Responsive image
博碩士論文 etd-0624115-165153 詳細資訊
Title page for etd-0624115-165153
論文名稱
Title
三萜類化合物樺木酸對TGF-β訊息傳遞路徑的調控及細胞膜微域影響之探討
The role of betulinic acid in modulation of membrane microdomains and TGF-β signaling.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-21
繳交日期
Date of Submission
2015-07-24
關鍵字
Keywords
樺木酸、脂筏、小窩、轉化生長因子β、膽固醇
cholesterol, TGF-beta, caveolae, lipid-raft, Betulinic acid
統計
Statistics
本論文已被瀏覽 5711 次,被下載 72
The thesis/dissertation has been browsed 5711 times, has been downloaded 72 times.
中文摘要
樺木酸(Betulinic acid;BetA)是由白樺樹皮所萃取出的三萜類化學物質,被認為對癌細胞與腫瘤細胞具有毒性。而樺木酸對細胞中特殊受體的影響目前尚無廣泛且清楚的研究,故針對樺木酸對轉化生長因子β(TGF-β)訊息傳遞的影響進行探討。TGF-β是調節細胞增殖與細胞遷移的關鍵調節物,同時也參與癌症的發生與發展進程。TGF-β藉由Smad蛋白之依賴性與非依賴性的訊息傳遞路徑,來調節腫瘤細胞的增殖和侵襲。實驗中藉由蔗糖濃度梯度超高速離心法及西方墨點法確認:在大多數細胞中,TGF-β受體主要位於脂筏/caveolae微區。而樺木酸在不改變TGF-β受體總量的情況下,能夠誘導TGF-β受體從脂筏/caveolae 移動至non-caveolae微域。目前已發現TGF-β受體於脂筏/caveolae與clathrin所調控的內吞作用之間的分布情形,可調節TGF-β的反應程度。最值得注意的是,樺木酸所誘導的TGF-β受體易位是非常快速的,同時也與TGF-β所誘導的訊號相關。於是我們提出樺木酸可將TGF-β受體從脂筏/caveolae移出,以增強TGF-β訊息傳遞並且顯著增加TGF-β刺激Smad2磷酸化的能力。此外,在水貂肺部上皮細胞(Mv1Lu cell)中,樺木酸所引起TGF-β受體重新分布的情形,可以增強TGF-β所誘導的PAI-1報導基因的活性,並增強細胞生長抑制。這些結果顯示,樺木酸的作用可能是源於細胞膜上一部份TGF-β受體在non-caveolae微域中增強了訊息強度所致。
Abstract
Betulinic acid (BetA) is a phytochemical triterpenoid acid from bark extracts and is cytotoxic to cancer cells and tumors. The specific subcellular receptors that are bound or deactivated by BetA have not been extensively investigated or identified. The goal of this study is to investigate the effect of BetA in transforming growth factor β (TGF-β) signaling. TGF-β is a key modulator in regulating cell proliferation and migration, it also involved in the process of cancer development and progression. TGF-β regulates tumor cell proliferation and invasion through a variety of Smad-dependent and -independent pathways. In most of cells, TGF-β receptors were located predominantly in lipid raft/caveolae microdomains, determined using sucrose density gradient ultracentrifugation and Western blot. BetA induces translocation of TGF-β receptors from lipid raft/caveolae to non-caveolae microdomains without changing total level of TGF-β receptors. Distribution of TGF-β receptors between lipid raft/caveolae- and clathrin-mediated endocytosis has been found to regulate TGF-β responsiveness. Most notably, BetA-induced TGF-β receptors translocation is rapid and correlate with the TGF-β-induced signaling. Here, we provide for the first the time evidence that BetA enhanced TGF-β signaling is associated with translocation of TGF-β receptors out of lipid raft/caveolae microdomains and a dramatic increase in the ability of TGF-β to stimulate Smad2 phosphorylation. Moreover, BetA-induced redistribution of TGF-β receptors also enhances TGF-β -induced PAI-1 reporter gene activation and growth inhibition in Mv1Lu cells. These results implicated that anticancer activities of BetA may be due, in part to the enhancing of TGF-β receptor signaling in non-caveolae microdomains in plasma membrane.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
縮寫表 ix
第一章 前言 1
一、轉型生長因子β (Transforming Growth Factor-β, TGF-β) 1
二、Lipid raft/Caveolae 4
三、樺木酸(Betulinic acid) 9
第二章 研究目的 11
第三章 材料 12
第四章 實驗方法 16
第五章 結果 23
一、BetA會加強由TGF-β所引起的轉錄反應 23
二、BetA會增強由TGF-β所引起的Smad磷酸化,並且增加p-Smad移至細胞核內的量。 25
三、BetA可促進由TGF-β誘導的Calponin蛋白的表現量 26
四、BetA會增強由TGF-β所誘導之抑制Mv1Lu cell生長 27
五、BetA促使TGF-β受體聚集至non-cavelae區域 28
第六章 討論 43
第七章 總結 46
第八章 參考文獻 47
參考文獻 References
1. Massague, J., The Transforming Growth Factor-beta Family. Annual Review of Cell Biology, 1990. 6: p. 597-641.
2. A.B., R., Molecular and cell biology of TGF-beta. Mineral and Electrolyte Metabolism, 1998. 24(2-3): p. 111-119.
3. Obberghen-Schilling, E.V., et al., Transforming growth factor beta 1 positively regulates its own expression in normal and transformed cells. The Journal of Biological Chemistry, 1988. 263(16): p. 7741-7746.
4. McCartney-Francis, N., et al., TGF-β Regulates Production of Growth Factors and TGF-β by Human Peripheral Blood Monocytes. Growth Factors, 1990. 4(1): p. 27-35.
5. Flanders, K.C., M.G. Holder, and T.S. Winokur, Autoinduction of mRNA and protein expression for transforming growth factor-βs in cultured cardiac cells. Journal of Molecular and Cellular Cardiology, 1995. 27(2): p. 805–812.
6. Derynck, R., R.J. Akhurst, and A. Balmain, TGF-β signaling in tumor suppression and cancer progression. Nature genetics, 2001. 29: p. 117-129.
7. Trapani, J.A., The dual adverse effects of TGF-β secretion on tumor progression. Cancer Cell, 2005. 8(5): p. 349-350.
8. Ostroukhova, M., et al., Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-beta. J Clin Invest, 2006. 116(4): p. 996-1004.
9. Heldin, C.-H., K. Miyazono, and P.t. Dijke, TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature, 1997. 390: p. 465-471.
10. Chen, C.-L., et al., Cholesterol suppresses cellular TGF-β responsiveness:implications in atherogenesis. J Cell Sci., 2007: p. 3509-3521.
11. Chen, C.-L., S.S. Huang, and J.S. Huang, Cholesterol modulates cellular TGF-beta responsiveness by altering TGF-beta binding to TGF-beta receptors. Journal of Cell Physiology, 2008. 215(1): p. 223-33.
12. Chen, C.L., et al., A mechanism by which dietary trans fats cause atherosclerosis. J Nutr Biochem, 2011. 22(7): p. 649-55.
13. Simons, K. and D. Toomre, Lipid rafts and signal transduction. Nature Reviews Molecular Cell Biology, 2000. 1: p. 31-39.
14. Sundivakkam, P.C., et al., Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. Am J Physiol Cell Physiol, 2009. 296(3): p. C403-13.
15. Muriel, O., et al., Phosphorylated filamin A regulates actin-linked caveolae dynamics. Journal of cell science, 2011. 124: p. 2763-2776.
16. Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-bold beta family signalling. Nature, 2003. 425: p. 577-584.
17. Singer, S.J. and G.L. Nicolson, The Fluid Mosaic Model of the Structure of Cell Membranes . Science, 1972. 175: p. 720-731.
18. Brown, D.A. and E. London, Structure of Detergent-Resistant Membrane Domains: Does Phase Separation Occur in Biological Membranes? . Biochemical and Biophysical Research Communications, 1997. 240(1): p. 1-7.
19. Moldovan, N.I., et al., Ultrastructural Evidence of Differential Solubility in Triton X-100 of Endothelial Vesicles and Plasma Membrane. Experimental Cell Research, 1995. 219: p. 309-313.
20. Pike, L.J., Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J. Lipid Res., 2006. 47: p. 1597–1598.
21. Browman, D.T., et al., Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. Journal of Cell Science, 2006. 119: p. 3149–3160.
22. Hayashi, T. and T.-P. Su, Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. The Journal of Pharmacology and Experimental Therapeutics, 2003. 306: p. 718–725.
23. Eberle, H.B., et al., Identification and characterization of a novel human plant pathogenesisrelated protein that localizes to lipid-enriched microdomains in the Golgi complex. Journal of Cell Science, 2002. 115: p. 827–838.
24. Dermine, J.-F.o., et al., Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. The Journal of Biological Chemistry, 2001. 276: p. 18507–18512.
25. Gagescu, R., et al., The recycling endosome of Madin–Darby canine kidney cells is a mildly acidic compartment rich in raft components. Molecular Biology of the Cell, 2000. 11: p. 2775–2791.
26. Sobo, K., et al., Diversity of raft-like domains in late endosomes. PLOS ONE, 2007. 2(4): p. e391.
27. Simons, K. and E. Ikonen, Functional rafts in cell membranes. Nature, 1997. 387: p. 569-572.
28. Harder, T. and K. Simons, Caveolae, DIGs, and the dynamics of sphingolipid—cholesterol microdomains. Current Opinion in Cell Biology, 1997. 9(4): p. 534-542.
29. Galbiati, F., B. Razani, and M.P. Lisanti, Emerging Themes in Lipid Rafts and Caveolae. Cell 2001. 106: p. 403-411.
30. Park, H., et al., Plasma Membrane Cholesterol Is a Key Molecule in Shear Stress-dependent Activation of Extracellular Signal-regulated Kinase. The Journal of Biological Chemistry, 1998. 273(48): p. 32304–32311.
31. Mason, R.P., M.F. Walter, and R.F. Jacob, Effects of HMG-CoA Reductase Inhibitors on Endothelial Function. Circulation 2004. 109: p. II-34-II-41.
32. Xu, X., et al., Effect of the Structure of Natural Sterols and Sphingolipids on the Formation of Ordered Sphingolipid/Sterol Domains (Rafts). The Journal of Biological Chemistry, 2001. 276: p. 33540–33546.
33. Palade, G.E., Fine structure of blood capillaries. Journal of Applied Physics, 1953. 24: p. 1424.
34. Parton, R.G. and K. Simons, The multiple faces of caveolae. Nature Reviews Molecular Cell Biology, 2007. 8: p. 185-194.
35. Roth, M.G., Clathrin-mediated endocytosis before fluorescent proteins. Nature Reviews Molecular Cell Biology, 2006. 7: p. 63-68.
36. FRA, A.M., et al., De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proceeding of the National Academy of Sciences of the United States of America, 1995. 92(19): p. 8655–8659.
37. Vogel, U., K. Sandvig, and B.v. Deurs, Expression of caveolin-1 and polarized formation of invaginated caveolae in Caco-2 and MDCK II cells. Journal of Cell Science, 1998. 111: p. 825-832.
38. Scherer, P.E., et al., Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proceeding of the National Academy of Sciences of the United States of America, 1996. 93: p. 131-135.
39. Breuza, L., et al., The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells. Journal of Cell Science, 2002. 115: p. 4457-4467.
40. Schlegel, A., P. Arvan, and M.P. Lisanti, Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. The Journal of Biological Chemistry, 2001. 276(6): p. 4398-4408.
41. Pol, A., et al., Cholesterol and Fatty Acids Regulate Dynamic Caveolin Trafficking through the Golgi Complex and between the Cell Surface and Lipid Bodies. Molecular Biology of the Cell, 2005. 16(2091-2105).
42. Ren, X., et al., Conformational Defects Slow Golgi Exit, Block Oligomerization, and Reduce Raft Affinity of Caveolin-1 Mutant Proteins. Molecular Biology of the Cell, 2004. 15: p. 4556–4567.
43. Cheng, Z.-J., et al., Distinct Mechanisms of Clathrin-independent Endocytosis Have Unique Sphingolipid Requirements. Molecular Biology of the Cell, 2006. 17: p. 3197–3210.
44. Parton, R.G., M. Hanzal-Bayer, and J.F. Hancock, Biogenesis of caveolae: a structural model for caveolin-induced domain formation. Journal of Cell Science, 2005. 119: p. 787-796.
45. Monier, S., et al., Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Letters, 1996. 388(2-3): p. 143-149.
46. Rothberg, K.G., et al., Caveolin, a protein component of caveolae membrane coats. Cell, 1992. 68(4): p. 673–682.
47. Fielding, P.E. and C.J. Fielding, Plasma membrane caveolae mediate the efflux of cellular free cholesterol. Biochemistry, 1995. 34(44): p. 14288–14292.
48. Murata, M., et al., VIP21/caveolin is a cholesterol-binding protein. Proc. Nati. Acad. Sci. USA, 1995. 92: p. 10339-10343.
49. Orlichenko, L., et al., Epithelial Growth Factor-induced Phosphorylation of Caveolin 1 at Tyrosine 14 Stimulates Caveolae Formation in Epithelial Cells. The Journal of Biological Chemistry, 2006. 281(8): p. 4570 –4579.
50. Lajoie, P. and I.R. Nabi, Lipid rafts, caveolae, and their endocytosis. International Review of Cell and Molecular Biology, 2010. 282: p. 135-163.
51. Fulda, S. and K.M. Debatin, Sensitization for anticancer drug-induced apoptosis by betulinic Acid. Neoplasia, 2005. 7(2): p. 162-70.
52. Kasperczyk, H., et al., Betulinic acid as new activator of NF-kappaB: molecular mechanisms and implications for cancer therapy. Oncogene, 2005. 24(46): p. 6945-56.
53. Samib, A., et al., Pharmacological properties of the ubiquitous natural product betulin. european journal of pharmaceutical sciences, 2006. 2 9: p. 1-13.
54. Mukherjee, R., et al., Betulinic acid and its derivatives as anti-angiogenic agents. Bioorg Med Chem Lett, 2004. 14(9): p. 2181-4.
55. Kessler, J.H., et al., Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types. Cancer Lett, 2007. 251(1): p. 132-45.
56. Damle, A.A., Y.P. Pawar, and A.A. Narkar, Anticancer activity of betulinic acid on MCF-7 tumors in nude mice. Indian Journal of Experimental Biology, 2013. 51: p. 485-491.
57. Fulda, S., et al., Betulinic Acid Triggers CD95 (APO-lIFas)- and p53-independent Apoptosis via Activation of Caspases in Neuroectodermal Tumors. American Association for Cancer Research, 1997. 57: p. 4956-4964.
58. Fulda, S., Activation of Mitochondria and Release of Mitochondrial Apoptogenic Factors by Betulinic Acid. Journal of Biological Chemistry, 1998. 273(51): p. 33942-33948.
59. Letterio, J.J., TGF-beta signaling in T cells: roles in lymphoid and epithelial neoplasia. Oncogene, 2005. 24(37): p. 5701-12.
60. Bierie, B. and H.L. Moses, TGFβ: the molecular Jekyll and Hyde of cancer. Nature Reviews Cancer, 2006. 6: p. 506-520.
61. Yi, J.S., et al., Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption. Biochem Biophys Res Commun, 2009. 385(2): p. 154-159.
62. Zuco, V., et al., Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Letters, 2002. 175(1): p. 17-25.
63. Bhatia, A., G. Kaur, and H.K. Sekhon, Anticancerous Efficacy of Betulinic acid: An Immunomodulatory Phytochemical. Journal of PharmaSciTech, 2015. 4(2): p. 39-46.
64. Short Protocols in Molecular Biology Second Edition. 1997: John Wiley and Sons. 10-33-10-35.
65. Basic Protein and Peptide Protocols. Vol. 32. 1994: Humana Press: Totowa, NY. 189, 209-221.
66. Park, D.S., et al., Caveolin-1 Null (-/-) Mice Show Dramatic Reductions in Life Span. Biochemistry, 2003. 42(51): p. 15124-15131.
67. Pike, L.J., Lipid rafts: bringing order to chaos. J Lipid Res, 2003. 44(4): p. 655-67.
68. Kretzschmar, M. and J. Massague, SMADs: mediators and regulators of TGF-13 signaling. Current Opinion in genetics & development, 1998. 8: p. 103-111.
69. Moustakas, A., S. Souchelnytskyi, and C.-H. Heldin, Smad regulation in TGF-β signal transduction. Journal of Cell Science, 2001. 114: p. 4359-4369.
70. Miyazono, K., Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer. Proceedings of the Japan Academy, Series B, 2009. 85(8): p. 314-323.
71. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90.
72. Shirakihara, T., et al., TGF-beta regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J, 2011. 30(4): p. 783-95.
73. Shirakihara, T., et al., Identification of integrin alpha3 as a molecular marker of cells undergoing epithelial-mesenchymal transition and of cancer cells with aggressive phenotypes. Cancer Sci, 2013. 104(9): p. 1189-97.
74. M, L., et al., Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation. Cell, 1990. 62: p. 175-185.
75. BA, H. and H. PH, Mechanisms of TGF-beta-induced cell cycle arrest. Mineral and electrolyte metabolism 1998. 24(2-3): p. 131-135.
76. Huang, S.S. and J.S. Huang, TGF-beta control of cell proliferation. J Cell Biochem, 2005. 96(3): p. 447-62.
77. Chen, C.L., S.S. Huang, and J.S. Huang, Cellular heparan sulfate negatively modulates transforming growth factor-beta1 (TGF-beta1) responsiveness in epithelial cells. J Biol Chem, 2006. 281(17): p. 11506-14.
78. Di Guglielmo, G.M., et al., Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol, 2003. 5(5): p. 410-21.
79. Lavhale, M.S., et al., A novel triterpenoid isolated from the root bark of Ailanthus excelsa Roxb (Tree of Heaven), AECHL-1 as a potential anti-cancer agent. PLoS One, 2009. 4(4): p. e5365.
80. SS, S., R. KK, and C. PK, Production of triterpenoid anti-cancer compound taraxerol in Agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.). Applied biochemistry and biotechnology, 2012. 168(487-503).
81. Kulkarni, A.A., et al., The triterpenoid CDDO-Me inhibits bleomycin-induced lung inflammation and fibrosis. PLoS One, 2013. 8(5): p. e63798.
82. Aminzadeh, M.A., et al., The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores Nrf2 activity and attenuates oxidative stress, inflammation, and fibrosis in rats with chronic kidney disease. Xenobiotica, 2014. 44(6): p. 570-578.
83. Deeb, D., et al., Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NF-kappaB/mTOR signaling proteins and anti-apoptotic Bcl-2. Int J Oncol, 2014. 44(5): p. 1707-15.
84. Lin, K.W., et al., Anti-cancer effects of ursane triterpenoid as a single agent and in combination with cisplatin in bladder cancer. Eur J Pharmacol, 2014. 740: p. 742-51.
85. Wei, J., et al., A synthetic PPAR-gamma agonist triterpenoid ameliorates experimental fibrosis: PPAR-gamma-independent suppression of fibrotic responses. Ann Rheum Dis, 2014. 73(2): p. 446-54.
86. MF, M. and B. H, Betulinic acid inhibits aminopeptidase N activity. Planta medica, 1998. 64: p. 655-657.
87. Kwon, H.J., et al., Betulinic Acid Inhibits Growth Factor-induced in vitro Angiogenesis via the Modulation of Mitochondrial Function in Endothelial Cells. Japanese journal of cancer research, 2002. 93: p. 417-425.
88. Karin, M. and F.R. Greten, NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol, 2005. 5(10): p. 749-59.
89. Luo, J.L., H. Kamata, and M. Karin, IKK/NF-kappaB signaling: balancing life and death--a new approach to cancer therapy. J Clin Invest, 2005. 115(10): p. 2625-32.
90. Takada, Y. and B.B. Aggarwal, Betulinic Acid Suppresses Carcinogen-Induced NF- B Activation Through Inhibition of I B Kinase and p65 Phosphorylation: Abrogation of Cyclooxygenase-2 and Matrix Metalloprotease-9. The Journal of Immunology, 2003. 171(6): p. 3278-3286.
91. Suh, N., et al., Synthetic Triterpenoids Enhance Transforming Growth Factor beta/Smad Signaling. Cancer research, 2003. 63: p. 1371-1376.
92. Ji, Y., et al., The synthetic triterpenoid CDDO-imidazolide induces monocytic differentiation by activating the Smad and ERK signaling pathways in HL60 leukemia cells. Mol Cancer Ther, 2006. 5(6): p. 1452-8.
93. Liby, K.T., M.M. Yore, and M.B. Sporn, Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer, 2007. 7(5): p. 357-69.
94. Stefansson, S. and D.A. Lawrence, The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature, 1996. 383(6599): p. 441-3.
95. Rebres, R.A., et al., Extracellular matrix incorporation of normal and NEM-alkylated fibronectin: liver and spleen deposition. American Journal of Physiology - Gastrointestinal and Liver Physiology, 1995. 269: p. G902-G912.
96. Hocking, D.C., et al., Extracellular Matrix Fibronectin Mechanically Couples Skeletal Muscle Contraction With Local Vasodilation. Circulation Research, 2008. 102: p. 372-379.
97. Sottile, J., D.C. Hocking, and P.J. Swiatek, Fibronectin matrix assembly enhances adhesion-dependent cell growth. Journal of Cell Science, 1998. 111: p. 2933-2943.
98. Hocking, D.C. and C.H. Chang, Fibronectin matrix polymerization regulates small airway epithelial cell migration. Am J Physiol Lung Cell Mol Physiol, 2003. 285: p. L169–L179.
99. DC, H., S. J, and L. KJ, Stimulation of integrinmediated cell contractility by fibronectin polymerization. J Biol Chem, 2000. 275: p. 10673-10682.
100. E, E., R. E, and M. EJ, Affinity of fibronectin to collagens of different genetic types and to fibrinogen. J Exp Med. , 1978. 147: p. 1584-1595.
101. Gomez-Mouton, C., et al., Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J Cell Biol, 2004. 164(5): p. 759-68.
102. Le Roy, C. and J.L. Wrana, Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol, 2005. 6(2): p. 112-26.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code