Responsive image
博碩士論文 etd-0624116-021150 詳細資訊
Title page for etd-0624116-021150
論文名稱
Title
利用勞氏鏡干涉架構搭配光場強度均勻器製作晶圓級奈米圖案
Lloyd's Interference Lithography System Employing Beam Shaping Technique for Wafer-scale Nano-patterning
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-22
繳交日期
Date of Submission
2016-07-24
關鍵字
Keywords
固有的高斯分布、勞氏鏡干涉系統架構、折射式光束整束器、可調式光束擴束器、平頂光束、分佈式回授雷射
inherent Gaussian distribution, Lloyd's mirror interferometer, refractive beam shaper, tunable beam expander, distributed feedback laser, flat-top one
統計
Statistics
本論文已被瀏覽 5683 次,被下載 48
The thesis/dissertation has been browsed 5683 times, has been downloaded 48 times.
中文摘要
雷射干涉微影系統已被用來製作一維及二維週期性光柵結構於大面積基板且為快速又便宜的方法。由於勞氏鏡系統架構與週期性結構的控制都相對簡單,因此被廣泛的應用在各種系統模組中。然而,雷射光束固有的高斯分布導致非均勻光柵結構的產生,尤其在使用單光束勞氏鏡干涉系統製作晶圓級圖案時將更為嚴重。在本論文中,在勞氏鏡干涉系統中使用折射式光束整束器輸出後之均勻場型成功製作週期性晶圓級圖案結構。整套系統架構相似於傳統勞氏鏡干涉系統架構,兩者差異在於額外使用折射式光束整束器與可調式光束擴束器並用於將高斯光束轉換為平頂光束。藉由均勻光場的幫助,整套系統更為緊湊以及對於環境因素較為不靈敏。我們成功地展示出均勻光柵結構於兩吋晶圓片上,其填充因子差異小於±0.55%,並實現四邊形與六邊形二維光柵結構,兩者幾乎維持相同的填充因子變化(∆FF = ±1.25%)以及圓形幾何的形狀(∆e = ±0.04)。甚至是更高的旋轉對稱性結構皆可被均勻地實現。我們認為該套系統將有助於業界的應用,特別是均勻光柵構成於分佈式回授雷射的製造上。
Abstract
Laser interference lithography (LIL) has been an effective and inexpensive approach for generating submicron periodic patterns in one-dimension or two-dimension over a large area with high throughput. Among various configurations, a Lloyd-mirror configuration has been used for a wide range of applications due to its simplicity in system setup and the control of pattern periodicity. However, inherent Gaussian distribution of the laser beam leads to a non-uniform grating pattern formation, especially for wafer-scale patterning using a single-beam Lloyd's mirror interferometer. In this thesis, a refractive beam shaper is utilized in a Lloyd's mirror interferometer to achieve wafer-scale patterning of periodic structures with a uniform resultant profile. The entire system setup is similar to Lloyd’s mirror interferometer but additional refractive beam shaper and tunable beam expander are needed for converting the Gaussian beam into a flat-top one. With the help of a uniform light field, the entire system can be more compact and is less sensitive to the environmental condition. We successfully demonstrated uniform grating structures over 2-inch wafers with a fill factor variation of less than ±0.55%. As-realized two-dimensional square and hexagonal grating structures also reveal almost constant fill factor (FF = ±1.25%) and circular geometry (e = ±0.04). Even higher rotational-symmetry structures can be uniformly realized. We believe that the proposed system will be very useful for industrial applications, especially for uniform gratings formation during distributed feedback laser fabrication.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
誌謝 iii
中文摘要 iv
Abstract v
內容目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 圖形轉印製程技術探討 4
1-4 光場整束器機制探討 6
第二章 全像干涉理論與系統架構介紹 7
2-1 微影干涉 7
2-2 光場強度均勻器之介紹 9
2-3 文獻回顧 13
2-3.1 勞氏鏡干涉系統 13
2-3.2 雙光束干涉系統 16
2-3.3 成像技術與光場強度均勻器的結合 18
2-3.4 光場強度均勻器其他應用技術 20
2-4 光場強度均勻化之單光束干涉系統架構 23
2-5 單光束干涉系統差異比較 26
第三章 全像術製程與應用儀器原理 27
3-1 全像術製程之技術 27
3-1.1 製程流程步驟 27
3-1.2 駐波效應之影響 29
3-1.3 克服駐波效應之方式 31
3-1.4 光阻薄膜定義與差異 33
3-1.5 曝光程序 35
3-1.6 顯影程序 36
3-2 雷射發展與差異比較 38
3-3 掃描式電子顯微鏡 40
3-4 原子力顯微鏡 41
第四章 實驗結果與量測分析 42
4-1 全像術週期性均勻結構實驗結果 42
4-1.1 利用MATLAB模擬不同光場強度對不同系統的影響 42
4-1.2 一維週期性光柵結構 44
4-1.3 二維週期性球面柱狀結構 48
4-1.4 多次曝光程序之結構 50
4-1.5 不同曝光程序之結構 55
4-2 調變光場場型與實驗結果 57
4-2.1 光場調變原理與文獻探討 57
4-2.2 光場場型變化相對一維週期性光柵結構 59
4-3 技術轉移之測試成果 62
第五章 結論與未來工作 65
參考文獻 70
附錄A 光環技轉結案報告 75
參考文獻 References
[1] http://www.holoor.co.il/Diffractive_optics_Applications/Application_Notes_BeamShapers.htm
[2] J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop-beam,” Appl. Opt., vol. 15, pp. 5488-5499, 2000.
[3] H. Wolferen and L. Abelmann, “Laser interference lithography,” 133-148, 2011.
[4] A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol., vol. 15, pp. 729-735, 1997.
[5] M. Ellman, A. Rodríguez. N. Pérez, M. Echeverria, Y.K. Verevkin, C.S. Peng, T. Berthou, Z. Wang, S.M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist : Effect of laser fluence and polarisation,” Appl. Surf. Sci., vol. 10, pp. 5537-5541, 2009.
[6] http://www.veego.com.tw/product.asp
[7] https://www.jenoptik.com
[8] F. M. Dickey, “Laser Beam Shaping: Theory and Technique,” 2nd ed, New York: Marcel Dekker, 2000.
[9] J. A. Hoffnagle, and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt., vol. 39, pp. 5488-5499, 2000.
[10] J. Kreuzer, “Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface,” United States Patent US 3476463, 1969.
[11] A. Laskin, “Achromatic refractive beam shaping optics for broad spectrum laser applications,” Proc. SPIE, vol. 7430, p. 743003, 2009.
[12] A. Laskin, “Achromatic optical system for beam shaping,” United States Patent US 8023206, 2011.
[13] J. A. Hoffnagle and C. M. Jefferson, “Refractive optical system that converts a laser beam to a collimated flat-top beam,” United States Patent US 6295168, 2001.
[14] H. J. Coufal, J. A. Hoffnagle and C. M. Jefferson, “System for converting optical beams to collimated flat-top beams,” United States Patent US 6801368, 2004.
[15] A. Laskin and V. Laskin, “Collimating beam shaper for holography and interferometry,” Proc. SPIE, vol. 8644, p. 864406, 2013.
[16] J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop-beam,” Appl. Opt., vol. 39, pp. 5488-5499, 2000.
[17] I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng., vol. 20, p. 055024, 2010.
[18] E. C. Chang, D. Mikolas, P. T. Lin, T. Schenk, C. L. Wu, C. K. Sung and C. C. Fu, “Improving feature size uniformity from interference lithography systems with non-uniform intensity profiles,“ Nanotech., vol. 24, p. 455301, 2013.
[19] S.-K. Meisenheimer, S. Jüchter, O. Höhn, H. Hauser, C. Wellens, and V. Kübler, “Large area plasmonic nanoparticle arrays with well-defined size and shape,” Opt. Express, vol. 4, pp. 944-952, 2014.
[20] T. Ohira, T. Segawa, K. Nagai, S. Takahashi, K. Utaka, and M. Nakao, “InP 2D nano-structures fabricated by two-time laser holography,” IPRM. IEEE International Conference, Indium Phosphide and Related Materials, pp. 268-271, 2001.
[21] T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large‐area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Am. B, vol. 14, pp. 4167-4170, 1996.
[22] X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, and P. Wang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett., vol. 102, p. 031103, 2013.
[23] W. Mao, I. Wathuthanthri, and C. H. Choi, “Tunable two-mirror interference lithography system for wafer-scale nanopatterning,” Opt. Lett., vol. 36, pp. 3176-3178, 2011.
[24] A. Laskin and V. Laskin, “Imaging techniques with refractive beam shaping optics,” Proc. SPIE, vol. 8490, p. 84900, 2012.
[25] A. Laskin, V. Laskin, and A. Ostrun, “Beam shaping for holographic techniques,” Proc. SPIE, vol. 9200, p. 92000E, 2014.
[26] A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, “Nonplanar photolithography with computergenerated holograms,” Opt. Lett., vol. 30, pp. 1300-1302, 2005.
[27] T. H. Chao, H. Zhou, and G. Reyes, “Compact Holographic Data Storage System,” Proceeding of IEEE Symposuim on Mass Storage and Technologies, pp. 237-248, 2003.
[28] K. Anderson, M. Ayres, B. Sissom, F. Askham, “Holographic data storage rebirthing a commercialization effort,” Proc. SPIE, vol. 9006, p. 90060C, 2014.
[29] http://www.samco.co.jp/simp_chinese/products/03_cleaner/02_uvozone/
[30] http://www.mrnanotec.com.tw/Coater/coator02.html
[31] C. A. Mack, “Analytical expression for the standing wave intensity,” Appl. Opt., vol. 25, p. 1958, 1986.
[32] C. A. Mack, “Standing Waves in Photoresist,” Microlithography World 3.2, 22-24, 1994.
[33] E. J. Carvalho, Marco A. R. Alves, E. S. Braga, and L. Cescato, “SiO2 single layer for reduction of the standing wave effects in the interference lithography of deep photoresist structures on Si,” Microelectron. J., vol. 37, pp. 1265-1271, 2006.
[34] E. J. Walker, “Reduction of Photoresist Standing-Wave Effects,” Electron Devices, vol. 22, pp. 464-466, 1975.
[35] J. L. Sturtevant, S. J. Holmes, T. G. Van Kessel, P. C. D. Hobbs, J. C. Shaw, and R. R. Jackson, “Postexposure bake as a process-control parameter for chemically amplified photoresist,” Proc. SPIE, vol. 1926, pp. 106-114, 1993.
[36] http://www.cobolt.se/product/05-01-series/
[37] www.fei.com
[38] www.britannica.com
[39] http://www.coi.tw/product_detail.asp?pro_ser=844221
[40] 140.116.176.21
[41] I. Bita, T. Choi, M. E. Walsh, H. I. Smith, and E. L. Thomas, “Large-Area 3D Nanostructures with Octagonal Quasicrystalline Symmetry via Phase-Mask lithography,” Adv. Mater. vol. 19, pp.1403-1407, 2007.
[42] R. C. Gauthier and A. Ivanov “Production of quasi-crystal template patterns using a dual beam multiple exposure technique,” Opt. Express, vol. 12, pp. 990-1003, 2004.
[43] A. Laskin and V. Laskin, “Variable beam shaping with using the same field mapping refractive beam shaper,” Proc. SPIE, vol. 8236, p. 82360, 2012.
[44] A. Laskin and V. Laskin, “CONTROLLABLE BEAM INTENSITY PROFILE FOR THE TASKS OF LASER MATERIAL PROCESSING,” ICALEO., 2012.
[45] D. C. J. Reid, C. M. Ragdale, I. Bennion, D. J. Robbins, J. Buus, and W. J. Stewart, “PHASE-SHIFTED MOIRE GRATING FIBRE RESONATORS,” Electron. Lett., vol. 26, pp. 10-12, 1990.
[46] G. Heise, R. Matz, and U. Wolff, “Phase-shifted holographic gratings for distributed feedback lasers,” Proc. SPIE, vol. 0651, 1986.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code