Responsive image
博碩士論文 etd-0624116-031042 詳細資訊
Title page for etd-0624116-031042
論文名稱
Title
晶圓級次波長光柵結構的製作及其光電應用
Wafer-scale subwavelength grating formation and its photonic applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-22
繳交日期
Date of Submission
2016-08-10
關鍵字
Keywords
金屬光柵極化器、液晶配向、反射式RGB濾波器、次波長光柵反射器、雙光束全像干涉系統
liquid crystal alignment, subwavelength grating reflector, two-beam laser interference lithography system, metal grating polarizer, reflective color filters
統計
Statistics
本論文已被瀏覽 5737 次,被下載 85
The thesis/dissertation has been browsed 5737 times, has been downloaded 85 times.
中文摘要
本論文利用新型鏡面可調之全像干涉微影系統達到高靈活性的光柵週期結構與大面積曝光,藉由製程參數的最佳化,成功地製作出週期400 nm~1500 nm晶圓級一維週期性光柵結構。我們還改良原有雙光束系統架設,以實現週期200 nm~400 nm的大面積、均勻性光柵結構。在半導體元件的應用上,除了製作RGB反射式濾波器、可見光極化器外,也搭配了軟性基板與液晶配向等應用,藉由RCWA模擬元件結構與特性,搭配電子束蒸鍍、ICP蝕刻等半導體製程;光學模厚計與SEM、AFM的量測與觀察,做出高良率的反射式RGB濾波器,此濾波器利用高折射率的矽作為光柵材料,調整週期以達到不同波段RGB的反射,除了有寬頻譜(>80 nm)與高反射(>75%)的效果外,還具備了極化選擇性,再疊成液晶盒做配向,並分別將RGB元件整合在一起,藉由電壓控制達到可見光色彩的實現。可見光極化器是在玻璃上利用全像術干涉微影做出光柵結構,再鍍上金屬來達到穿透度上極高的消光比;軟性元件則具備輕薄、可撓曲與耐衝擊的特性,以全像術微影製作次波長光柵結構於軟板上,很適合應用於易攜帶、低成本的顯示元件。除此之外,運用全像術做在導電玻璃上的光阻光柵結構,可以直接用於液晶的配向,有著相較於傳統的摩擦配向的穿透度與導電特性。我們以實驗數據驗證光柵結構的填充比(<1.3%)、高低深度(<3%)以及週期誤差(<0.15%);且在光阻配向上有著高達95%的穿透率;極化器的製作上也達到可見光60%的穿透率與1:40的消光比;而RGB反射器結合液晶的混色效果上,在不同波段上也有著40~60%的反射,並證明電壓的控制可以達到RGB液晶盒於可見光波段上的驅動。
Abstract
This thesis focuses on the modification of our mirror-tunable laser interference system for short-period (200~400 nm) grating formation over a large sample area with superior uniformity. Experimental results indicate that the resist gratings have a fill factor variation of < 1.3%, a thickness variation of < 3%, and a grating period variation of < 0.15%. Such a superior grating structure then serves as the building block to realize RGB reflective filters and wire-grid optical polarizers. The gratings are also applied for liquid crystal alignment on a flexible substrate. The RGB reflective filter is based on a guided-mode resonance mechanism and the grating is made of high-refractive-index silicon material. According to the rigorous coupled-wave analysis, the reflecting wavelength of a Si grating can be adjusted by changing the grating period. A reflection bandwidth of > 80 nm and a reflectivity of > 75% are predicted and experimentally demonstrated. Wire-grid optical polarizer is realized by oblique depositing Aluminum atop the resist gratings. The resultant optical polarizer enables an optical transmission of 60% and an extinction ratio of about 40:1. The alignment of liquid crystal by grating allows an optical transmission of up to 95%. After assembling RGB reflective filter with standard liquid crystal cell, we show that color mixing can be achieved by adjusting the voltage applied to the cell. We believe that the proposed all-grating-based reflective display concept could be a high-efficiency and low-cost choice.
目次 Table of Contents
內容目錄
中文審定書 i
英文審定書 ii
誌謝 iii
摘要 iv
Abstract v
內容目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 文獻回顧 6
1-3.1 微影製程技術 6
1-3.2 次波長光柵濾波器 9
1-3.3 液晶配向之光柵 12
1-3.4 次波長金屬光柵極化器 14
第二章 次波長光柵及系統架構 16
2-1 全像術與次波長光柵理論 16
2-2 高對比折射率光柵 19
2-3 新型雙光束全像系統 22
2-3.1 長週期大面積架設 22
2-3.2 短週期大面積架設 24
2-4 震動量測 31
2-5 繞射原理及架構 35
第三章 模擬與製程技術 38
3-1 RCWA模擬 38
3-1.1 RGB次波長反射器 38
3-1.2 次波長金屬光柵極化器 41
3-2 黃光微影製程 45
3-2.1 全像干涉微影流程 45
3-2.2 RGB反射器製程 47
3-2.3 極化器製作 50
3-2.4 軟性基板上製作光柵結構 52
3-3 液晶配向 55
3-3.1 光阻配向 55
3-3.2 無機光柵配向 57
第四章 實驗結果與量測分析 60
4-1 短週期大面積均勻光柵圖案 60
4-2 繞射效率及週期量測 63
4-3 矽光柵RGB反射器結果與良率分析 67
4-4 液晶配向結果與討論 71
4-4.1 光阻光柵結構 71
4-4.2 透明導電介質光柵 76
4-5 RGB反射器結合液晶之應用 79
4-6 鋁光柵極化器量測結果分析 94
4-7 軟板製程結果 101
第五章 結論 107
參考文獻 109
參考文獻 References
參考文獻
[1] Junjia Wang, Ivan Glesk, and Lawrence R. Chen, “Subwavelength grating filtering devices,” Opt. Express, vol. 22, no. 13, pp. 15335-15345, 2014.
[2] Vadim Karagodsky, Forrest G. Sedgwick, and Connie J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express, vol. 18, no. 16, pp. 16973-16988, 2010.
[3] D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett., vol. 23, no. 9, pp. 700-702, 1998.
[4] J. Stohr, M. G. Samant, “Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model,” Journal of Electron Spectroscopy and Related Phenomena, 98-99, 189-207, 1999.
[5] M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B, 68, 81-85, 1999.
[6] Stephen Y. Chou, Peter R. Krauss and Preston J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett., vol. 67, pp. 3114-3116, 1995.
[7] D. Gabor, “A new Microscopic Principle,” Nature, vol. 161, pp. 777-778, 1948.
[8] Ikjoo Byun and Joonwon Kim, “Cost-effective laser interference lithography using a 405nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20, pp. 055024, 2010.
[9] T. Ohira, T. Segawa, K. Nagai, S. Takahashi, K. Utaka, and M. Nakao, “InP 2D nano-structures fabricated by two-time laser holography,” IPRM. IEEE International Conference, Indium Phosphide and Related Materials, pp. 268-271, 2001.
[10] W. Mao, I. Wathuthanthri, and C.-H. Choi, “Tunable two-mirror laser interference lithography system for large-area nano-patterning,” Proc. SPIE, vol. 7970, pp. 79701K-79701K-8, 2011.
[11] Yoshiaki Kanamori, Masaya Shimono, and Kazuhiro Hane, “Fabrication of Transmission Color Filters Using Silicon Subwavelength Gratings on Quartz Substrates,” IEEE Photon. Technol. Lett., vol. 18, no.2, pp. 2126-2128, 2006.
[12] Y. Cho, Y. K. Choi, and S. H. Sohn, “Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter,” Appl. Phys. Lett. 89, pp. 051102-051102-3, 2006.
[13] Hong-Shik Lee, Yeo-Taek Yoon, Sang-Shin Lee, Sang-Hoon Kim and Ki-Dong Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express, vol. 15, no. 23, pp. 15457-15463, 2007.
[14] Sajeev John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486-2489, 1987.
[15] David Rosenblatt, Member, IEEE, Avner Sharon, and Asher A. Friesem, Fellow, IEEE, “Resonant Grating Waveguide Structures, ” IEEE Journal of Quantum Electronics, vol. 33, no. 11, 1997.
[16] Junjia Wang, Ivan Glesk, and Lawrence R. Chen, “Subwavelength grating filtering devices,” Opt. Express, vol. 22, no. 13, pp. 15335-15345, 2014.
[17] Eun-Hyoung Cho, Hae-Sung Kim, Byoung-Ho Cheong, Prudnikov Oleg, Wenxu Xianyua, Jin-Seung Sohn, Dong-Joon Ma, Hwan-Young Choi, No-Cheol Park, and Young-Pil Park, “Two-dimensional photonic crystal color filter development,” Opt. Express, vol. 17, no. 10, pp. 8621-8629, 2009.
[18] Yoshiaki Kanamori, Toshikazu Ozaki, and Kazuhiro Hane, “Reflection color filters of the three primary colors with wide viewing angles using common-thickness silicon subwavelength gratings,” Opt. Express, vol. 22, no. 21, pp. 25663-25672, 2014.
[19] K. Knop, “Diffraction gratings for color filtering in the zero diffraction order,” Appl. Opt., vol. 17, no. 22, pp. 3598-3603, 1978.
[20] H. Dammann, “Color separation gratings,” Appl. Opt., vol. 17, no. 15, pp. 2273-2279, 1978.
[21] Qi Wang, Dawei Zhang, Banglian Xu, Yuanshen Huang, Chunxian Tao, Chunfang Wang, Baicheng Li, Zhengji Ni, and Songlin Zhuang, “Colored image produced with guided-mode resonance filter array,” Opt. Lett., vol. 36, no. 23, pp. 4698-4700, 2011.
[22] Yoshiaki Kanamori, Hiroki Katsube, Tomonobu Furuta, Shoji Hasegawa, and Kazuhiro Hane, “Design and Fabrication of Structural Color Filters with Polymer-Based Guided-Mode Resonant Gratings by Nanoimprint Lithography,” Jpn. J. Appl. Phys. 48, pp. 06FH04-1-06FH04-4, 2009.
[23] Mohammad Jalal Uddin, Student Member, IEEE, and Robert Magnusson, Senior Member, IEEE, “Efficient Guided-Mode-Resonant Tunable Color Filters,” IEEE Photonics Technology Letters, vol. 24, no. 17, pp. 1552-1554, 2012.
[24] F. Reinitzer, “Beiträge zur Kenntnis des Cholesterins,” Monatsh. Chen., vol. 9, pp. 421-441, 1888.
[25] M. Behdani, “Submicron liquid crystal pixels on a nanopatterned indium tin oxide surface,” Appl. Phys. Lett., vol. 80, no. 24, pp. 4635-4637, 2002.
[26] Changhyun Pang, Jinha Hwang, Keunhee Park, Donggeun Jung, Hyoungsub Kim, and Heeyeop Chae, “Efficiency Enhancement of Polymer Solar Cells by Patterning Nanoscale Indium Tin Oxide Layer,” J. Nanosci. Nanotechnol., vol. 8, pp. 5279-5283, 2008.
[27] Soowon Hwang, Hye-Jung Jin, Tae-Hoon Yoon, and Jae Chang Kim, “Homogeneous Alignment of Liquid Crystals on an Ion-Beam-Exposed Indium-Tin-Oxide Surface without Coating Alignment Layer,” Jpn. J. Appl. Phys., vol. 49, no. 12R, pp. 121702, 2010.
[28] Jiyoon Kim, Jun-Hee Na, and Sin-Doo Lee, “Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting,” Opt. Express, vol. 20, no. 3, pp. 3034-3042, 2012.
[29] Tzu-Chieh Lin, Li-Chen Huang, Tsu-Ruey Chou, and Chih-Yu Chao, “Alignment control of liquid crystal molecules using crack induced self-assembled grooves,” Soft Matter, vol. 5, pp. 3672-3676, 2009.
[30] M. Xu, H. P. Urbach, D. K. G de Boer, and H. J. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express, vol. 13, no. 7, pp. 2303-2320, 2005.
[31] Christoph Weder, Christian Sarwa, Andrea Montali, Cees Bastiaansen, and Paul Smith, “Incorporation of Photoluminescent Polarizers into Liquid Crystal Displays,” Science, vol. 279, pp. 835-837,1998.
[32] H. Hertz, “Ueber Strahlen electrischer Kraft,” Ann. Phys., vol. 272, pp. 769-783, 1889.
[33] G. R. Bird and M. Parrish, Jr., “The Wire Grid as a Near-Infrared Polarizer,” J. Opt. Soc. Am., vol. 50, no. 9, pp. 886-891, 1960.
[34] Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express, vol. 15, no. 15, pp. 9510-9519, 2007.
[35] T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett., vol. 6, pp. 558, 2011.
[36] T. Weber, T. Käsebier, M. Helgert, E.-B. Kley, and A. Tünnermann, “Tungsten wire grid polarizer for applications in the DUV spectral range,” Appl. Opt., vol. 51, no. 16, pp. 3224-3227, 2012.
[37] G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys., vol. 90, no. 8, pp. 3825-3830, 2001.
[38] Bernd Schnabel, Ernst-Bernhard Kley, and Frank Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng., vol. 38, no. 2, pp. 220-226, 1999.
[39] Thomas Weber, Stefanie Kroker, Thomas Käsebier, Ernst-Bernhard Kley, and Andreas Tünnermann, “Silicon wire grid polarizer for ultraviolet applications,” Appl. Opt., vol. 53, no. 34, pp. 8140-8144, 2014.
[40] T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett., vol. 36, no. 4, pp. 445-447, 2011.
[41] S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, S. H. Lee, J.-D. Park, and P.-W. Yoon, “Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching,” Microelectronic Engineering, 78-79, pp. 314-318, 2005.
[42] D. S. Hobbs, B. D. McLeod, A. F. Kelsey, M. A. Leclerc, E. Sabatino III, and D. P. Resler, “Automated Interference Lithography Systems for Generation of Sub-Micron Feature Size Patterns,” SPIE Conference on Micromachine Technology for Diffractive and Holographic Optics, Proc. SPIE, vol. 3879, pp. 124-135, 1999.
[43] N.-D. Lai, W.-P. Liang, J.-H. Lin, C.-C. Hsu and C.-H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express, vol. 13, no. 23, pp. 9605-9611, 2005.
[44] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag., vol. 4, pp. 396-402, 1902.
[45] S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt., vol. 32, no. 14, pp. 2606-2613, 1993.
[46] R. Magnusson and S. S. Wang, “New principle for optical filiters,” Appl. Phys. Lett., vol. 61, pp. 1022-1024, 1992.
[47] Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Topics Quantum Electron, vol. 19, pp. 1701311, 2013.
[48] V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express, vol. 20, pp. 10888-10895, 2012.
[49] James Ferrara, Weijian Yang, Li Zhu, Pengfei Qiao, and Connie J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express, vol. 23, no. 3, pp. 2515-2523, 2015.
[50] Robert Magnusson and Mehrdad Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express, vol. 16, no. 5, pp. 3456-3462, 2008.
[51] Robert Magnusson, Mehrdad Shokooh-Saremi, and Xin Wang, “Dispersion Engineering with Leaky-Mode Resonant Photonic Lattices,” Opt. Express, vol. 18, no. 1, pp. 108-116, 2009.
[52] Carlos F. R. Mateus, Student Member, IEEE, Michael C. Y. Huang, Student Member, IEEE, Yunfei Deng, Andrew R. Neureuther, Fellow, IEEE, and Connie J. Chang-Hasnain, Fellow, IEEE, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 518-520, 2004.
[53] Yu-Nung Lin, Yung-Jr Hung, Chia-Wei Huang and Ping-Chien Chang, “Mirror-tunable Laser Interference Lithography System for Wafer-scale Patterning with Flexible Periodicity, ” IEEE, 978-1-4799-4208, 2015.
[54] Warren Booth, “How to determine your equipment needs,” Laser Focus World, vol. 46, no. 6, pp. 65-71, 2010.
[55] Naoya Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am., vol. 63, no. 3, pp. 280-287, 1973.
[56] M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am., vol. 72, no. 10, pp. 1385-1392, 1982.
[57] M. G. Moharam and L. Young, “Criterion for Bragg and Raman-Nath diffraction regimes,” Appl. Opt., vol. 17, no. 11, pp. 1757-1759, 1978.
[58] M. G. Moharam, Eric B. Grann, and Drew A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A, vol. 12, no. 5, pp. 1068-1076, 1995.
[59] E. J. Carvalho, M. A. R. Alves, E. S. Braga, and L. Cescato, “SiO2 single layer for reduction of the standing wave effects in the interference lithography of deep photoresist structures on Si,” Microelectron. J., vol. 37, no. 11, pp. 1265-1270, 2006.
[60] Tomoyoshi Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt., vol. 28, no. 13, pp. 2466-2482, 1989.
[61] H. Fujikake, “Advanced flexible liquid-crystal display technologies,” SPIE Newsroom, 10.1117, pp. 2.1200811.1376 page 1/3-3/3, 2008.
[62] Chin-Ching Hsu and Yung-Chung Lee, Member, IEEE, “Fabrication of Flexible Nano-Wired Polarizer by Contact-transferred and Mask Embedded Lithography and Polyurethane Acrylate Mold,” IEEE, 978-1-4244-6545, pp. 893-897, 2010.
[63] K. Otte, L. Makhova, A. Braun, I. Konovalov, “Flexible Cu(In,Ga)Se2 thin-film solar cells for space application,” Thin Solid Films, vol. 511-512, pp. 613-622, 2006.
[64] Chia-Jen Ting, Fuh-Yu Chang, Chi-Feng Chen and C P Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18, 075001, pp. 9, 2008.
[65] Yong-Seok Park, Kwang-Hyuk Choi and Han-Ki Kim, “Room temperature flexible and transparent ITO/Ag/ITO electrode grown on flexile PES substrate by continuous roll-to-roll sputtering for flexible organic photovoltaics,” J. Phys. D: Appl. Phys. 42, 235109, pp. 7, 2009.
[66] Andrew J. Lovinger, Karl R. Amundson, Don D. Davis, “Morphological Investigation of UV-Curable Polymer-Dispersed Liquid-Crystal (PDLC) Materials,” Chem. Mater., vol. 6, no. 10, pp. 1726-1736, 1994.
[67] H. S. Jeong, H.-J. Jeon, Y. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Materials 4, e7, 2012.
[68] Anthony S. Kewitsch and Amnon Yariv, “Nonlinear optical properties of photoresists for projection lithography,” Appl. Phys. Lett., vol. 68, no. 4, pp. 455-457, 1996.
[69] Drew A. Pommet, M. G. Moharam, and Eric B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A, vol. 11, no. 6, pp. 1827-1834, 1994.
[70] Thomas Bu, Cameron L. C. Smith, and Anders Kristensen, “Electrically modulated transparent liquid crystal-optical grating projection,” Opt. Express, vol. 21, no. 2, pp. 1820-1829, 2013.
[71] Allan S. P. Chang, Keith J. Morton, Hua Tan, Patrick F. Murphy, Wei Wu, and Stephen Y. Chou, Fellow, IEEE, “Tunable Liquid Crystal-Resonant Grating Filter Fabricated by Nanoimprint Lithography,” IEEE Photonics Technology Letters, vol. 19, no. 19, pp. 1457-1459, 2007.
[72] V. Chigrinov, A. Muravski, and H. S. Kwok, “Anchoring properties of photoaligned azo-dye materials,” Phys. Rev. E 68, 061702-1-061702-5, 2003.
[73] J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl Acad. Sci. USA, vol. 111, no. 40, pp. 14348-14353, 2014.
[74] D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commum., 6, 7337, 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code