Formation of O Adatoms Pairs and Charge Transfer upon O2 Dissociation on Reduced TiO2(110). Phys. Chem. Chem. Phys., 2010, 12, 6337–6344.
23. Du, Y.; Dohnálek, Z.; Lyubinetsky, I. Transient Mobility of Oxygen Adatoms upon O2 Dissociation on Reduced TiO2(110). J. Phys. Chem. C 2008, 112, 2649-2653.
24. Henderson, M. A. Structural Sensitivity in the Dissociation of Water on TiO2 Single Crystal Surfaces. Langmuir 1996, 12, 5093-5098.
25. Wendt, S.; Metthiesen, J.; Schaub, R.; Vestergaard, E. K.; Lægsgaard, E.; Besenbacher, F.; Hammer. B. Formation and Splitting of Paired Hydroxyl Groups on Reduced TiO2(110) Phys. Rev. Lett. 2006, 96, 066107.
26. Shen, M.; Henderson, M. A. Role of Water in Methanol Photochemistry on Rutile TiO2(110). J. Phys. Chem. C 2012, 116, 18788−18795.
27. Shen, M.; Henderson, M. A. Identification of the Active Species in Photochemical Hole Scavenging Reactions of Methanol on TiO2. J. Phys. Chem. Lett. 2011, 2, 2707–2710.
28. Phillips, K. R.; Jensen, S. C.; Baron. M.; Li, S. C.; Friend, C. M. Sequential Photo-Oxidation of Methanol to Methyl Formate on TiO2(110). J. Am. Chem. Soc. 2013, 135, 574−577.
29. Hayden, B. E.; King, A.; Newton, M. A. Fourier Transform Reflection-Absorption IR Spectroscopy Study of Formate Adsroption on TiO2(110). J. Phys. Chem. B 1999, 103, 203-208.
30. Xu, M.; Gao, Y. K.; Wang, Y,; Wöll, C. Monitoring Electronic Structure Changes of TiO2(110) via Sign Reversal of Adsorbate Vibrational Bands. Phys. Chem. Chem. Phys. 2010, 12, 3649-3652.
31. Kimmel, G. A.; Baer, M.; Petrik, N. G.; VandeVondele, J.; Roussau, R.; Mundy, C. J. Polarization- and Azimuth-Resolved Infrared Spectroscopy of Water on TiO2(110): Anisotropy and The Hydrogen-Bonding Network. J. Phys. Chem. Lett. 2012, 3, 778.
32. Clawin, P. M.; Friend, C. M.; Al-Shamery, K. Defects in Surface Chemistry-Reductive Coupling of Benzaldehyde on Rutile TiO2(110). Chem. Eur. J. 2014, 20, 7665.
33. Yang, L.; Tunega, D.; Xu, L.; Govind, N.; Sun, R.; Taylor, R.; Lischka, H.; DeJong, W. A.; Hase, W. L. Comparison of Cluster, Slab, and Analytic Potential Models for the Dimethyl Methylphosphonate (DMMP)/TiO2(110) Intermolecular Interaction. J. Phys. Chem. C 2013, 117, 17613−17622.
34. Li, M.; Hebenstreit, Diebold, U.; Tyryshkin, A. M.; Bowman, M. K.; Dunham, G. G.; Henderson , M. The Influence of the Bulk Reduction State on the Surface Structure and Morphology of Rutile TiO2(110) Single Crystals. J. Phys. Chem. B 2000, 104, 4944-4950.
35. Cremer, T.; Jensen, S. C.; Friend, C. M. Enhanced Photo-Oxidation of Formaldehyde on Highly Reduced o-TiO2(110). J. Phys. Chem. C 2014, 118, 29242-29251.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code