Responsive image
博碩士論文 etd-0624117-153234 詳細資訊
Title page for etd-0624117-153234
論文名稱
Title
次世代電阻式記憶元件切換機制與新穎超臨界流體技術之研究
Study on Resistive Switching Mechanism of Next Generation Resistance Random Access Memory and Novel Supercritical Fluids Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-22
繳交日期
Date of Submission
2017-07-24
關鍵字
Keywords
超臨界流體氮化處理技術、相對介電常數、電阻切換機制、氧電漿、電阻式記憶體、氧濃度梯度
Permittivity, Oxygen Concentration Gradient, Supercritical Fluid Nitridation Technology, Oxygen Plasma, Resistance Random Access Memory (RRAM), Resistive Switching Mechanism
統計
Statistics
本論文已被瀏覽 5793 次,被下載 26
The thesis/dissertation has been browsed 5793 times, has been downloaded 26 times.
中文摘要
隨著社群網路、物聯網、人工智能等應用逐漸普及,未來巨量數據將不斷產生,因此記憶體儲存的需求將會大幅攀升,高效且節能的次世代非揮發性記憶體技術發展勢在必行。其中,次世代非揮發性記憶體以電阻式記憶體(RRAM)最具潛力,目前電阻式記憶體的轉態物理機制仍有許多爭論尚待解決,釐清這些問題便能加速推動其商業化。
本論文研究針對氧化物電阻式記憶體元件的電阻切換機制與氧離子在其中的作用提出一完整論述與模型解釋。在物理機制的研究當中,專注於現象觀察並設計材料及元件結構進行電性分析,經由分析結果對氧化物電阻式記憶元件進行深入的研究與探討。若操作鋅(Zn)電極的氧化物電阻式記憶元件會發出氧電漿發光光譜;以紫外光照射使用透明電極的電阻式記憶元件結構(ITO/ZnO/TiN)並進行操作,氧化鋅會吸收紫外光使氧離子被活化,而氧離子會在電壓驅動下改變元件的電流傳導機制,證實電阻式記憶元件的切換特性與氧離子具有強烈的關係。
將銦錫氧化物(ITO)材料中間嵌入一層極薄的二氧化矽元件結構(ITO/SiO2/ITO/TiN),可使氧離子能夠通過電壓操作流動於電極與絕緣層之間,產生氧濃度梯度,因此能以極低的電壓操作元件。另外,將二氧化矽(SiO2)嵌入氧化鋅絕緣層中間的結構(Pt/ZnO/SiO2/ZnO/TiN),由於二氧化矽層相對介電常數較低,電場集中於氧化矽層,會形成大量氧空缺而成為氧離子儲存區域,這個儲存氧離子的區域則成為電阻式記憶元件的阻絲切換區域,使其可在單一電阻式記憶元件內形成互補式電阻記憶元件的切換特性。
根據材料相對介電常數對電阻式記憶元件結構的影響,進行COMSOL電場模擬,透過相對介電常數較高的側壁材料氧化鉿(HfO2),有效抑制電場往側壁逸散,在元件尺寸縮小時使絕緣切換層的成形電壓能保持穩定,並且能夠維持元件的可靠度。
除此之外,我們開發出一種先進的電子元件處理技術,超臨界流體氮化處理技術,本技術能在室溫狀態有效將氨分子藉由超臨界二氧化碳帶入各種電子元件中反應,能夠改變材料性質並有效提升電阻式記憶元件的性能與可靠度,此革命性技術未來將可用於提升各種電子元件性能。
Abstract
With popular applications in social networking, the Internet of things (IoT), and artificial intelligence (AI), a large amount of data processing will be continuously required. Thus, the need for data storage will also rise sharply in the near future. Implementing highly efficient and energy-saving next-generation non-volatile memory will become an imperative. Among many possible candidates, the one with the most potential is resistance random access memory (RRAM). However, the conducting mechanism of RRAM is still a topic of debate. Clarifying this issue in RRAM will be beneficial to its commercialization in real applications.
In this study, the resistive switching mechanism of oxide-based RRAM and the role of oxygen ions are thoroughly investigated in order to propose a complete model explanation. To research the physical mechanism, we focus on observations of the electrical measurement to further modify the material combinations and device structure. When zinc (Zn) was applied as the electrode in the oxide-based RRAM, an oxygen plasma emission spectrum was observed in the memory device. In addition, we discuss a RRAM device with ITO/ZnO/TiN structure under ultraviolet light illumination to activate oxygen ions, and thus, to modify the current transport mechanisms. This is because the absorption of ultraviolet by the ZnO layer drives the generated oxygen ions when operating the RRAM device. These results confirm that the switching characteristics of RRAM are strongly related to the oxygen ions.
Indium tin oxide (ITO)-based RRAM with an inserted SiO2 thin film as ITO/SiO2/ITO/TiN was proposed to obtain ultra-low operating voltages. Because of the effect of oxygen concentration gradient induced by the inserted SiO2 and ITO electrode in this ITO-based RRAM device, the oxygen ions can be driven with an ultra-low operating voltage. Further, we utilized a SiO2 layer inserted into the resistive switching layer as the Pt/ZnO/SiO2/ZnO/TiN structure to realize complementary resistive switching (CRS) characteristics in a single cell device. Owing to the intrinsic electrical properties of the low k material, we could modify the degree of SiO2 film breakdown and the oxygen ion storage capacity.
A novel high-permittivity (high-k) material of hafnium oxide (HfO2) serving as side-wall spacer in the RRAM has been realized to solve the critical upward tendency in forming voltage during device scale-down. The simulated electrical field results from COMSOL software suggest the RRAM device with a high-k spacer can effectively confine the electric field within the insulator layer during forming process. Introducing the high-k spacer in the RRAM can successfully eliminate the rise in forming voltage at small device size without affecting device reliabilities such as endurance and retention.
Finally, an advanced electron device treatment technology was developed. The supercritical fluid (SCF) nitridation treatment can further enhance device performance and reliability in RRAM. This SCF treatment can effectively introduce ammonia molecules into numerous electron devices at room temperature by the CO2 SCF. This revolutionary technology can be applied to various electron devices to improve their performance.
目次 Table of Contents
Contents
Acknowledgment………………………..……….…………….………………………………..…...............................................................................................................i
Chinese Abstract …..………………..………………………...…………………………………….........................................................................................................…ii
English Abstract….…………………..………………………...…………………………………...............................................................................................................iii
Contents……………..……..………………………...…………………………………..........................................................................................................................…v
Figure Captions……………..……..………………………...………………………………….................................................................................................................vii
Table Captions……………..……..………………………...…………………………………...................................................................................................................xii
Chapter 1 Background Introduction ………………………………………………………………............................................................................................................1
1-1 Introduction of memory ………………………………………………..………………………..........................................................................................................1
1-2 The Emerging Memory………………………………………………..……………………......................................................................................................….….4
Chapter 2 Introduction of RRAM..……………………………………....………...……….....................................................................................................................12
2-1 Basic Introduction of RRAM…………………………………………………………………...........................................................................................................12
2-2 The materials of RRAM………………………………………………………………………...........................................................................................................13
2-3 Switching Mechanism of RRAM……………………………………….………………….....................................................................................................……...19
2-4 Carrier Conduction Mechanisms in RRAM………………………………….….…………............................................................................................................27
2-5 Commercial Application of RRAM……………………………….….………………….....................................................................................................…….….31
2-6 RRAM's Global Development and Challenges…………………………….….……….....................................................................................................……....35
2-7 Motivation of this Dissertation…………………………….….………………………….....................................................................................................…….....41
Chapter 3 Resistive Switching Modification by Ultraviolet Illumination in Transparent Electrode Resistive Random Access Memory……………………………....45
3-1 Motivation………………………………………………………………………………………..........................................................................................................45
3-2 Experimental………………………………………………………………......................................................................................................................................45
3-3 Results and Discussion……………………………………………….………………….....................................................................................................…….…46
3-4 Summary…………………………………….…………………………..………………….....................................................................................................……...50
Chapter 4 Ultra-low Switching Voltage Characteristic induced by Inserting SiO2 layer on ITO-base Resistance Random Access Memory……...……………......51
4-1 Motivation…………………………………………………………………………………….......................................................................................................…...51
4-2 Experimental……………………………………………………………...………………….....................................................................................................….....52
4-3 Results and Discussion……………………………..………………..………………………......................................................................................................….54
4-4 Summary………………………………………………………………………………………...........................................................................................................57
Chapter 5 Complementary Resistive Switching Behavior Induced by Varying Forming Current Compliance in Resistance Random Access Memory……….................................................................................................................................................................................................................................59
5-1 Motivation…………………………………………………………….…….....................................................................................................................................59
5-2 Experimental………………………………………………………….….…………………….....................................................................................................….60
5-3 Results and Discussion……………………………………….……………………………….........................................................................................................62
5-4 Summary……………………………………………………………………………………….....................................................................................................…..65
Chapter 6 Solving the Scaling Issue of Increasing Forming Voltage in Resistive Random Access Memory Using High-k Spacer Structure….............................66
6-1 Motivation…………………………………………………………….………………………............................................................................................................66
6-2 Experimental……………………………………………………………………………..…......................................................................................................…....67
6-3 Results and Discussion……………………………………….…………………………….....................................................................................................…....69
6-4 Summary……………………………………………………………………………………........................................................................................................…..76
Chapter 7 Novel Device Treatment Process Technology: Supercritical Fluids Nitridation………………………………………………………………………………...77
7-1 Introduction……………………………………………………………………………….......................................................................................................……....77
7-2 Experimental………………………………………………………………………….….….....................................................................................................……..81
7-3 Results and Discussion……………………………………….………………………….....................................................................................................……....85
7-4 Summary…………………………………………………………………….………….....................................................................................................………….88

Conclusion…………………………………………………………..…………………………….....................................................................................................…......89
References…………………………………………………………..…………………………….....................................................................................................……..90
Publication List……………………………………………………………………………………….....................................................................................................…..96
參考文獻 References
References
[1] T. -C. Chang, et al., “Resistance random access memory”, Materials Today, 19(5), 254-264 (2016).
[2] D. Kahng, et al., “A floating gate and its application to memory”, Bell Syst. Tech. J., 46, p. 1288 (1967).
[3] S.M. Sze, “Semiconductor Devices Physics and Technology”, Wiley, Hoboken, NJ, USA (2002).
[4] The Information Network, adjust by Macronix International Co. (2016).
[5] T. Kojima, et al., “Large remnant polarization of (Bi,Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition” Appl. Phys. Lett., 80 (15), 2746 (2002).
[6] H. Ishiwara, et al., ”Impurity substitution effects in BiFeO3 thin films-From a viewpoint of FeRAM applications”, Curr. Appl. Phys., 12 (3), 603-611 (2012).
[7] S. Raoux, et al., “Amorphous structures of Ge/Sb/Te alloys: Density functional simulations”, Phys. Status Solidi B, 249 (10), 1999-2004 (2012).
[8] D. Loke, et al., “Breaking the speed limits of phase-change memory”, Science, 336 (6088), 1566-1569 (2012).
[9] R. Bez, et al., “Non-volatile memory technologies: Emerging concepts and new materials” Mater. Sci. Semicond. Process, 7 (4–6), 349-355 (2004).
[10] A. Gyanathan, et al. “Two-bit multi-level phase change random access memory with a triple phase change material stack structure”, J. Appl. Phys., 112, 104504 (2012).
[11] N. Nishimura, et al., “CoFeB Inserted Perpendicular Magnetic Tunnel Junctions with CoFe/Pd Multilayers for High Tunnel Magnetoresistance Ratio”, J. Appl. Phys., 91, 5246 (2002).
[12] J.G. Zhu, et al., “Ultrahigh density vertical magnetoresistive random access memory”, J. Appl. Phys., 87, 6668 (2000).
[13] I. Hwang, et al., “The role of contact resistance in GeTe and Ge2Sb2Te5 nanowire phase change memory reset switching current”, Appl. Phys. Lett., 106, 193106 (2015).
[14] A. Ney, et al., “Programmable computing with a single magnetoresistive element” Nature, 425, 485-487 (2003).
[15] I.L. Prejbeanu, et al., “Thermally assisted MRAMs: ultimate scalability and logic functionalities”, J. Phys. D: Appl. Phys., 46, 1-16 (2013).
[16] A. Sawa, “Resistive switching in transition metal oxides”, Mater. Today, 11 (6), 28-36 (2008).
[17] Rainer Waser, et al., ”Nanoionics-based resistive switching memories”, Nature Materials 6, 833 - 840 (2007).
[18] H.-S. Philip Wong, et al., “Metal–Oxide RRAM”, Proceedings of the IEEE, 100 (6), 1951–1970 (2012).
[19] D. Panda, et al., “Perovskite Oxides as Resistive Switching Memories: A Review”, Ferroelectrics, 471:1, 23-64 (2014).
[20] A. Sawa, et al., “Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3Ti∕Pr0.7Ca0.3MnO3 interface”, Appl. Phys. Lett., 85, 4073 (2004).
[21] Y. Watanabe, et al., “Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3SrTiO3 single crystals”, Appl. Phys. Lett. 78, 3738 (2001).
[22] A. Beck, et al., “Reproducible switching effect in thin oxide films for memory applications”, Appl. Phys. Lett. 77, 139–141 (2000).
[23] L. P. Ma, J. Liu et al., “Organic electrical bistable devices and rewritable memory cells”, Appl. Phys. Lett. 80, 2997 (2002).
[24] S. Seo, et al., “Reproducible resistance switching in polycrystalline NiO films”, Appl. Phys. Lett. 85, 5655 (2004).
[25] W. Y. Chang, et al., “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications”, Appl. Phys. Lett. 92, 022110 (2008).
[26] W. Guan, et al., “Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide”, Appl. Phys. Lett. 91, 062111 (2007).
[27] C. P. Hsiung, et al., “Resistance Switching Characteristics of TiO2 Thin Films Prepared with Reactive Sputtering”, Electrochemical and Solid-State Letters 12 (7), G31-G33 (2009).
[28] Lee, M.-J. et al., “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures”, Nature Materials 10, 625–630 (2011).
[29] M.Y. Chan, et al., ”Resistive switching effects of HfO2 high-k dielectric”, Microelectronic Engineering , 85, 12, 2420–2424 (2008).
[30] M. J. Rozenberg, et al., “Nonvolatile memory with multilevel switching: a basic model”, Phys. Rev. Lett. 92, 178302 (2004).
[31] S. H. Chang, et al., “Effects of heat dissipation on unipolar resistance switching in Pt∕NiO∕Pt capacitors”, Appl. Phys. Lett. 92, 183507 (2008).
[32] Y. C. Yang, et al, “Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application”, Nano Lett. 9, 1636 (2009).
[33] D. Ielmini and Y. Zhang, “Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices”, J. Appl. Phys. 102, 054517 (2007).
[34] Yann de Charentenay, “Storage-class memory will be the clear go-to market for emerging non-volatile memory in 2021”, Yole Développement, Emerging Non-Volatile Memory report (2016).
[35] Yong-En Syu, et al., “Atomic-level quantized reaction of HfOx memristor” Appl. Phys. Lett., 102, 172903 (2013).
[36] O. M. Yaghi, et al., “Reticular synthesis and the design of new materials”, Nature, 423, 6941, 705-714 (2003).
[37] Y. -J. Chen, et al., ”Resistance Switching Induced by Hydrogen and Oxygen in Diamond-Like Carbon Memristor”, IEEE Electron Device Lett., 35, 10, 1016-1018 (2014).
[38] Y. -T. Tseng, et al, ”Complementary resistive switching behavior induced by varying forming current compliance in resistance random access memory”, Applied Physics Lett., 106, 213505 (2015).
[39] X. Huang, et al., “Controllable Set Voltage in Bilayer ZnO:SiO2/ZnOx Resistance Random Access Memory by Oxygen Concentration Gradient Manipulation”, IEEE Electron Device Lett., 35, 12, 1227-1229 (2014).
[40] Eike Linn, et al, “Complementary resistive switches for passive nanocrossbar memories”, Nature Materials 9, 403-406 (2010)
[41] W. J. Zhu, et al, “Charge trapping in ultrathin hafnium oxide”, IEEE Electron Device Lett., 23(2), (2002).
[42] W. C. Chen, et al., “Influence of Ammonia on Amorphous Carbon Resistive Random Access Memory”, IEEE Electron Device Lett., 38(4), 453-456 (2017).
[43] Z. W. Wang, et al., “Modulation of Nonlinear Resistive Switching Behavior of a TaOx-based Resistive Device Through Interface Engineering”, Nanotechnology, 28(5), 055204 (2017).
[44] D. Carta, et al., “Investigation of the Switching Mechanism in TiO2-Based RRAM: A Two-Dimensional EDX Approach”, ACS Appl. Mater. Interfaces, 8(30), 19605–19611 (2016).
[45] C. C. Kuo, et al., “Galvanic effect of Au–Ag electrodes for conductive bridging resistive switching memory”, IEEE Electron Device Lett., 36(12), 1321–1324 (2015).
[46] C. C. Lin, K. Yue, “Memory functions of nanocrystalline cadmium selenide embedded ZrHfO high-k dielectric stack”, J. Appl. Phys., 115(8), 084113 (2014).
[47] C. H. Hsu, et al., “Multilevel resistive switching memory with amorphous InGaZnO-based thin film”, Appl. Phys. Lett., 102(6), 062905 (2013).
[48] W. Kim, et al., “Current Conduction Mechanism of Nitrogen-Doped AlOx RRAM”, IEEE Trans. Electron Devices, 61(6), 2158-2163 (2014).
[49] U. Celano, et al., “Filament observation in metal-oxide resistive switching devices” Appl. Phys. Lett., 102(12), 121602 (2013).
[50] Q. Luo, et al., “Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays”, Nanoscale, 8(34), 15629-15636 (2016).
[51] Y. T. Su, et al, “Suppression of endurance degradation by applying constant voltage stress in one-transistor and one-resistor resistive random access memory”, Jpn. J. Appl. Phys., 56(1), 010303 (2016).
[52] J. Song, et al., “Threshold selector with high selectivity and steep slope for cross-point memory array”, IEEE Electron Device Lett., 36, 681-683 (2015).
[53] K. Zhang, et al., “VO2-Based Selection Device for Passive Resistive Random Access Memory Application”, IEEE Electron Device Lett., 37(8), 978-981 (2016).
[54] D. Y. Lee, et al., “Unipolar resistive switching behavior in Pt/HfO2/TiN device with inserting ZrO2 layer and its 1 diode-1 resistor characteristics”, Appl. Phys. Lett., 103(3), 032905 (2013).
[55] C. H. Huang, et al, “ZnO1–x Nanorod Arrays/ZnO Thin Film Bilayer Structure: From Homojunction Diode and High-Performance Memristor to Complementary 1D1R Application”, ACS Nano, 6(9), 8407–8414 (2012).
[56] G. Bersuker, et al., “Metal oxide resistive memory switching mechanism based on conductive filament properties”, J. Appl. Phys., 110(12), 124518 (2011).
[57] F. Pan, S. Yin, V. Subramanian, “A Detailed Study of the Forming Stage of an Electrochemical Resistive Switching Memory by KMC Simulation”, IEEE Electron Device Lett., 32(7), 949-951 (2011).
[58] P. S. Chen, et al., “Impacts of device architecture and low current operation on resistive switching of HfOx nanoscale devices”, Microelectron. Eng., 105, 40-45 (2013).
[59] C. Sire, et al., “Toward a better understanding of the nanoscale degradation mechanisms of ultra-thin SiO2/Si films: Investigation of the best experimental conditions with a conductive-atomic force microscope”, Appl. Phys. Lett., 91(24), 242905 (2007).
[60] J. W. Huang, et al., “The effect of high/low permittivity in bilayer HfO2/BN resistance random access memory” Appl. Phys. Lett., 102(20), 203507 (2013).
[61] Y. Kikuchi et al., “Analysis of supercritical water oxidation for detoxification of waste organic solvent in university based on life cycle assessment”, J. Hazardous Mater., 194, 283–289 (2011).
[62] K. Zosel, “Separation with Supercritical Gases: Practical Applications”, Angewandte Chemie International Edition in English, 17, 702-709 (1978).
[63] K. C. Chang, et al., “Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment,” Appl. Phys. Lett., 99(26), 263501 (2011).
[64] C. T. Tsai, et al., “Low-temperature method for enhancing sputter-deposited HfO2 films with complete oxidization”, Appl. Phys. Lett. 91, 012109 (2007). [65] T. M. Tsai, et al., “Dehydroxyl effect of Sn-doped silicon oxide resistance random access memory with supercritical CO2 fluid treatment”, Applied Physics Letters 101, 112906 (2012).
[66] J. Tauc, et al.,"Optical properties and electronic structure of amorphous Ge and Si". Materials Research Bulletin., 3: 37-46 (1968).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code