Responsive image
博碩士論文 etd-0624116-131105 詳細資訊
Title page for etd-0624116-131105
論文名稱
Title
以金屬奈米粒子摻雜及金屬奈米團簇蒸鍍改善有機發光二極體特性之研究
The improvement of characteristics of organic light-emitting diodes by doped metal nanoparticles and evaporated metal nanoclusters
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-19
繳交日期
Date of Submission
2016-07-24
關鍵字
Keywords
金奈米粒子、電子注入、能量轉換、表面電漿共振、銀奈米團簇
Energy transfer, Electron-injection, Surface plasmon resonance, Silver nanocluster, Gold nanoparticles
統計
Statistics
本論文已被瀏覽 5711 次,被下載 577
The thesis/dissertation has been browsed 5711 times, has been downloaded 577 times.
中文摘要
本論文的研究方向主要是探討金屬奈米粒子及奈米團簇特有的表面電漿共振效應對有機發光二極體特性之影響。以下將簡述之。
第一部份是藉由熱蒸鍍的方式將銀奈米團簇引入至元件的電子注入層及陰極中。當銀奈米團簇的平均粒徑在34 nm時,元件可得到最佳的亮度及其電子注入能力。另一方面,表面電漿增強拉曼散射頻譜顯示出侷部的電場在奈米團簇周圍被增強,進而增加陰極的電子注入。
第二部份是藉由熱蒸鍍的方式將銀奈米團簇引入至元件的Bphen電子傳輸層中。當銀奈米團簇的平均粒徑在34 nm時,會得到表面電漿共振波長在525 nm的銀奈米團簇。當銀奈米團簇與發光層的間隔距離為7 nm時,會得到最佳的元件特性。另一方面,將藉由調整表面電漿子與發光層激子間的間隔距離,來探討其之間的能量轉換對元件的影響。
第三部份則是探討碳酸銫/銀奈米團簇/碳酸銫電子注入結構(CSC-EIS)對元件的影響。當CSC-EIS取代碳酸銫電子注入結構時,藉由量測暫態電致發光會得到較短的響應時間和上升時間。此外,在CSC-EIS時,會提升元件43%的幅射衰退率。
第四部份是探討碳酸銫/銀奈米團簇/碳酸銫電子注入結構(CSC-EIS)對元件電子注入的影響。當CSC-EIS取代碳酸銫電子注入結構時,將會得到較好的電子注入能力,主要是因為在陰極和電子傳輸層間的能障被降低。另一方面,藉由銀奈米團簇所產生的表面電漿共振效應,會使得陰極到發光層的電子注入能力,被更進一步的提升。
第五部份是將金奈米粒子摻雜到PEDOT:PSS電洞傳輸層內,並研究其對元件的影響。當摻雜8 nm的金奈米粒子到PEDOT:PSS內時,元件的電流效率會提升1.57倍,其主要是因為金奈米粒子在8 nm時,其吸收峰值接近發光層的光致發光峰值,導致最大的表面電漿共振效應在元件中。此外,表面電漿增強拉曼散射頻譜顯示出金奈米粒子在8 nm時,有一最大的表面電漿共振效應。
第六部份是將金奈米粒子及銀奈米團簇分別摻雜至電洞傳輸層內及引入至電子注入層及陰極間,現成雙表面電漿共振的元件,並探討其對元件的影響。雙表面電漿共振且有緩衝層的元件,其功率效率提升2.15倍,主要是因為金奈米粒子及銀奈米團簇吸收峰值與發光層的電致發光峰值相似,導致有很大的表面電漿共振效應在元件中。此外,將緩衝層插入至PEDOT:PSS與發光層間,是為了避免非輻射衰退通道的產生。
Abstract
In this dissertation, the study focuses on the influence of unique surface plasmon resonance effect for gold nanoparticles (GNPs) and silver nanoclusters (SNCs) on the performance of organic light-emitting diodes. It will be briefed as follows.
In the first part, the SNCs are introduced between the electron-injection layer and cathode alumina by means of thermal evaporation. A higher luminance and electron-injection ability are obtained when the mean cluster size is 34 nm. The surface-enhanced Raman scattering spectroscopy reveals that the localized electric field around the SNCs is enhanced, resulting in an increase in electron injection from cathode electrode.
In the second part, the SNCs are introduced between the electron-transport layers by means of thermal evaporation. SNCs are found to have the surface plasmon resonance at wavelength 525 nm when the mean particle size of SNCs is 34 nm. The optimized OLED is found to have the maximum luminance 2.4 times higher than that in the OLED without SNCs. The energy transfer between exciton and surface plasmons with the different spacing distances has been studied.
In the third part, the influence of the cesium carbonate/silver nanocluster/cesium carbonate electron-injection structure (CSC-EIS) on the performance of organic light-emitting diodes is investigated in this study. When the CSC-EIS replaces the cesium carbonate electron-injection structure (CEIS), the shorter response time and rising time is obtained by measuring transient electroluminescence. In addition, the radiative decay rate for the device with the CSC-EIS is enhanced by 43%.
In the fourth part, the influence of the CSC-EIS on the electron-injection of the device is investigated in this study. When the CSC-EIS replaces the CEIS, higher electron-injection ability is obtained because the electron-injection barrier between the cathode and the electron-transport layer is remarkably reduced. In addition, SPRE will cause the enhanced localized electric field around the SNCs, resulting that electron-injection ability is further enhanced from the cathode to the emitting layer.
In the fifth part, the influence of GNPs with different sizes doped into (poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate)) (PEDOT: PSS) on the performance of organic light-emitting diodes is investigated in this study. The current efficiency of the device with PEDOT: PSS doped with GNPs of 8 nm is about 1.57 times higher than that of the device with prime PEDOT: PSS because the absorption peak of GNPs is closest to the photoluminescence peak of the emission layer, resulting in maximum SPRE in the device. In addition, the surface-enhanced Raman scattering spectroscopy also reveals the maximum SPRE in the device when the mean particle size of GNPs is 8 nm.
In the sixth part, the GNPs are doped into PEDOT: PSS and the SNCs are introduced between the electron-injection layer and cathode alumina to form device with double surface plasmon resonance. The power efficiency of the device, at the maximum luminance, with double surface plasmon resonance and buffer layer is about 2.15 times higher than that of the device without GNPs and SNCs because the absorption peaks of GNPs and SNCs are as good as the photoluminescence peak of the emission layer, resulting in strong SPRE in the device. In addition, the buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated.
目次 Table of Contents
Contents
Dissertation verification letter…………………………………….………i
Acknowledgement……………………………………….....…….………iii
Chinese Abstract…………………………………………..…......………iv
English Abstract..……………………………..……………...…………. vi
Contents……………………………………………………...…....……. viii
Figure Captions………………………………………………….....……..x
Chapter 1 Introduction
1.1 Development of organic light-emitting diodes…….….…….1
1.2 Motivation and purpose of the research..……….….……….2
Chapter 2 The influence of SNCs on performances of the organic light-emitting diodes
2.1 SNCs introduced between the electron-injection layer and
Cathode……………………………………..………………4
2.1.1 Experimental…………...…………………………….4
2.1.2 Results and discussion…..………...………………….5
2.2 SNCs introduced between the electron-transport layers…...10
2.2.1 Experimental……………...………………………...10
2.2.2 Results and discussion…..……...…………………...11
2.3 SNCs introduced between the electron-injection layers to
enhance the radiative decay in device……...……………....16
2.3.1Experimental………………………………………...16
2.3.2 Results and discussion…..………...………………...17
2.4 SNCs introduced between the electron-injection layers to
enhance the electronic injection in device………………...23
2.4.1 Experimental…………...…………………………...23
2.4.2 Results and discussion…..…………………………..25
Chapter 3 The influence of GNPs on performances of the organic light-emitting diodes
3.1 Experimental…….....……………………………………..30
3.2 Results and discussion…………………………………...31
Chapter 4 The influence of double surface plasmon resonance effect on performances of the organic light-emitting diodes
4.1 Experimental……………………………………………...36
4.2 Results and discussion…..…………….…………………..37
Chapter 5 Conclusions and future works
5.1 Conclusions……………………………………………….43
5.2 Future works………………………………………………46
References…………………………..…………………………………...47
參考文獻 References
[1]. M. Pope H. P. Kallmann, and P. Magnante, J. Chem. Phys. 38 (1963) 2042.
[2]. C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 51 (1987) 913.
[3]. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347 (1990) 539.
[4]. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395 (1998) 151.
[5]. S. J. Lee, J. H. Seo, J. H. Kim, H. M. Kim, K. H. Lee, S. S. Yoon, and Y. K. Kim, Thin Solid Film 518 (2010) 6184.
[6]. Y. Zhang, M. Slootsky, and S. R. Forrest, Appl. Phys. Lett. 99 (2011) 223303-1.
[7]. C. Yun. G. Xie, C. Murawski, J. Lee, F. Ventsch, K. Leo, and M. C. Gather, Org. Electron. 14 (2013) 1695.
[8]. Y. Xhao, L. Duan, D. Zhang, L. Hou, J. Qiao, L. Wang, and Y. Qiu, Appl. Phys. Lett. 100 (2012) 083304-1.
[9]. K. Narayan, S. Varadarajaperumal, G. Mohan Rao, M. Manor Varma, and T. Srinivas, Curr. Appl. Phys. 13 (2013) 18.
[10]. Y. W. Park, J. H. Choi, T. H. Park, E. H. Song, H. Kim, H. J. Lee, S. J. Shin, B.-K. Ju, and W. J. Song, Appl. Phys. Lett. 100 (2012) 013312-1.
[11]. K. Kim, K. Hong, I. Lee, S. Kim, and J.-L. Lee, Appl. Phys. Lett. 101 (2012) 141102-1.
[12]. Y. Sun and S. R. Foorrest, Nat. Photon. 2 (2008) 483.
[13]. T. W. Koh, J. M. Choi, S. Lee, and S. Yoo, Adv. Mater. 22 (2010) 1849.
[14]. A. Kumar, R. Srivastave, P. Tyagi, D. S. Mehta, M. N. Kamalasanan, Org. electron. 13 (2012) 159.
[15]. K. S. Yook, S. O. Jeon, C. W. Joo, and J. Y. Lee, Appl. Phys. Lett. 93 (2008) 013301.
[16]. Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, Appl. Phys. Lett. 100 (2012) 013308-1.
[17]. C. J. Huang, P. H. Chiu, Y. H. Wang, K. L. Chen, J. J. Linn, and C. F. Yang, J. Electrochem. Soc. 153 (2006) D193.
[18]. A. Kumar, P. Tyagi, R. Srivastava, and D. S. Mehta, Appl. Phys. Lett. 102 (2013) 203304.
[19]. T. Matsushima, M. Takamori, Y. Miyashita, Y. Honma, T. Tanaka, H. Aihara, and H. Murata. Org. electron. 11 (2010) 16.
[20]. S. Naka, H. Okada, and H. Onnagawa, Appl. Phys. Lett. 76 (2000) 197.
[21]. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424 (2003) 824.
[22]. K. G. Stamplecoskie and J. C. Scaiano, J. Phys. Chem. C 115 (2011) 1403.
[23]. C. S. S. R. Kumar, Raman Spectroscopy for Nanomaterials Characterization, Springer, Berlin, 2012.
[24]. D. Liu, M. Fina, L. Ren, S.S. Mao, Appl. Phys. A. 96 (2009) 353.
[25]. Y.-P. Hsieh, C.-T. Liang, Y.-F. Chen, and C.-W. Lai, Nanotech. 18 (2007) 415707-1.
[26]. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, J. Am. Chem. Soc. 127 (2005) 3115.
[27]. X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, ACS Nano 6 (2012) 9283.
[28]. G. W. Ford, and W. H. Weber, Phys. Rep.-Rev. Sec. Phys. Lett. 113 (1984) 195.
[29]. F. Liu, and J. M. Nunzi, Org. electron. 13 (2012) 1623.
[30]. S. H. Feng, M. C. Shih, C. J. Huang, and C. T. Chung, Thin Solid Films, 517 (2009) 2719.
[31]. E. F. Schubert, Light-Emitting Diodes, Cambridge University, England, 2006.
[32]. H. C. Kuo, F. Y. Lai, S. Y. Kuo, Principles and Applications of Light-Emitting Diode, Wunan, Taipei, 2011.
[33]. C. I Wu, C. T. Lin, Y. H. Chen, M. H. Chen, Y. J. Lu, and C. C. Wu, Appl. Phys. Lett. 88 (2006) 152104.
[34]. C. I. Wu and A. Kahn, Appl. Phys. Lett. 74 (1999) 1433.
[35]. C. I. Wu and A. Kahn, Appl. Phys. Lett. 86 (1999) 3209.
[36]. Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and S. W. Tang, Appl. Phys. Lett. 68 (1996) 2699.
[37]. C. J. Huang, P. H. Chiu, Y. H. Wang, K. L. Chen, J. J. Linn, and C. F. Yang, J. Electrochem. Soc. 153 (2008) D193.
[38]. C. J. Huang, P. H. Chiu, Y. H. Wang, W. R. Chen, and T. H. Meen, J. Electrochem. Soc. 153 (2006) D129.
[39]. C. J. Huang, P. H. Chiu, Y. H. Wang, and C. F. Yang, J. Colloid Interf. Sci. 303 (2006) 430.
[40]. Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, Appl. Phys. Lett. 100 (2012) 013308-1.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code