Responsive image
博碩士論文 etd-0624118-111734 詳細資訊
Title page for etd-0624118-111734
論文名稱
Title
頻率選擇表面設計及其於穿戴式生理感測雷達與傳輸陣列系統之應用
Design of Frequency Selective Surfaces and Their Applications in Wearable Vital Sign Radar and Transmitarray System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
170
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-20
繳交日期
Date of Submission
2018-07-24
關鍵字
Keywords
頻率選擇表面、傳輸陣列天線、指向性天線、自我注入鎖定、極化分解、極化分集、穿戴式雷達
directivity antenna, transmitarray antenna, self-injection-locked (SIL), polarization converter, polarization diversity, wearable radar, frequency selective surface (FSS)
統計
Statistics
本論文已被瀏覽 5834 次,被下載 58
The thesis/dissertation has been browsed 5834 times, has been downloaded 58 times.
中文摘要
頻率選擇表面(FSS)具有能夠改變連續波的極化狀態,例如:電場和磁場的相位和極化。本論文首先介紹了FSS的設計以及分析。然後證明了FSS的兩種應用。 第一個應用是可穿戴雷達的設計,本穿戴式雷達利用FSS可抑制來自環境中的雜波。第二個應用為一種傳輸陣列設計,其傳輸損耗透過採用多層FSS以及新的離散瓊斯矩陣而降低。
在第一個應用中,頻率選擇表面被用作將線性極化轉換為圓極化的極化轉換器,並且達到極化分集。在這項工作中,設計了一種雷達標籤,並且實現具有高靈敏度,低功耗和移動性的可穿戴式生命徵象感測器。此提出的雷達系統被設計為雙基地雷達:首先使用自我注入鎖定振盪器(SILO)標籤結合頻率選擇表面,並貼到受試者的胸部,其次是遠端位置的手持接收器。整合在標籤中的是用於SILO的線性極化(L.P)天線,並且包含頻率選擇性表面以轉換線性極化到圓極化,此圓極化變成標籤的輸出信號到接收機以進行都普勒偵測並實現極化分集。由於極化分集,標籤對接收機引起的移動雜波表現出很強的免疫力。在使用2.4 GHz ISM頻段原型的實驗中,當標籤和接收器之間存在相對運動時,標籤亦可提供正確的心肺信息。
在第二種應用中,頻率選擇表面在傳輸陣列天線中被用作相位控制器。當平面FSS用於接收空間中的球面波時,需要做相位校正。由於基於FSS的相位控制器不使用傳輸線(包括傳導和輻射損耗)進行相位校正,因此該方法有效地改善了傳輸陣列天線的增益。另外,一個作為輻射源的高增益號角天線被設計。此號角天線於Ku波段的帶寬約為18%,增益超過10 dB。其次設計並實現了由大量的小單位單元組成的相位控制器,小單元約為0.39 λ×0.39 λ。此相位控制器通過將波分解為兩個正交分量之和來實現相位校正。由於使用縮小化的單元,此背包尺寸的相位控制器得以在相同區域中使用更多的相位控制元件。由於更密集的元件可更精確地補償與校正了相位,因此實現了更高的增益。在FSS設計中,新的離散瓊斯矩陣計算方法被公式化,這使我們能夠準確地獲得每個單位單元位置的相位校正。改進的傳輸陣列設計並實現了約26.1 dB的增益,且孔徑效率約為61%,與其它文獻的結果相比,效果提高了30%至40%。
Abstract
Frequency selective surface (FSS) is able to modify the state of polarization of continuous waves, for example, the phase and polarization of the electric and magnetic fields. In this dissertation, design and analysis of FSSs are first introduced. Two applications of FSSs are then demonstrated. The first application is the design of a wearable radar in which the clutter from the environment is suppressed by a single-layered FSS. The second application involves a transmit-array design whose transmission loss is reduced by employing a multi-layered FSS along with a novel discrete Jones matrix.
In the first application, the frequency selective surface was used as a polarization converter that converted linear polarization to circular polarization, thus achieved the polarization diversity. In this work, a radar tag enabling wearable vital sign sensors with high sensitivity, low power consumption, and mobility is designed. The proposed radar system is designed to be bi-static: first with a self-injection-locked oscillator (SILO) tag with frequency selective surface attached to a subject’s chest, and second with a handheld receiver at a remote location. Embedded in the tag is a linearly polarized (L.P) antenna for the SILO and with a frequency selective surface to facilitate the linear-to-circular polarization conversion. The circular polarization becomes the tag’s output signals to the receiver for Doppler detection and achieving the polarization diversity. Owing to polarization diversity, the tag exhibits strong immunity to the moving clutter caused by the receiver. In the experiment with a 2.4-GHz ISM band prototype, the tag delivered reliable cardiopulmonary information when there was a relative movement between the tag and the receiver.
In the second application, frequency selective surface is used in a transmit-array antenna as a phase controller. Phase corrections are needed when a planar FSS is used to receive spherical waves in the space. Since the FSS-based phase controller does not use transmission lines, including conducted and radiated losses, for phase corrections, the approach effectively improves the transmit-array antenna gain. Further, a high-gain horn antenna as a source of radiation was first designed. The bandwidth was about 18% in Ku band, and a gain of more than 10 dB was achieved. And the phase controller consisting of a large number of small unit cells, about 0.39 λ×0.39 λ, was designed and realized. The phase controller achieves phase corrections by analyzing the waves as a sum of two orthogonal components. The backpack sized phase controller employs more elements in the same area, as a result of using smaller unit cells. The denser elements achieves a higher gain since the phase corrections were more accurately compensated. In FSS design, novel discrete Jones matrix calculation was formulated, which allows us to obtain accurately the phase corrections for each unit cell location. The improved transmit-array design achieved a gain of about 26.1 dB, and aperture efficiency of about 61%, which are better by 30% to 40% compared to other reported results.
目次 Table of Contents
論文審定書 i
摘要 iii
Abstract v
Contents viii
List of Figures xi
List of Table xvi
Chapter 1 Introduction 1
1.1 Motivation and scope of dissertation 1
1.2 Research methods 2
1.2.1 Wearable Antenna for Clutter Suppression 3
1.2.2 Design of transmitarray antenna for Ku-band satellite 7
1.3 Contributions and outline of dissertation 9
Chapter 2 Theory of Electromagnetic Wave Polarization and FSS 11
2.1 Theory of Electromagnetic Wave Polarization 11
2.1.1 Maxwell’s Equations [65] 11
2.1.2 Electromagnetic Radiation and Polarization 13
2.1.3 Jones calculus [66] 16
2.1.4 Polarization Units 18
2.1.5 Malus’s Law 22
2.1.6 Fresnel equation[65] 24
2.2.1 Frequency Selective Surface (FSS) 27
2.2.2 The FSS Filtering Mechanism 28
2.2.3 Floquet Theory 30
2.2.4 FSS Simulation Model 31
2.2.5 FSS Single Cell Design and Simulation 36
Chapter 3 Wearable Radar for Clutter Suppression 43
3.1 Self-Injection-Locked Theory 44
3.1.1 Self-Injection-Locked Radar 44
3.2 Experiment of vital sign detection 52
3.2.1 System Architecture 52
3.2.2 Wearable Antenna with FSS Design for Clutter Suppression 56
3.2.3 Experiment result 60
3.3 Conclusion 64
Chapter 4 Transmit-array Antenna Design 65
4.1 Ku-band transmit-array system 65
4.2 Ku-band horn antenna design 67
4.2.1 Ku band horn antenna structure 67
4.2.2 A quarter wavelength between the radiator and reflecting wall 70
4.2.3 Copper Cylinder Stud 71
4.3 Frequency Selective Surface Design 76
4.4 Transmitarray Antenna Design 81
4.4.1 Jones Matrix Calculation. 81
4.4.2 Extraction of Waves and Design of FSS Unit Cells in Transmitarray. 87
4.4.3 Co-simulation of transmitarray with the horn Antenna and measurement results. 91
4.5 Conclusions 98
Chapter 5 Conclusion 100
References 103
Appendix I Self- and Mutual-Injection Locking Radar 117
Publications 149
參考文獻 References
[1] C. J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, “Frequency and beam reconfigurable antenna using photoconducting switches,” IEEE Trans. Antennas Propag., vol. 54, no. 2, pp. 449–454, Feb. 2006.

[2] M. I. Sabran, S. K. A. Rahim, A. Y. A. Rahman, T. A. Rahman,M. Z. M. Nor, and Evizal, “A dual-band diamond-shaped antenna for RFID application,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 979–982, Oct. 2011.

[3] E. Pointereau, H. Chreim, B. Jecko, and P. Dufrane, “Omnidirectional cylindrical electromagnetic bandgap antenna with dual polarization,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 450–453,2007.

[4] H. Chreim, E. Pointereau, B. Jecko, and P. Dufrane, “Omnidirectional electromagnetic band gap antenna for base station applications,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 499–502, 2007.

[5] T. P. Wong and K. M. Luk, “A wide bandwidth and wide beamwidth CDMA/GSM base station antenna array with low backlobe radiation,” IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 903–909, May 2005.

[6] Z. N. Chen, W. K. Toh, and X. Qing, “A microstrip patch antenna with broadened beamwidth,” Microw. Opt. Technol. Lett., vol. 50, no. 7, pp. 1885–1888, 2008.

[7] X. L. Bao and M. J. Ammann, “Dual-frequency dual circularly-polarised patch antenna with wide beamwidth,” Electron. Lett., vol. 44, no. 21, pp. 1233–1234, Oct. 2008.

[8] S. X. Ta, I. Park, and R. W. Ziolkowski, “Dual-band wide-beam crossed asymmetric dipole antenna for GPS applications,” Electron. Lett., vol. 48, no. 25, pp. 1580–1581, Dec. 2012.

[9] W.-J. Lu, G.-M. Liu, K. F. Tong, and H.-B. Zhu, “Dual-band loop-dipole composite unidirectional antenna for broadband wireless communications,” IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2860–2866, May 2014.

[10] G. K. Palikaras, A. P. Feresidis, and J. C. Vardaxoglou, “Cylindrical electromagnetic bandgap structures for directive base station antennas,” IEEE Antennas Wireless Propag. Lett., vol. 3, no. 1, pp. 87–89, Dec. 2004.

[11] Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, “Design of a high-directivity Electromagnetic Band Gap (EBG) resonator antenna using a frequency selective surface (FSS) superstrate,” Microw. Opt. Technol. Lett., vol. 43, no. 6, pp. 462–467, Dec. 2004.

[12] Y. Chen, L. Chen, H. Wang, X.-T. Gu, and X.-W. Shi, “Dual-band crossed-dipole reflectarray with dual-band frequency selective surface,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1157–1160, Sep. 2013.

[13] W. Yang, H. Wang, W. Che, and J. Wang, “A wideband and high-gain edge-fed patch antenna and array using artificial magnetic conductor structures,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 769–772, 2013.

[14] T. Debogovic and J. Perruisseau-Carrier, “Array-fed partially reflective surface antenna with independent scanning and beamwidth dynamic control,” IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 446–449, Jan. 2014.

[15] A. Chatterjee, B. Mandal, and S. K. Parui, “A FSS based corner reflector for performance enhancement of a ribcage dipole antenna,” in Proc. IEEE Appl. Electromagn. Conf., Dec. 2015, pp. 241–242.

[16] I. Ohtera, “Diverging/focusing of electromagnetic waves by utilizing the curved leakywave structure: Application to broad-beam antenna for radiating within specified wide-angle,” IEEE Trans. Antennas Propag., vol. 47, no. 9, pp. 1470–1475, Sep. 1999.

[17] H. Boutayeb, T. A. Denidni, K. Mahdjoubi, A.-C. Tarot, A.-R. Sebak, and L. Talbi, “Analysis and design of a cylindrical EBG-based directive antenna,” IEEE Trans. Antennas Propag., vol. 54, no. 1, pp. 211–219, Jan. 2006.

[18] David K. Cheng, Field and Wave Electromagnetics, 2
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code