Responsive image
博碩士論文 etd-0624117-115235 詳細資訊
Title page for etd-0624117-115235
論文名稱
Title
含氟磺酸化聚芳香醚於質子交換膜與高效率燃料電池元件
Fluorine-containing Sulfonated Poly(arylene ether)s as Proton Exchange Membrane and High-efficiency Fuel Cell Device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-19
繳交日期
Date of Submission
2017-07-28
關鍵字
Keywords
三氟甲基、聚芳香醚、燃料電池、質子交換膜、質子導電度
proton conductivity, trifluoromethyl, poly(arylene ether)s, fuel cell, proton exchange membrane
統計
Statistics
本論文已被瀏覽 5711 次,被下載 0
The thesis/dissertation has been browsed 5711 times, has been downloaded 0 times.
中文摘要
本論文主要合成一系列含氟磺酸化聚芳香醚高分子應用於質子交換膜與燃料電池元件探討,主要改良龐俊傑學長之結構,將含氟之二氟單體分別與七苯環、八苯環和九苯環二醇單體進行親核性聚縮合反應得到三種含氟聚芳香醚高分子(HFA series)。以三種不同濃度(2.5、3與3.5 c.c.)的磺酸化試劑進行磺酸化後,得到九種不同磺酸化程度與微相分離型態之含氟聚芳香醚高分子(SHFA series),藉由控制二氟單體上三氟甲基基團的數目進而控制磺酸根基團接枝的數目,使質子交換膜能同時保有高導電度與良好尺寸安定性。
所有單體、高分子與磺酸化高分子皆透過FT-IR及1H -NMR鑑定結構無誤,GPC量測三種高分子之分子量結果介於75,000~117,000 g/mol,且皆具有良好成膜性,其熱裂解溫度(Td5%)皆高於588oC。九種磺酸化高分子之(Td5%)皆高於227oC,展現良好熱穩定性。離子交換能力(Ion exchange capacity, IEC)介於2.61~3.32 mmol/g。在80oC下,薄膜仍保有完整形貌,其吸水率為74.55%~200%,且具有良好尺寸安定性(15.21%~37.5%)與機械性質(0.46~1.115 GPa)。質子導電度方面皆高於173.9 mS/cm且遠勝於Nafion 211(123 mS/cm)。透過TEM與SAXS可知此系列磺酸化高分子擁有良好微相分離型態。最後元件效率部分,其中SHFA7-2.92效率高達1.318 W/cm2,高於Nafion 211之1.248 W/cm2。綜合上述,此系列材料(SHFA series)具有作為質子交換膜燃料電池極大的潛力。
Abstract
This thesis is the study on fluorine-containing poly(arylene ether)s as proton exchange membrane and high-efficiency fuel cell device. Three fluorine-containing poly(arylene ether)s (HFA series) were synthesized by nucleophilic polycondensation reaction of the fluorine-containing bisfluoro monomer and three bisphenol monomers(9-phenyls, 8-phenyls and 7-phenyls). Nine fluorine-containing sulfonated poly(arylene ether)s (SHFA series) with different sulfonation levels and microphase separation patterns were obtained by three sulfonation reagents at different concentrations (2.5, 3, and 3.5 c.c.). The proton exchange membrane can maintain high conductivity and good dimensional stability by controlling the number of trifluoromethyl groups which controls the number of sulfonate groups grafted.
The structures of materials were confirmd by FT-IR and 1H -NMR. The weight-average molecular weight of three polymers ranging from 75,000 to 117,000 g/mol. The polymers show thermal degradation temperatures up to 588oC. Nine sulfonated polymers show thermal degradation temperatures up to 227oC and IEC values between 2.61 and 3.32 mmol/g. The films maintain the complete morphology as its water uptake ranging from 74.55% to 200% at 80oC, also have good dimensional stability (15.21%~37.5%) and mechanical properties (0.46 ~ 1.115GPa). The proton conductivity is up to 173.9 mS/cm and better than Nafion 211(123 mS/cm). Sulfonated polymers show good microphase separation by TEM and SAXS. In fuel cell performance, the power density of SHFA7-2.92 is 1.318 W/cm2 which is better than Nafion 211(1.248 W/cm2). In summary, these materials (SHFA series) have the greatest potential as a proton exchange membrane fuel cell.
目次 Table of Contents
論文中文審定書 i
論文英文審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vii
圖目錄 xii
表目錄 xvi
第一章 序論 1
1-1 前言 1
1-2 燃料電池簡介 2
1-3 質子交換膜燃料電池 4
1-3-1 元件構造 4
1-3-2 工作原理 5
1-4 質子傳導機制 6
1-4-1 Grotthus Mechanism 6
1-4-2 Vehicular Mechanism 7
1-4-3 Surface Mechanism 7
1-5 質子交換膜 8
1-5-1 質子交換膜性質 8
1-5-2 質子交換膜種類 8
1-6 碳氫離子性高分子結構設計 11
1-6-1 交替型共聚高分子(Alternating copolymer) 12
1-6-2 無規型共聚型高分子(Random copolymer) 12
1-6-3 嵌段型共聚高分子(Block copolymer) 12
1-6-4 接枝型共聚高分子(Graft copolymer) 12
1-7 文獻回顧 13
1-7-1 交替型共聚高分子文獻回顧 13
1-7-2 無規型共聚高分子文獻回顧 16
1-7-3 接枝式共聚高分子文獻回顧 19
1-7-4 嵌段式共聚高分子文獻回顧 20
1-8 研究動機 23
第二章 儀器介紹與原理 24
2-1 鑑定分析儀器 24
2-1-1 高磁場液態核磁共振儀(Nuclear Magnetic Resonance, NMR) 24
2-1-2 基質輔助雷射脫附游離飛行時間質譜儀(MALDI TOF/TOF) 25
2-1-3 凝膠滲透層析儀(Gel Permeation Chromatography, GPC) 26
2-1-4 傅立葉紅外線光譜儀(Fourier Transform infrared spectro scopy, FT-IR) 27
2-2 熱分析儀器 28
2-2-1 熱重量分析儀(Thermogravimetric Analyzer, TGA) 28
2-2-2 熱機械分析儀(Thermal Mechanical Analyzer, TMA) 29
2-3 微觀分析儀器 30
2-3-1 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 30
2-3-2 小角度X光散射儀(Small-angel X-ray Scattering) 31
2-4 磺酸化薄膜特性量測 32
2-4-1 交流阻抗分析儀(AC Impedance) 32
2-5 元件效率量測分析與MEA製備 33
2-5-1 自動薄膜塗佈機(Automatic Film Applicator) 33
2-5-2 超音波霧化噴塗機(Ultrasonic Spraying System) 34
2-5-3 燃料電池元件(Membrane electrode assembly, MEA) 35
第三章 實驗步驟 36
3-1 實驗藥品總表 36
3-2 實驗流程 38
3-2-1 二氟單體流程 38
3-2-2 二醇單體流程 38
3-2-3 高分子聚合流程 40
3-2-4 高分子磺酸化流程 41
3-3 二氟單體合成 42
3-4 二醇單體合成 47
3-5 高分子聚合 61
3-5-1 HFA7 61
3-5-2 HFA8 63
3-5-3 HFA9 65
3-5-4 高分子薄膜製備 67
3-6 高分子磺酸化 68
3-7 磺酸化高分子之薄膜製備與特性量測 70
3-7-1 薄膜製備與酸的置換 70
3-7-2 IEC 測定 71
3-7-3 吸水率及尺寸安定性測試 73
3-7-4 Hydration number(λ) 73
3-7-5 氧化、水解穩定性 74
第四章 結果與討論 75
4-1 材料結構鑑定 75
4-1-1 GPC分析 75
4-1-2 1H NMR圖譜分析 76
4-1-3 FT-IR傅立葉紅外線光譜分析 78
4-2 熱穩定與機械性質分析 82
4-2-1 TGA熱穩定性分析 82
4-2-2 TMA機械性質分析 85
4-3 磺酸化薄膜之物理、化學性質分析 88
4-3-1 薄膜吸水率、尺寸安定性及λ值 88
4-3-2 薄膜氧化及水解穩定性 91
4-4 磺酸化薄膜之電性及微相分離型態分析 93
4-4-1 質子導電度數據分析 93
4-4-2 TEM微相分離型態分析 96
4-4-3 小角X-RAY分析 97
4-5 燃料電池元件效率分析 99
第五章 結論 101
第六章 參考文獻 102
第七章 附錄 109
附錄7-1 MALDI-TOF 109
附錄7-2 NMR 113
參考文獻 References
[1] http://news.u-car.com.tw/article/29559
[2] https://www.mobile01.com/newsdetail/18362/apfct-fuel-cell-motorcycle
[3] 台灣燃料電池資訊網: http://www.tfci.org.tw/
[4] 黃鎮江,燃料電池,全華圖書公司
[5] National Museum of American History: http://americanhistory.si.edu/
[6] Peckham, Timothy J., and Steven Holdcroft. "Structure‐morphology‐property relationships of non‐perfluorinated proton‐conducting membranes." Advanced materials, 2010, 22, 4667-4690.
[7] Jiao, Kui, and Xianguo Li. "Water transport in polymer electrolyte membrane fuel cells." Progress in Energy and Combustion Science, 2011, 37, 221-291.
[8] S. Slade, S. A. Campbella, T. R. Ralphb, and F. C. Walshc. "Ionic conductivity of an extruded Nafion 1100 EW series of membranes." Journal of The Electrochemical Society, 2002, 149.12, A1556-A1564.
[9] Sinan Feng, Kunzhi Shen, Yang Wang, Jinhui Pang, Zhenhua Jiang. "Concentrated sulfonated poly (ether sulfone) s as proton exchange membranes." Journal of Power Sources 2013, 224, 42-49.
[10] De Almeida, S. H., and Y. Kawano. "Thermal behavior of Nafion membranes."Journal of Thermal Analysis and Calorimetry, 1999, 58, 569-577.
[11] Rikukawa, M., and K. Sanui. "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers." Progress in Polymer Science, 2000, 25, 1463-1502.
[12] Schmidt-Rohr, Klaus, and Qiang Chen. "Parallel cylindrical water nanochannels in Nafion fuel-cell membranes." Nature materials, 2008, 7, 75-83.
[13] A. Siu, B. Pivovar, J. Horsfall, K. V. Lovell, S. Holdcroft,” Dependence of Methanol Permeability on the Nature of Water and the Morphology of Graft Copolymer Proton Exchange Membranes”, J. Polym. Sci. Part B: Polym.Physics, 2006, 44, 2240-2252.
[14] Michael A. Hickner, Hossein Ghassemi, Yu Seung Kim, Brian R. Einsla, and James E. McGrath "Alternative Polymer Systems for Proton Exchange Membranes(PEMs)" Chem. Rev. 104,4587-4612
[15] Chang, Ying, Giuseppe F. Brunello, Jeffrey Fuller, Marilyn Hawley. "Aromatic ionomers with highly acidic sulfonate groups: acidity, hydration, and proton conductivity." Macromolecules 2011, 44, 8458-8469.
[16] A. K. Mohanty, S. Banerjee, H. Komber, B. Voit, “Imidoaryl biphenol based new fluorinated sulfonated poly(arylene ether sulfone) copolymers and their proton exchange membrane properties”, Solid State Ionics,2014, 254, 82-91.
[17] Laberty-Robert. C, K. Valle, F. Pereira, C. Sanchez. "Design and properties of functional hybrid organic–inorganic membranes for fuel cells." Chemical Society Reviews 40.2, 2011, 961-1005.
[18] T. Higashihara, K. Matsumoto, M. Ueda, “Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells”, Polymer,2009, 50, 5341-5357.
[19] Matsumoto, Kazuya, Taijiro Nakagawa, Tomoya Higashihara, Tomoya Higashihara. "Sulfonated poly (ether sulfone) s with binaphthyl units as proton exchange membranes for fuel cell application." Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47, 5827-5834.
[20] Michael Adamski, Thomas J. G. Skalski, Benjamin Britton, Timothy J. Peckham, Lukas Metzler, and Steven Holdcroft, "Highly Stable, Low Gas Cross-Over, Proton-Conducting Phenylated Polyphenylenes."Angewandte Chemie International Edition, 2017.(just accepted)
[21] Y. D. Lim, H. C. Lee, S. H. Lee, H. H. Jang, M. A. Hossain, Y. G Cho, T. H. Kim, Y. T. Hong, W.G Kim, "Synthesis and properties of sulfonated poly(phenylene sulfone)s without ether linkage by Diels–Alder reaction for PEMFC application", Electrochimica Acta, 2014, 119, 16-23.
[22] Z. Yuan, X. Li, Y. Duan, Y. Zhao, H. Zhang, “Highly stable membranes based on sulfonated fluorinated poly(ether ether ketone)s with bifunctional groups for vanadi um flow battery application”, Polym. Chem.,2015, 10, 1039.
[23] D. Y. Chen, S. J. Wang, M. Xiao, Y. Z. Meng, Allan S. Hay. "Novel polyaromatic ionomers with large hydrophilic domain and long hydrophobic chain targeting at highly proton conductive and stable membranes." Journal of Materials Chemistry, 2011, 21, 12068-12077.
[24] Y. D. Lim, D. W. Seo, S. H. Lee, H. H. Jang, H. C. Ju, A. Jo, D. M. Kim, W. G. Kim. "High efficiency of proton transport by clustering nanochannels in multi-sulfonated propeller-like nonplanar hexaphenylbenzene poly (ether sulfone) s." International Journal of Hydrogen Energy, 2014, 39, 2756-2766.
[25] Y. D. Lim, D. W. Seo, S. H. Lee, H. H. Ju, T. W. Hong, D. M. Kim, H. C. Ju, W. G. Kim. "Synthesis and properties of cis/trans mixtures of bis (4-hydroxyphenyl)-1, 2-diphenylethylene containing sulfonated poly (ethersulfone) s proton exchange membranes." International Journal of Hydrogen Energy, 2013, 38, 7667-7673.
[26] D. W. Seo, Y. D. Lim, S. H. Lee, I. S. Jeong, D. I. Kim, J. H. Lee, W. G. Kim. "Preparation and characterization of sulfonated poly (tetra phenyl ether ketone sulfone) s for proton exchange membrane fuel cell."international journal of hydrogen energy, 2012, 37, 6140-6147.
[27] Jinhui Pang, Xu Jin, Yang Wang, Sinan Feng, Kunzhi Shen, Guibin Wang, "Fluorinated poly(arylene ether ketone) containing pendent hexasulfophenyl for proton exchange membrane", Journal of Membrane Science, 2015, 492, 67-76.
[28] Jutemar, E. Persson, and P. Jannasch. "Locating sulfonic acid groups on various side chains to poly (arylene ether sulfone) s: Effects on the ionic clustering and properties of proton-exchange membranes." Journal of Membrane Science, 2010, 351, 87-95.
[29] C. Wang, D. W. Shin, S. Y. Lee, N. R. Kang, Y. M. Lee, M. D. Guiver. "Poly (arylene ether sulfone) proton exchange membranes with flexible acid side chains." Journal of membrane science, 2012, 405, 68-78.
[30] N. Li, S. Y. Lee, Y. L. Liu, Y. M. Lee, M. D. Guiver. "A new class of highly-conducting polymer electrolyte membranes: Aromatic ABA triblock copolymers." Energy & Environmental Science 2012, 5, 5346-5355.
[31] D. W. Seo, Y. D. Lim, S. H. Lee, M. A. Hossain, Md. M. Islam, H. C. Lee, H. H. Jang, W. G. Kim, "Preparation and characterization of block copolymers containing multi-sulfonated unit for proton exchange membrane fuel cell", Electrochimica Acta, 2012, 86, 352-359.
[32] K. S. Yoon, J. Y. Lee, T.-H. Kim, D. M. Yu, S.-K. Hong, and Y. T. Hong, European Polymer Journal, 2015, 66, 1-11.
[33] 龐俊傑,「含氟碳氫離子性高分子應用於燃料電池質子交換膜之研究」,國立中山大學光電工程學系碩士論文(2014)。
[34] 葉昀生,「低介電含氟多面體倍半矽氧烷寡聚物/聚亞醯胺奈米複合材料合成與特性之研究」,國立雲林科技大學化學工程學系碩士論文(2006)。
[35] K. Miyatake, K. Oyaizu, E. Tsuchida, A. S. Hay, “Synthesis and Properties of Novel Sulfonated Arylene Ether/Fluorinated Alkane Copolymers”, Macromolecules, 2001, 34, 2065.
[36] T. B. Norsten, M. D. Guiver, J. Murphy,T. Astill, T. Navessin, S. Holdcroft, B. L. Frankamp, V. M. Rotello, and J. Ding, “Highly Fluorinated Comb-Shaped Copolymers as Proton Exchange Membranes (PEMs): Improving PEM Properties Through Rational Design.”, Adv. Funct. Mater. 2006, 16, 1814.
[37] A. A. Goodwin, F. W. Mercer, and M. T. McKenzie, “Thermal Behavior of Fluorinated Aromatic Polyethers and Poly(ether ketone)s.”, Macromolecules, 1997, 30, 2767.
[38] H. C. Lee, H. S. Hong, Y. M. Kim, S. H. Choi, M. Z. Hong, H. S. Lee, K. Kim, “Preparation and evaluation of sulfonated-fluorinated poly(arylene ether)s membranes for a proton exchange membrane fuel cell (PEMFC).”, Electrochimica Acta 2004, 49, 2315.
[39] D. S. Kim, G. P. Robertson, M. D. Guiver, Y. M. Lee, “Synthesis of highly fluorinated poly(arylene ether)s copolymers for proton exchange membrane materials.”, J. Membr. Sci., 2006, 281, 111.
[40] C. C. Lee, W. Y. Huang, “The influence of ether linkage positions and phenyl substituents on the physical properties of functional fluorinated polymers.”, Polym., 2011, 43, 180.
[41] W. Y. Huang and S. Y. Huang, “Sterically Encumbered Fluorene-Based Poly(arylene ether)s Containing Spiro-annulated Substituents on the Main Chain.”, Macromolecules, 2010, 43, 10355.
[42] W. Y. Huang, M. Y. Chang, Y. K. Han and P. T. Huang, “Sterically Encumbered Poly(arylene ether)s containing Spiro-annulated Substituents: Synthesis and Thermal Properties.”, J. Polym. Sci. Part A: Polym. Chem., 2010, 48, 5872.
[43] C. C. Lee, C. T. Lee, J. L. Liu and W. Y. Huang, “Quasi-solitons of the Two-mode Korteweg-de Vries Equation.”, Eur. Phys. J. Appl. Phys. 2010, 52, 11301.
[44] C. Y. Chen, S. H. Chan, H. L. Chen, J. H. Chen, W. Y. Huang and S. A. Chen, “Formation and Thermally-Induced Disruption of Nanowhiskers in Poly(3-hexylthiophene)/Xylene Gel Studied by Small Angle X-ray Scattering”, Macromolecules, 2010, 43, 7305.
[45] Y. C. Huang, H. F. Lee, Y. C. Tseng, C. C. Lee, M. Y. Chang and W. Y. Huang. “Synthesis of novel sulfonated poly(arylene ether)s containing a tetra-trifluoromethyl side chain and multi-phenyl for proton exchange membrane fuel cell application.” RSC Adv., 2017, 7, 33068–33077.
[46] H. J. Reich, “Chem 605-Structure Determination Using Spectroscopic Methods.”, (http://www.chem.wisc.edu/areas/reich/chem605/)
[47] K. F. Medzihradszky, J. M. Campbell, M. A. Baldwin, A. M. Falick, P. Juhasz, M. L. Vestal, A. L. Burlingame, “The Characteristics of Peptide Collision-Induced Dissociation Using a High-Performance MALDI-TOF/TOF Tandem Mass Spectrometer.”, Anal. Chem. 2000, 72, 552.
[48] Toray Research Center: http://www.toray.cn/trc/kinougenri/zairyou/zai_007.html
[49] P. Jacquinot, “New developments in interference spectroscopy. ”, Rep. Prog. Phys., 1960, 23, 267.
[50] J. Connes, and P. Connes, “Near-Infrared Planetary Spectra by Fourier Spectroscopy. I. Instruments and Results”, J. Opt. Soc. Am. ,1966, 56, 896.
[51] PrerkinElmer: http://www.perkinelmer.com/tw/
[52] 元智大學燃料電池中心: http://www.fuelcells.org.tw/
[53] 成大貴儀中心:http://www.ncku.edu.tw/facility/facility/devices/25_SAXS.htm
[54] TECHVALLEY: http://techvalley.co.kr/china/saxs.html
[55] N. Li, S. Y. Lee, Y. L. Liu, Y. M. Lee, M. D. Guiver, “A new class of highly-conducting polymer electrolyte membranes: Aromatic ABA triblock copolymers”, Energy Environ. Sci., 2012, 5, 5346.
[56] SIGMA technology:
http://sigmatekcorp.com/product/230/?category=1&sub_category=164
[57] N.C. Foster, Ph.D., P. E., Chemithon, 1997.
[58] Y. S. Ye, Y. C. Yen, C. C. Cheng, W. Y. Chen, L. T. Tsai, F. C. Chang, “Sulfonated poly(ether ether ketone) membranes Crosslinked with Sulfonic Acid Containing Benzoxazine Monomer as Proton Exchange Membranes.”, Polymer 2009, 50, 3196.
[59] H. F. Lee, P. H. Wang, Y. C. Huang, W. H. Su, Ram Gopal, C. C. Lee, Steven Holdcroft, W. Y. Huang. "Synthesis and proton conductivity of sulfonated, multi‐phenylated poly (arylene ether) s."Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52, 2579-2587.
[60] A. Singh, R. Mukherjee, S. Banerjee, H. Komber, B. Voit, “Sulfonated polytriazoles from a new fluorinated diazide monomerand investigation of their proton exchange properties”, Journal of Membrane Science, 2014, 469, 225-237.
[61] S. Feng, G. Wang, H. Zhang, J. Pan, “Graft octa-sulfonated poly(arylene ether) for high performance proton exchange membrane”, J. Mater. Chem. A, 2015, 3, 12698-12708.
[62] J. Pang, X. Jin, Y. Wang, S. Feng, K. Shen, G. Wang, “Fluorinated poly(arylene ether ketone) containing pendent hexasulfophenyl for proton exchange membrane”, Journal of Membrane Science, 2015, 492, 67-76.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.140.198.43
論文開放下載的時間是 校外不公開

Your IP address is 3.140.198.43
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code