Responsive image
博碩士論文 etd-0624117-153631 詳細資訊
Title page for etd-0624117-153631
論文名稱
Title
拓樸絕緣體Sb2SeTe2奈米薄片光導特性
The photoconduction characteristic of Sb2SeTe2 topological insulator nanoflakes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
45
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-11
繳交日期
Date of Submission
2017-07-25
關鍵字
Keywords
光響應度、拓樸絕緣體、光導量測、Sb2SeTe2、光學增益
Sb2SeTe2, photoconduction, topological insulator, photoconduction responsivity, photoconduction gain
統計
Statistics
本論文已被瀏覽 5706 次,被下載 79
The thesis/dissertation has been browsed 5706 times, has been downloaded 79 times.
中文摘要
本實驗使用光導量測系統(photoconduction measurement system),針對拓樸絕緣體(topological insulator)Sb2SeTe2量測光導(photoconduction),在室溫的環境下,使用波長532 nm及325 nm雷射進行實驗,並且變動量測環境和起始偏壓(bias voltage),觀察光電流(photo current)、光學增益值(Gain)、光響應度(Responsivity)的變化,探討Sb2SeTe2的光學電性傳輸的性質。
實驗結果顯示,拓樸絕緣體Sb2SeTe2具有良好的光學增益值(Gain)及光響應度(Responsivity),在532 nm雷射波長及偏壓1 V,分別得到只5344與2293 A/W,與其他材料做比較下,發現比文獻中的其他拓樸絕緣體材料要大很多。在325 nm雷射波長及改變量測環境,得到的光學增益值(Gain)與響應度(Responsivity),大氣環境與真空環境差異大約達2.5倍。
Abstract
The topological insulator Sb2SeTe2 was measured by photoconduction measurement system. Using the laser wavelength are 532 nm and 325 nm . We changed the measure environment and bias voltage to experiment. In wavelength 532 nm, the photoconduction gain and responsivity were 5344 and 2293 A/W. Comparison with other material, the gain and responsivity of Sb2SeTe2 were almost biggest. In wavelength 325 nm, both the gain and responsivity in vacuum environment were larger than those in the atmosphere condition by a factor of 2.5.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖次 v
表次 vi
第一章 簡介 1
1-1前言 1
1-2 研究動機 2
第二章 基本理論 3
2-1拓樸絕緣體(Topological insulator) 3
2-2霍爾效應(Hall effect) 5
2-3量子霍爾效應(Quantum hall effect) 6
2-4量子自旋霍爾效應(Quantum spin hall effect) 7
2-5光增益值(Gain)與響應度(Responsivity) 8
第三章 實驗流程與儀器介紹 10
3-1 樣品製備 10
3-2 量測系統及儀器介紹 12
第四章 實驗結果與討論 15
4-1 實驗架構 15
4-2 結果與討論 17
4-2-1 波長532 nm不同光強度電流變化(Power-dependent) 17
4-2-2 增益值(Gain)與響應度(Responsivity)分析 19
4-2-3 改變偏壓(bias voltage)增益值(Gain)與響應度(Responsivity)分析 22
4-2-4 波長325 nm不同光強度電流變化(Power-dependent) 24
4-2-5 波長325 nm增益值(Gain)與響應度(Responsivity)分析 25
4-2-6 固定波長325 nm比較不同環境下增益值(Gain)與響應度 29
4-2-7 比較其他材料 30
第五章 結論 34
參考文獻 35
參考文獻 References
[1] Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu & Q. J. Wang. “Broadband high photoresponse from pure monolayer graphene photodetector“. Nat. Communi. 4, 1811–1821 (2013).
[2] T. Mueller, F. Xia & P. Avouris. “Graphene photodetectors for high-speed optical communications“. Nat. Photonics 4, 297–301 (2010).
[3] K. Roy et al. “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices“. Nat. Nanotech 8, 826–830 (2013).
[4] W. J. Zhang et al. “Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures“. Sci. Rep. 4, 3826–3833 (2014).
[5] G. Konstantatos et al. “Hybrid graphene-quantum dot phototransistors with ultrahigh gain“. Nat. Nanotech 7, 363–368 (2012).
[6] P. A. Hu et al. “Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors“. ACS Nano 6, 5988–5994 (2012).
[7] M. Z. Hasan, and C. L. Kane, “Topological insulators”, Rev. Mod. Phys. 82, 3045 (2010).
[8] 施敏,李明逵 著,曾俊元 譯 “半導體元件物理與製造技術”, 第三版
[9] Arthur Beiser, “Concepts of Modern Physics”, 6th edition.
[10] Charles Kittel, “Introduction to Solid State Physics”, 8th edition.
[11] Y. Ando, “Topological Insulator Materials”, J. Phys. Soc. Jpn. 82, 102001 (2013)
[12] S.Y. Xu, L. A. Wray, Y. Xia, R. Shankar, A. Petersen, A. Fedorov, H. Lin,
A. Bansil, Y. S. Hor, D. Grauer, R. J. Cava, and M. Z. Hasan, “Discovery of several large families of Topological Insulator classes with backscattering suppressed spin-polarized single-Dirac-cone on the surface”, arXiv 1007, 5111 (2010).

[13] Wei Zhang, Rui Yu, Hai-Jun Zhang, Xi Dai and Zhong Fang , “First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3”, New J. Phys. 12 065013 (2010).
[14] Marco Bianchi, Richard C Hatch, Dandan Guan, Tilo Planke, Jianli Mi, Bo Brummerstedt Iversen, and Philip Hofmann, “The electronic structure of clean and adsorbate-covered Bi2Se3: an angle-resolved photoemission study”, Semicond. Sci. Technol. 27 124001 (2012).
[15] Klaus von Klitzing, et al, “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance”, Phys. Rev. Lett. 45, 494 (1980).
[16] 王律堯,“自旋霍爾效應之簡介”, 台灣磁性技術協會會訊49期SEP (2009)
[17] 王青, 盛利, “磁場中的拓樸絕緣體邊緣態性質”, 物理學報 Acta Phys. Sin. Vol. 64, No. 9 , 097302 (2015)
[18] Xiao-Liang Qi, Shou-Cheng Zhang, “The quantum spin Hall effect and topological insulators”, arXiv:1001.1602 (2010)
[19] 林紹瑜,“拓樸絕緣體 Sb2SeTe2的 Shubnikov-de Haas振盪”, 國立中山大學物理研究所 碩士論文 (2016)
[20] 陳瑞芳,“拓樸絕緣體 Sb2SeTe2之線性磁阻”, 國立中山大學物理研究所 碩士論文 (2016)
[21] Shiu-Ming Huang, Chih-Yang Huang, Shih-Jhe Huang, Ching Hsu, Shih-Hsun Yu, Mitch Chou, Paritosh V.Wadekar, Quark Yung-Sung Chen, and Li-Wei Tu, “Observation of surface oxidation resistant Shubnikov-de Haas oscillations in
Sb2SeTe2 topological insulator”, Journal of Applied Physics 121, 054311 (2017)
[22] Shiu-Ming Huang, Shih-Hsun Yu and Mitch Chou“The large linear magnetoresistance in Sb2Se2Te single crystal with extremely low mobility”, Mater. Res. Express 3 126101 (2016).
[23] K. Zheng et al. “Optoelectronic characteristics of a near infrared light photodetector based on a topological insulator Sb2Te3 film”. J. Mater. Chem. C 3, 9154–9160 (2015).
[24] A. Sharma et al. “High performance broadband photodetector using fabricated nanowires of bismuth selenide”. Sci. Rep. 6, 19138–19145 (2016).
[25] H. Zhang et al. “Anomalous Photoelectric Effect of a Polycrystalline Topological Insulator Film”. Sci. Rep. 4, 5876–5880 (2014).
[26] H. Qiao et al. “Broadband Photodetectors Based on Graphene-Bi2Te3 Heterostructure”. ACS Nano 9, 1886–1894 (2015).
[27] Hongbin Zhang, Xiujuan Zhang, Chang Liu, Shuit-Tong Lee, and Jiansheng Jie, “High-Responsivity, High-Detectivity, Ultrafast Topological Insulator Bi2Se3/Silicon Heterostructure Broadband Photodetectors“, ACS Nano, 2016, 10 (5), pp 5113–5122 (2016).
[28] P. A. Hu et al. “ Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors“. ACS Nano 6, 5988–5994 (2012).
[29] P. A. Hu et al. “ Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates“. Nano Lett. 13, 1649–1654 (2013).
[30] D. S. Tsai et al. “Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments“. ACS Nano 7, 3905–3911 (2013)
[31] W. Zhang et al. “High-Gain Phototransistors Based on a CVD MoS2 Monolayer“. Adv. Mater. 25, 3456–3461 (2013).
[32] W. C. Shen et al. “Photoconductivities in MoS2 Nanoflake Photoconductors“. Nanoscale Research Lett. 11, 124–130 (2016).
[33] W. J. Zhang et al. “Role of Metal Conteacts in High-Performance Phototransistors Based on Wse2 Monolayers“. ACS Nano 8, 8653–8661 (2014).
[34] L. Yin et al. “Ultrahigh Sensitive MoTe2 phototransistors driven by carrier tunneling“. Appl. Phys. Lett. 108, 043503-1–043503-5 (2016).

[35] B. Robin et al. “Extraordinary Photoresponse in Two-Dimensional In2Se3 Nanosheets“. ACS Nano 8, 514–521 (2014).
[36] Z. Chen, J. Biscaras & A. Shukla, “A high performance graphene/few-layer InSe photo-detector“. Nanoscale 7, 5981–5986 (2015).
[37] Y. H. Huang et al. “Electronic transport in NbSe2 two-dimensional nanostructures: semiconducting characteristics and photoconductivity“. Nanoscale 7, 18964–18970 (2015).
[38] O. Lopez-Sanchez et al. “Ultrasensitive photodetectors based on monolayer MoS2“. Nat. Nanotech. 8, 497–501 (2013).
[39] Alka Sharma, Biplab Bhattacharyya, A. K. Srivastava, T. D. Senguttuvan & Sudhir Husale, “High performance broadband photodetector using fabricated nanowires of bismuth selenide“, Sci. Rep. 6, 19138 (2015).
[40] Kun Zheng, Lin-Bao Luo, Teng-Fei Zhang, Yu-Hung Liu, Yong-Qiang Yu, Rui Lu,a Huai-Li Qiu, Zhong-Jun Lib and J. C. Andrew Huang, “Optoelectronic characteristics of a near infrared light photodetector based on a topological insulator Sb2Te3 film“, J. Mater. Chem. C, 2015, 3, 9154 (2015).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code