Responsive image
博碩士論文 etd-0624118-122353 詳細資訊
Title page for etd-0624118-122353
論文名稱
Title
研發污泥製成生質炭作為輔助燃料及吸附劑之多元化再利用
Development and Extended Use of Biochar from Sludge as an Auxiliary Fuel and Adsorbent
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-12
繳交日期
Date of Submission
2018-07-24
關鍵字
Keywords
焙燒碳化技術、資源化、污泥、生質炭、農業廢棄物、能源化、吸附劑、廢水處理
Sludge, Biomass, Wastewater treatment, Adsorbent, Energy, Resource, Torrefaction carbonization technology, Agricultural waste
統計
Statistics
本論文已被瀏覽 5644 次,被下載 2
The thesis/dissertation has been browsed 5644 times, has been downloaded 2 times.
中文摘要
工業革命以來,許多國家不斷提升經濟發展,同時也伴隨衍生性污染物的產生,無論在生活上或工業上皆產出大量廢水,而廢水在處理過程亦會產生固體廢棄物-污泥。隨著環保意識抬頭,污泥再利用之相關研究也越來越多元化。本研究收集臺南科學園區之工業污泥(Industrial sludge, IS)及一般生活污水污泥(Sewage sludge, SS),在300~400°C的溫度條件下於缺氧環境下,以低溫焙燒之碳化技術將資材轉換為生質炭(Biochar)。從實驗中得到350°C、60 min為最佳焙燒條件,並探討做為生質燃料及生質吸附劑之成效及可行性。第一部份將污泥與農業廢棄物椰殼(Coconut shells, CO),以0~100(Wt %)之比例混合後進行壓錠及焙燒,並進行碳含量分析及熱值檢測。從研究中發現資材之碳含量會影響熱值高低,得到工業污泥與椰殼混合最佳碳含量及熱值分別為36.3%及2,852 kcal/kg;污水污泥與椰殼混合最佳碳含量及熱值分別為32.5%及2,840 kcal/kg,皆高於化石燃料-褐煤(2,780 kcal/kg),具有替代燃料之資格。第二部份則以單一污泥生質炭進行Pb、Cr及Cd重金屬吸附試驗。由實驗中得知經過240分鐘之吸附時間,工業污泥生質炭對Pb、Cr及Cd之去除率皆達100%,根據吸附能力可得知對於三者金屬之親和力為Cr>Pb>Cd;污水污泥生質炭對Pb及Cr之去除率皆達99.9%,而Cd為96.5%,對於三者金屬之親和力為Cr>Pb>Cd。經過吸附試驗後,兩者污泥焙燒後轉換為生質炭作為吸附劑可望運用至實廠廢水處理單元中。
Abstract
Since the industrial revolution, many countries have produced many derivative pollutants at the same time of creating economic value. No matter whether in the life or industry, a large amount of wastewater will be produced, and wastewater will also produce solid waste-sludge in the process. Environmental awareness has become more and more important, and research on sludge reuse has become increasingly diversified. In this study, industrial sludge and sewage sludge were collected, and the material was converted to biomass carbon under the condition of 300-400°C in an oxygen-deficient environment by low-temperature torrefaction and carbonization. The best torrefaction conditions are 350°C and 60 min from the experiment, and feasibility of being used as a biofuel and a biosorbent were explored. In the first part, sludge and agricultural waste coconut shells are mixed at a ratio of 0~100 (Wt %) and then compressed and torrefaction, analyze carbon content and test calorific value. The carbon content of materials will affect the level of calorific value, and the best carbon content and calorific value are 36.3% and 2,852 kcal/kg after industrial sludge mixed with coconut shell. The best carbon content and calorific value are 32.5% and 2,840 kcal/kg after sewage sludge mixed with coconut shell. The calorific value of both is like lignite (2,780 kcal/kg) and is qualified for alternative fuels. In the second part, Pb, Cr, and Cd heavy metal adsorption tests were performed on a single sludge biochar. After 240 minutes of adsorption time, the removal rate of Pb, Cr, and Cd from the industrial sludge biochar reached 100%. According to the adsorption capacity, the affinity for the three metals was Cr>Pb>Cd. The removal rate of Pb and Cr from sewage sludge biomass carbon was 99.9%, while that of Cd was 96.5%. The affinity for the three metals was Cr>Pb>Cd. After the adsorption test, both sludges were converted into biomass carbon as an adsorbent after roasting and it is expected to be applied to the actual plant wastewater treatment unit.
目次 Table of Contents
謝誌 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 前言 1
1-1研究緣起 1
1-2 研究目的 3
第二章 文獻探討 4
2-1 污泥來源與種類 4
2-2 污泥特性 5
2-3 工業污泥 7
2-4 污泥處理技術 12
2-4-1 國內污泥處理技術 15
2-4-2 國外污泥處理技術 16
2-5 農業廢棄物 16
2-5-1 椰子產區及成本 18
2-6生質炭簡介 18
2-6-1生質物焙燒(Torrefaction)技術 19
2-6-2 生質物共燃燒的材料特性與燃燒效果 21
2-7 吸附 24
2-7-1 吸附原理 24
2-7-2 吸附劑 24
2-7-3 吸附曲線 25
第三章 研究方法與流程 27
3-1 研究方法 27
3-2 進行步驟 27
3-3 實驗流程圖 30
3-4 實驗使用之儀器設備 31
第四章 結果與討論 38
4-1 三成分分析與PH值 38
4-1-1 水分檢測 38
4-1-2 灰分檢測 38
4-1-3 可燃分檢測 39
4-1-4 pH值檢測 39
4-2 表面結構觀察 40
4-3 原資材性質分析 45
4-3-1重金屬分析 45
4-3-2 熱重分析 48
4-3-3 元素分析 51
4-3-4 熱值檢測 52
4-4 生質炭性質分析 53
4-4-1 元素分析 53
4-4-2生質炭重金屬變化量 56
4-4-3 生質炭熱重分析 58
4-4-4 生質炭熱值檢測 60
4-4-5 生質炭產能評估 62
4-5 混合試驗 65
4-5-1混合資材壓錠 65
4-5-2工業污泥與椰殼混合 66
4-5-3 污水污泥與椰殼混合 69
4-5-4 混合資材之熱值 72
4-6 生質炭燃燒試驗 73
4-6-1單一資材重金屬變化量 73
4-6-2 混合資材重金屬變化量 74
4-7 生質炭CO2氣體分析 75
4-8 污泥生質炭比表面積(BET)分析 76
4-8-1 工業污泥BET分析 76
4-8-2 污水污泥BET分析 79
4-9 污泥生質炭吸附試驗 82
4-9-1 工業污泥生質炭吸附試驗 83
4-9-2 污水污泥生質炭吸附試驗 86
4-9-3 pH值之影響 89
4-10 成本效益分析 90
4-10-1 設備成本估算 90
4-10-2 操作成本效益 90
第五章 結論與建議 92
5-1 結論 92
5-2 建議 93
參考文獻 94
參考文獻 References
Abusoglu A., Ozahi E., Kutlar A. I., Al j. H. Life cycle assessment (LCA) of digested sewage sludge incineration for heat and power production. Journal of Cleaner Production 2017; 142, 1684-1692.
Agnieszka K. K., Katarzyna S., Monika K. G., Tomasz M., Krzysztof W. Combustion of pelleted sewage sludge with reference to coal and biomass. Fuel 2016; 170, 141-160.
Agrafioti E., Bouras G., Kalderis D., Diamadopoulos E. Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis 2013; 101, 72-78.
Ahmad M., Rajapaksha A. U., Lim J. E., Zhang M., Bolan N., D. Mohan, Vithanage M., Lee S. S., Ok Y. S. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 2014; 99, 19-23.
Ahmad S. S., Malik M. I., Wani M. B., Ahmad R. Study of concrete involving use of waste paper sludge ash as partial replacement of cement. Journal of Engineering 2013; 3, 6-15.
Ali I., Bahaitham H., Naebulharam R. A comprehensive kinetics study of coconut shell waste pyrolysis. Bioresource Technology 2016; 235, 1-11.
Almeida G., Brito J. O., Perre P. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction:The potential of mass loss as a synthetic indicator. Bioresource Technology 2010; 101, 9778-9784.
Andrzej B., Jakub P., Paweł S., Piotr M., Janusz G. The RDF/SRF torrefaction: An effect of temperature on characterization of the product–Carbonized Refuse Derived Fuel. Waste Management 2017; 70, 91-100.
Araga R., Sharma C. S. One step direct synthesis of multiwalled carbon nanotubes from coconut shell derived charcoal. Materials Letters 2017; 188, 205-207.
Barnes B., Mathee A., Thomas E., Bruce N. Household energy, indoor air pollution and child respiratory health in South Africa. Journal of Energy in Southern Africa 2009; 20, 2413-3051.
Barrios J. A., Becerril E., De León C., Barrera-Díaz C., Jiménez B. Electrooxidation treatment for removal of emerging pollutants in wastewater sludge. Fuel 2015; 149, 26-33.
Bassani M., Bertola F., Bianchi M., Canonico F., Marian M. Environmental assessment and geomechanical properties of controlled low-strength materials with recycled and alternative components for cements and aggregates.
Basu P. Biomass Gasification and Pyrolysis Handbook. Practical Design 2010.
Bergman P. C., Boersma R., Zwart R. W. R., Kiel J. H. Torrefaction for biomass co-firing in existing coal-fired power stations. Energy research Centre of the Netherlands Report No. ECN-C-C05-013, 2005.
Bertanza G., Galessi R., Menoni L., Zanaboni S. Wet oxidation of sewage sludge from municipal and industrial WWTPs. Water Treat, 2016; 57, 2422-2427.
Białowiec A., Pulka J., Stępień P., Manczarski P., Gołaszewski J. The RDF/SRF torrefaction: An effect of temperature on characterization of the product–Carbonized Refuse Derived Fuel. Waste Management 2017; 70, 91-100.
Biswas B., Pandey N., Bisht Y., Singh R., Kumar J., Bhaskar T. Pyrolysis of agricultural biomass residues:Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology 2017; 237, 57-63.
Bolan N., Kunhikrishnan A., Thangarajan R., Kumpiene J., Park J., Makino T., Kirkham M. B., Scheckel K. Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize? Journal of Hazardous Materials 2014; 266, 141-166.
Borghei M., Laocharoen N., Põldsepp E. K., Johansson L. S., Campbell J., Kauppinen E., Tammeveski K., Rojas O. J. Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells. Applied Catalysis B: Environmental 2017; 204, 394-402.
Brebu M. and Vasile C. Thermal degradation of lignin — a review. Institute of Macromolecular Chemistry 2010; 44, 353-363.
Brems A., Baeyens J., Beerlandt J., Dewil R. Thermogravimetric pyrolysis of waste polyethylene-terephthalate and polystyrene: A critical assessment of kinetics modelling. Resources, Conservation and Recycling 2011; 55, 772-781.
Buddhike N. M., Suyin G., Caro E., Hoon K. N. Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques. Fuel Processing Technology 2017; 59, 287-305.
Cellatoğlu N. and İlkan M. Torrefaction of Solid Olive Mill Residue. BioResources 2015; 10, 5876-5889.
Cha J. S., Park S. H., Jung S. C., Rye C., Jeon J. K., Shin M. C., Park Y. K. Production and utilization of biochar: a review. Journal of Industrial and Engineering Chemistry 2016; 40, 1-15.
Chae J. S., Choi S. A., Kim Y. H., Oh S. C., Ryu C. K., Ohm T. I. Experimental study of fry-drying and melting system for industrial wastewater sludge. Journal of Hazardous Materials 2016; 313, 78-84.
Chan W. P., Wang J. Y. Comprehensive characterisation of sewage sludge for thermochemical conversion processes-Based on Singapore survey. Waste Management 2016; 54, 131-142.
Chen D., Gao A., Cen K., Zhang J., Cao X., Ma Z. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Conversion and Management 2018; 169, 228-237.
Chen J., Liu J., He Y., Huang L., Sun., Sun J., Chang K. L., Kuo J., Huang S., Ning X. Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling. Bioresource Technology 2017; 225, 234-245.
Chen T., Zhang Y. X., Wang H. T., Lu W. J., Zhou Z. Y., Zhang Y. C., Ren L. L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour Technol 2014; 164, 47-54.
Chen T., Zhou Z., Han R., Meng R., Wang H., Lu W. Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism. Chemosphere 2015; 134, 286-293.
Chen W. H., Lu K. M., Tsai C. M. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Applied Energy 2012; 100, 318-325.
Chen Z. G., Wang X. J., Ge Q. L., Guo G. C. Iron oxide red wastewater treatment and recycling of iron-containing sludge. Journal of Cleaner Production 2015; 87, 558-566.
Chen Z. H., Hu M., Cui B., Liu S., Guo D., Xiao B. The effect of bioleaching on sewage sludge pyrolysis. Waste Management 2016; 48, 383-388.
Chen Z., Li J. S., Poon C. S. Combined use of sewage sludge ash and recycled glass cullet for the production of concrete blocks. Journal of Cleaner Production 2018; 171, 1447-1459.
Cheng X., Zhang M., Wang Z., Xu G., Ma C. IR and kinetic study of sewage sludge combustion at different oxygen concentrations. Waste Management 2018; 74, 279-287.
Cieslik B. M., Namiesnik J., Konieczka P. Review of sewage sludge management: standards, regulations and analytical methods. Journal of Cleaner Production 2015; 90, 1-15.
Cieślik B. M., Zając M., Gałuszka A., Konieczka P. Comprehensive stabilization of all streams of solid residues formed during sewage sludge thermal treatment–Case study. Journal of Cleaner Production 2018; 178, 757-767.
Conag A. T., Villahermosa J. E. R., Cabatingan L. K., Go A. W. Energy densification of sugarcane bagasse through torrefaction under minimized oxidative atmosphere. Journal of Environmental Chemical Engineering 2017; 5, 5411-5419.
Dalahmeh S. S., Pell M., Vinnerås B., Hylander L.D., Öborn I., Jönsson H. Efficiency of bark, activated charcoal, foam and sand filters in reducing pollutants from greywater. Water Air Soil Pollut 2012; 2013, 3657-3671.
Deng S., Tan H., Wang X., Yang F., Cao R., WangZ., Ruan R. Investigation on the fast co-pyrolysis of sewage sludge with biomass and the combustion reactivity of residual char. Bioresource Technology 2017; 239, 302-310.
Devi P and Saroha A. K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresource Technology 2014; 162, 308-315.
Devi P and Saroha A. K. Utilization of sludge based adsorbents for the removal of various pollutants: A review. Science of The Total Environment 2017; 578, 16-33.
Diego A., Juan A., Sarah F., Felipe M. Influence of feedstock on the copper removal capacity of waste-derived biochars. Bioresource Technology 2016; 212, 199-206.
Doddapaneni T. R. K. C., Konttinen J., Hukka T. I., Moilanen A. Influence of torrefaction pretreatment on the pyrolysis of Eucalyptus clone: A study on kinetics, reaction mechanism and heat flow. Industrial Crops and Products 2016; 92, 244-254.
Dogru M., Midilli A., Howarth C. R. Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis. Fuel Process Technol 2002; 75, 55-82.
European Commission Scientific and Technical Subcomponent Report. Disposal and recycling routes for sewage sludge. Part 3–scientific and technical report. 2001.
Fan S., Wang Y., Wang Z., Tang., Tang J., Li X. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. Journal of Environmental Chemical Engineering 2017; 5, 601-611.
Fang S., Yu Z., Lin Y., Hu S., Liao Y., Ma X. Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste. Energy Conversion and Management 2015; 101, 626-631.
Fernández J. M., Plaza C., Polo A., Plante A. F. Use of thermal analysis techniques (TG–DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application. Waste Management 2012; 32, 158-164.
Fournier D. J., Whitworth W. E., Lee J. W., Waterland L. R. The fate of trace metals in a rotary kiln incinerator with a venturi/packed column scrubber. 1990.
Futalan C. M., Kan C. C., Dalida M. L., Pascua C., Wan M. W. Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite. Carbohydrate Polymers 2011; 83, 697-704.
Gan Y. Y., Ong H. C., Show P. L., Ling T. C., Chen W. H., Yu K. L., Abdullah R. Torrefaction of microalgal biochar as potential coal fuel and application as bio-adsorbent. Energy Conversion and Management 2018; 165, 152-162.
Gao Y., Yang Y., Qin Z., Sun Y. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell. Springerplus 2016; 5, 333.
Gogoi D., Bordoloi N., Goswami R., Narzari R., Saikia R., Sut D., Gogoi L., Kataki R. Effect of torrefaction on yield and quality of pyrolytic products of arecanut husk: An agro-processing wastes. Bioresource Technology 2017; 242, 36-44.
Goswami R., Shim J., Deka S., Kumari D., Kataki R., Kumar M. Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures. Ecological Engineering 2016; 97, 444-451.
Hanieh B., Kelly H., Stephanie M. Q. A review on common adsorbents for acid gases removal: Focus on biochar. Renewable and Sustainable Energy Reviews 2018; 81, 1705-1720.
Hayyan A., Alam M.Z., Mirghani M.E., Kabbashi N.A. Hakimi N.I., Siran Y.M., Tahiruddin S. Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Bioresource Technology 2010; 101, 7804-7811.
He J., Li F., Li Y., Cui X. L. Modified sewage sludge as temporary landfill cover material. Water Science and Engineering 2015; 8, 257-262.
Hernández A. B., Okonta F., Freeman N. Sewage sludge charcoal production by N2- and CO2-torrefaction. Journal of Environmental Chemical Engineering 2017; 5, 4406-4414.
Ho S. H., Chen Y. D., Yang Z. K., Nagarajan D., Chang J. S., Ren N. Q. High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge. Bioresource Technology 2017; 246, 142-149.
Hospido A., Carballa M., Moreira M., Omil F., Lema J. M., Feijoo G. Environmental assessment of anaerobically digested sludge reuse in agriculture:Potential impacts of emerging micropollutants. Water Research 2010; 44, 3225-3233.
Hou S. S., Chen M. C., Lin T. H. Experimental study of the combustion characteristics of densified refuse derived fuel (RDF-5) produced from oil sludge. Fuel 2014; 116, 201-207.
Hu Q. Y., Li M., Wang C., Ji M. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater. Journal of Hazardous Materials 2015; 295, 1-8.
Huan L., Chang J., Sagadevan M. Hybrid environmental and economic assessment of four approaches recovering energy from sludge with variant organic contents. Journal of Cleaner Production 2017; 153, 131-138.
Huang Y. F., Shih C. H., Chiueh P. T., Lo S. L. Microwave co-pyrolysis of sewage sludge and rice straw. Energy 2015; 87, 638-644.
Huang Y. W., Chen M. Q., Luo H. F. Nonisothermal torrefaction kinetics of sewage sludge using the simplified distributed activation energy model. Chemical Engineering Journal 2016; 298, 154-161.
Huanga H. J., Yanga T., Laia F. Y., Wub G. Q. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. Journal of Analytical and Applied Pyrolysis 2017; 125, 61-68.
Idris J., Shirai Y., Andou Y., Ali M. A. A., Othman R. M., Ibrahim I., Hassan A. M. Self-sustained carbonization of oil palm biomass produced an acceptable heating value charcoal with low gaseous emission. Journal of Cleaner Production 2015; 89, 257-261.
Imane T., Younes C., Fatima E. M. A., Amal E. O., Abdelaziz S. D., Fouad B., Charafeddine J., Mohammed B. Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste. Waste Management 2017; 61, 78-86.
IUPAC. Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry. 1972; 31, 578.
Jia L., Ng H. L. D., Peng S., Chao K., Yi S., Ping Y. Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption. Biomass and Bioenergy 2015; 75, 189-200.
Jiang L. B., Yuan X. Z., Li H., Chen X. H., Xiao Z. H., Liang J., Leng L. J., Guo Z., Zeng G. M. Co-pelletization of sewage sludge and biomass: Thermogravimetric analysis and ash deposits. Fuel Processing Technology 2016; 145, 109-115.
Jiang L., Liang J., Yuan X., Li H., Li C., Xiao Z., Huang H., Wang H., Zeng G. Co-pelletization of sewage sludge and biomass: The density and hardness of pellet. Bioresource Technology 2014; 166, 435-443.
Jin Z., Chang F., Meng F., Wang C., Meng Y., Liu X., Wu J., Zuo J., Wang K. Sustainable pyrolytic sludge-char preparation on improvement of closed-loop sewage sludge treatment: Characterization and combined in-situ application. Chemosphere 2017; 184, 1043-1053.
Kacan E. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal. Journal of Environmental Management 2016; 166, 116-123.
Kandasamy J., Iskende G. Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Conversion and Management 2015; 89, 83-91.
Kapanen A., Vikman M., Rajasärkkä J., Virta M., Itävaara M. Biotests for environmental quality assessment of composted sewage sludge. Waste Management 2013; 33, 1451–1460.
Kathrin W. and Peter Q. Properties of biochar. Fuel 2018; 217, 240-261.
Khare P., Dilshad U., Rout P. K., Yadav V., Jain S. Plant refuses driven biochar: Application as metal adsorbent from acidic solutions. Arabian Journal of Chemistry 2017; 10, S3054-S3063.
Kim W. K., Shim T., Kim Y. S., Hyun S., Ryu C., Park Y. K. Jung J. Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresource Technology 2013; 138, 266-270.
Kim Y. H., Lee S. M., Lee H. W., Lee J. W. Physical and chemical characteristics of products from the torrefaction of yellow poplar (Liriodendron tulipifera). Bioresour Technol 2012; 116, 120–125.
Kleczkowska A. K., Środa K., Golachowska M. K., Musiał T., Wolski K. Mechanisms and kinetics of granulated sewage sludge combustion. Waste Manage 2015; 46, 459-471.
Kliopova I. and Makarskiene K. Improving material and energy recovery from the sewage sludge and biomassresidues. Waste Manage 2015; 36, 269-276.
Krüger O. and Adam C. Recovery potential of German sewage sludge ash. Waste Manag 2015; 45, 400-406.
Lee Y. Y., Jung H., Ryu H. W., Oh K. C., Jeon J. M., Cho K. S. Seasonal characteristics of odor and methane mitigation and the bacterial community dynamics in an on-site biocover at a sanitary landfill. Waste Management 2018; 71, 277-286.
Leiva M. B., Koupaie E. H., Eskicioglu C. Anaerobic co-digestion of wine/fruit-juice production waste with landfill leachate diluted municipal sludge cake under semi-continuous flow operation. Waste Management 2014; 34, 1860-1870.
Li T., Guo F., Li X., Liu Y., Peng K., Jiang X., Guo C. Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis. Waste Management 2018; 76, 544-554.
Liu G., Song H., Wu J. Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis. Waste Management 2015; 41, 128-133.
Liu S. H. and Huang Y. Y. Valorization of coffee grounds to biochar-derived adsorbents for CO2 adsorption. Journal of Cleaner Production 2018; 175, 354-360.
Liu X. and Chang F., Wang C., Jin Z., Wu J., Zuo J., Wang K. Pyrolysis and subsequent direct combustion of pyrolytic gases for sewage sludge treatment in China. Applied Thermal Engineering 2018; 128, 464-470.
Liu Z. and Han G. Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel 2015; 158, 159-165.
Liu Z. and Rajasekhar B. A comparison of thermal behaviors of raw biomass, pyrolytic biochar and their blends with lignite. Bioresource Technology 2013; 146, 371-378.
Lu G. Q., Low J. C. F., Liu C. Y., Lua A.C. Surface-area development of sewage-sludge during pyrolysis. Fuel 1995; 74, 344-348.
Magdziarz A. and Werle S. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS.” Waste Management 2014; 34, 174-179.
Magdziarz A. and Wilk A. Thermogravimetric study of biomass, sewage sludge and coal combustion. Energy Conversion and Management 2013; 75, 425-430.
Mahmoud A. J., Olivier J., Vaxelaire A. F. A. H. Electrical field:A historical review of its application and contributions in wastewater sludge dewatering. Water Research 2010; 44, 2381-2407.
Majid N. Chapter Fourteen – Surface Area: Brunauer–Emmett–Teller (BET). Progress in Filtration and Separation 2015, 585-608.
Mamvura T. A., Pahla G., Muzenda E. Torrefaction of waste biomass for application in energy production in South Africa. South African Journal of Chemical Engineering 2018; 25, 1-12.
Manara P., Zabaniotou A. Towards sewage sludge based biofuels via thermochemical conversion – a review. Renewable and Sustainable Energy Reviews 2012; 16, 2566-2582.
Mao L., Tang R., Wang Y., Guo Y., Su P., Zhang W. Stabilization of electroplating sludge with iron sludge by thermal treatment via incorporating heavy metals into spinel phase. Journal of Cleaner Production 2018; 187, 616-624.
Marguti A. L., Ferreira F. S. S., Piveli R. P. Full-scale effects of addition of sludge from water treatment stations into processes of sewage treatment by conventional activated sludge. Journal of Environmental Management 2018; 215, 283-293.
Matali S., Rahman N. A., Idris S. S., Yaacob N, Alias A. B. Lignocellulosic Biomass Solid Fuel Properties Enhancement via Torrefaction. Procedia Engineering 2016; 148, 671-678.
Melero J. A., Vázquez R. S, Vasiliadou I. A., Castillejo F. M., Bautista L. F., Iglesias J., Morales G., Molina R. Municipal sewage sludge to biodiesel by simultaneous extraction and conversion of lipids. Energy Conversion and Management 2015; 103, 111-118.
Mike A. A., Joana P. C. P., Roel J. W. M., Piet N. L. L. Biosorption of Cu(II) onto agricultural materials from tropical regions. Chemical Technology and Biotechology 2011; 86, 1184-1194.
Montero G., Coronado M. A., Torres R., Jaramillo B. E., García C., Stoytcheva M., Vazquez A. M., León J. A., Lambert A. A., Valenzuela E. Higher heating value determination of wheat straw from Baja California, Mexico. Energy 2016; 109, 612-619.
Naderi M. Chapter Fourteen – Surface Area: Brunauer–Emmett–Teller (BET). Progress in Filtration and Separation 2015, 585–608.
Namkung H., Lee Y. J., Park J. H., Song G. S., Choi J. W., Choi Y. C., Park S. J., Kim J. G. Blending effect of sewage sludge and woody biomass into coal on combustion and ash agglomeration behavior. Fuel 2018; 225, 266-276.
Namkung H., Park J. H., Lee T. J., Song G. S., Choi J. W., Kim J. G., Park J. S., Um B. H., Song K. H., Park S. J., Choi Y. C. Characteristics of novel synthetic fuels using coal and sewage sludge impregnated bioliquid applying for a coal combustion system. Fuel Processing Technology 2017; 167, 153-161.
Pahla G., Mamvura T. A., Ntuli F., Muzenda E. Energy densification of animal waste lignocellulose biomass and raw biomass. South African Journal of Chemical Engineering 2017; 24, 168-175.
Pahla G., Ntuli T., Muzenda E. Torrefaction of landfill food waste for possible application in biomass co-firing. Waste Management 2018; 71, 512-520.
Park J., Ok Y. S., Kim S., Cho J., Heo J., Delaune R. D., Seo D. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 2016; 142, 77-83.
Park S. W. and Jang C. H. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants. Waste Manage 2011a; 31, 523-529.
Park S. W., Jang C. H. Fuel characteristics of sewage sludge as alternative fuel of coal. 2010.
Pemberton P. C., Annegarn H., Cook C. Emissions reductions from domestic coal burning-practical application of combustion principles. Technology 2009.
Peng J., Wang J., Bi X. T., Lim C.J., Sokhansanj S. H. Effects of thermal treatment on energy density and hardness of torrefied wood pellets. Fuel Process Technol 2015; 129, 168.
Peng T., Lun M., Ji X., Qingyan F., Cheng Z., Gang C. Co-firing sludge in a pulverized coal-fired utility boiler: Combustion characteristics and economic impacts. Energy 2017; 119, 392-399.
Piippo S., Lauronen M., Postila H. Greenhouse gas emissions from different sewage sludge treatment methods in north. Journal of Cleaner Production 2018; 177, 483-492.
Poudel J., Ohm T. I., Lee S. H., Oh S. C. A study on torrefaction of sewage sludge to enhance solid fuel qualities. Waste Management 2015; 40, 112-118.
Prajitno H., Zeb H., Park J., Ryu C., Kim J. Efficient renewable fuel production from sewage sludge using a supercritical fluid route. Fuel 2017; 200, 146-152.
Praspaliauskas M. and Pedišius N. A review of sludge characteristics in Lithuania's wastewater treatment plants and perspectives of its usage in thermal processes. Renewable and Sustainable Energy Reviews 2017; 67, 899-907.
Qambrani N. A., Rahman M. D., Won S., Shim S., Ra C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews 2017; 79, 255-273.
Qiyong X., Siqi T., Jing C. H., Jae H. K. Pyrolysis kinetics of sewage sludge and its biochar characteristics. Process Safety and Environmental Protection 2018; 115, 49-56.
Rago Y. P., Surroop D., Mohee R. Torrefaction of textile waste for production of energy-dense biochar using mass loss as a synthetic indicator. Journal of Environmental Chemical Engineering 2018; 6, 811-822.
Revilla M., Viguri J., Galán J. Simulation and Optimization of Biofilm Activated Sludge Process for the Biological Treatment of Effluents from Cellulose and Viscose Industry. Computer Aided Chemical Engineering 2014; 33, 1117-1122.
Rout T., Pradhan D., Singh R. K., Kumari N. Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering 2016; 4, 3696-3705.
Ryu C. and Shin D. Combined heat and power from municipal solid waste: current status and issues in South Korea. Energies 2013; 6, 45.
Shafizedeh F. Pyrilysis and Combustion of Cellulosic Materials. Advances in Carbohydrate Chemistry 1968; 23, 419-474.
Siengchum T., Guzman F., Chuang S. S. C. Analysis of gas products from direct utilization of carbon in a solid oxide fuel cell. Journal of Power Sources 2012; 213, 375-381.
Sijiang X., Jiankun Z., Beiping Z., Qiang Y. Effect of moisture content on the characterization of products from the pyrolysis of sewage sludge. Journal of Analytical and Applied Pyrolysis 2013; 104, 632-639.
Silva C. M. S., Carneiro A. C. O., Vital B. R., Figueiró C. G., Fialho L. F., Magalhães M. A., Carvalho A. G., Cândido W. L. Biomass torrefaction for energy purposes – Definitions and an overview of challenges and opportunities in Brazil. Renewable and Sustainable Energy Reviews 2018; 82, 2426-2432.
Silva C., Matos J. S., Rosa M. J. Performance indicators and indices of sludge management in urban wastewater treatment plants. Journal of Environmental Management 2016; 184, 307-317.
Silva F. M. S., Mahler C. F., Oliveira L. B., Bassin J. P. Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol. Waste Management 2018; 76, 339-349.
Singh K and Zondlo J. Characterization of fuel properties for coal and torrefied biomass mixtures. Journal of the Energy Institute 2017; 90, 505-512.
Slopiecka K., Bartocci P., Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy 2012; 97, 491-497.
Sodhi V., Bansal A., Jha M. K. Excess sludge disruption and pollutant removal from tannery effluent by upgraded activated sludge system. Bioresource Technology 2018; 263, 613-624.
Sohi S. P., Krull E., Lopez-Capel E., Bol R. A review of biochar and its use and function in soil. Advances in Agronomy 2010; 105, 47-82.
Stanislav V. V., David B., Lars K. A., Christina G. V. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 2013; 105, 40-76.
Stelt M. J. C., Gerhauser H., Kiel J. H. A., Ptasinsk K. J. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy 2011; 35, 3748-3762.
Sukiran M. A., Abnisa F., Daud W. M. A. W. A review of torrefaction of oil palm solid wastes for biofuel production. Energy Conversion and Management 2017; 149, 101-120.
Sun H., Wu Q., Yu P., Zhang L., Ye L., Zhang X. X., Ren H. Denitrification using excess activated sludge as carbon source: Performance and the microbial community dynamics. Bioresource Technology 2017; 238, 624-632.
Syed S. A. S. H., Wang Y., Hu S., Su S., Xiang J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renewable and Sustainable Energy Reviews 2017; 80, 888-913.
Tan X., Liu Y., Zeng G., Wang X., Hu X., Gu Y., Yang Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015; 125, 70-85.
Thys K., John R. B., Hein W. J. P. N., Stuart J. P., Raymond C. C. E., Sansha C. Coal-derived low smoke fuel assessment through coal stove combustion testing. Journal of Analytical and Applied Pyrolysis 2017; 126, 158-68.
Tian X., Zhu S., Peng J., Zuo Y., Wang G., Guo X., Zhao N., Ma Y., Ma L. Synthesis of micro- and meso-porous carbon derived from cellulose as an electrode material for supercapacitors. Electrochimica Acta 2017; 241, 170-178.
Tom S., Teresa F., Gökçen A., Harrison F., Eduardo M. J. Biochar modification to enhance sorption of inorganics from water. Bioresource Technology 2017; 246, 34-47.
Tripathi M., Sahu J. N., Ganesan P. Effect of process parameters on production of biochar from biomass waste through pyrolysis:A review. Renewable and Sustainable Energy Reviews 2016; 55, 467-481.
Tsai W and Liu S. Effect of temperature on thermochemical property and true density of torrefied coffee residue. Journal of Analytical and Applied Pyrolysis 2013; 102, 47-52.
Uemura Y., Omar W. N., Tsutsui T. Yusup S. B. Torrefaction of oil palm wastes. Fuel 2011; 90, 2585-2591.
Uggetti E., Ferrer I., Llorens E., García J. Sludge treatment wetlands: a review on the state of the art. Bioresour Technol 2010; 101, 2905-2912.
Un T. U. and Ozel E. Electrocoagulation of yogurt industry wastewater and the production of ceramic pigments from the sludge. Separation and Purification Technology 2013; 120, 386-391.
Urrea J. L., Collado S., Oulego P., Díaz M. Wet oxidation of the structural sludge fractions. Journal of Cleaner Production 2017; 168, 1163-1170.
Urych B. and Smolinski A. Kinetics of sewage sludge pyrolysis and air gasification of its chars. Energy Fuel 2016; 30, 4869-4878.
Victor H. L. Z., Mayra C. R. H., Felipe A. M., Luis F. C. R., Jose R. R. M. Coconut endocarp and mesocarp as both biosorbents of dissolved hydrocarbons in fuel spills and as a power source when exhausted. Journal of Environmental Management 2018; 211, 103-111.
Villarreal I. A. A., Petriciolet A. B., Valencia R. M. Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions. Journal of Molecular Liquids 2017; 230, 686-695.
Wang D., Hu Q. Y., Li M., Wang C., Ji M. Evaluating the removal of organic fraction of commingled chemical industrial wastewater by activated sludge process augmented with powdered activated carbon. Arabian Journal of Chemistry 2015; 9, S1951-S1961.
Wang J. Liu T. L., Huang Q. X., Ma Z. Y., Chi Y., Yan J. H. Production and characterization of high quality activated carbon from oily sludge. Fuel Processing Technology 2017; 162, 13-19.
Wang J. Sun C. Lin B. C., Huang Q. X., Ma Z. Y., Chi Y., Yan J. H. Micro- and mesoporous-enriched carbon materials prepared from a mixture of petroleum-derived oily sludge and biomass. Fuel Processing Technology 2018; 171, 140-147.
Wang L., Zou F., Fang X., Tsang D. C. W., Poon C. S., Leng Z., Baek K. A novel type of controlled low strength material derived from alum sludge and green materials. Construction and Building Materials 2018; 792-800, 165.
Wang N. Y., Shih C. H., Chiueh P. T., Huang Y. F. Environmental Effects of Sewage Sludge Carbonization and Other Treatment Alternatives. Energies 2013; 6, 871-883.
Wang Y., Zhang H., Li B., Feng Y. Integrating sludge microbial fuel cell with inclined plate settling and membrane filtration for electricity generation, efficient sludge reduction and high wastewater quality. Chemical Engineering Journal 2018; 331, 152-160.
Wang Z., Hong C., Xing Y., Li Y., Feng L., Jia M. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts. Waste Management 2018; 74, 288-296.
Wang Z., Zheng G., Zhou L. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1. Bioresource Technology 2015; 192, 514-521.
Wannapeera J., Fungtammasan B., Worasuwannarak N., Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis 2011; 92, 99-105.
Werle S., Wilk R. K. A review of methods for the thermal utilization of sewage sludge: The Polish perspective. Renewable Energy 2010; 35, 1914-1919.
Wilk M., Magdziarz A., Kalemba I. Characterisation of renewable fuels' torrefaction process with different instrumental techniques. Energy 2015; 87, 259-269.
Wong H. S., Barakat R., Alhilali A., Saleh M., Cheeseman C.R. Hydrophobic concrete using waste paper sludge ash. Cement and Concrete Research 2015; 70, 9-20.
Xie Z. and Ma X. The thermal behaviour of the co-combustion between paper sludge and rice straw. Bioresource Technology 2013; 146, 611-618.
Yan Y., Perez S., Sheng K. Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: Dry torrefaction and hydrothermal carbonization. Fuel 2017; 196, 473-480.
Yang K., Zhu Y., Shan R., Shao Y., Tian C. Heavy metals in sludge during anaerobic sanitary landfill: Speciation transformation and phytotoxicity. Journal of Environmental Management 2017; 189, 58-66.
Yang X., Wang X., Wang L. Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process. Bioresource Technology 2010; 101, 2580-2584.
Yerizam M., Faizal M., Novia M. Characteristics of composite rice straw and coconut shell as biomass energy resources (briquette)(Case study : muara Telang Village, Banyuasin of South Sumatra ). International Conference of Chemical Engineering on Science and Applications 2013; 3, 42-48.
Yilmaz E., Wzorek M., Akçay S. Co-pelletization of sewage sludge and agricultural wastes. Journal of Environmental Management 2018; 216, 169-175.
Yoon K., Cho D. W., Tsang D. C. W., Bolan N., Rinklebe J., Song H. Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water. Bioresource Technology 2017; 246, 69-75.
Yu S., Zhang B., Wei J., Zhang T., Yu Q., Zhang W. Effects of chlorine on the volatilization of heavy metals during the co-combustion of sewage sludge. Waste Management 2017; 62, 204-210.
Yua Z., Fanga S., Lina Y., Liaoa Y., Maa X., Investigation of Rice Straw Combustion by Using Thermogravimetric Analysis. Energy Procedia 2015; 75, 144-149.
Yuan H. R., Lu T., Huang H. Y., Zhao D. D., Kobayashi N., Chen Y. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. Journal of Analytical and Applied Pyrolysis 2015; 112, 284-289.
Zha J., Huang Y., Xia W., Xia Z., Liu C., Dong L., Liu L. Effect of mineral reaction between calcium and aluminosilicate on heavy metal behavior during sludge incineration. Fuel 2018; 229, 241-247.
Zhang L., Liu J., Guo X. Investigation on mechanism of phosphate removal on carbonized sludge adsorbent. Journal of Environmental Sciences 2018; 64, 335-344.
Zhang O., Wang S., Wang W., Bao P., Li B., Peng Y. Achieving one-stage sludge reduction by adding Chironomid larvae in wastewater treatment systems. Ecological Engineering 2015; 83, 291-295.
Zhao P., Ge S., Yoshikawa K. An orthogonal experimental study on solid fuel production from sewage sludge by employing steam explosion. Applied Energy 2013; 112, 1213-1221.
Zhao X., Ma J., Ma H., Gao D., Sun Y., Guo C. Removal of polyacrylate in aqueous solution by activated sludge: Characteristics and mechanisms. Journal of Cleaner Production 2018; 178, 59-66.
Zhou H., Zhang Z., Wang M., Hu T., Wang Z. Enhancement with physicochemical and biological treatments in the removal of pharmaceutically active compounds during sewage sludge anaerobic digestion processes. Chemical Engineering Journal 2017; 316, 361-369.
Zhou X., Wang X., Zhang H., Wu H. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland. Bioresource Technology 2017; 241, 269-275.
Zhu M. M., Zhang Z., Zhang Y., Liu P., Zhang D. An experimental investigation into the ignition and combustion characteristics of single droplets of biochar water slurry fuels in air. Applied Energy 2014; 185, 2160-2167.
中興工程,"台灣下水道發展紀實",台灣下水道協會,中興工程科技研究發展基金會,2012。
內政部營建署,"台灣都市污水處理廠污泥減量與資源再利用推動現況",2014。
王定美、王躍强、余震、劉静、周順桂,"污泥與稻稈共熱解對生物炭中碳氮固定的協同作用",環境科學學報,第 35 卷,第 7 期,第2202-2209頁,2015。
王鐘和,"善用稻草資源 (下) ─稻草掩埋的意義及好處",豐年第59卷,第15期,2009。
向文川,"城市污水污泥乾化焚燒工藝的碳排放研究",中國西南交通大學市政工程,碩士論文,2011。
朱敬平、吳碩傳、吳耿東、林法勤、鍾裕仁、許國恩、胡雁翠、王郁萱,"生質物之造粒、裂解與氣化",中興工程,第119期,第101-105頁,2013。
江康鈺,"污泥再利用技術之發展與前景",國立中央大學環境工程研究所,桃園縣產業環保技術服務團專題演講,2012。
江康鈺、張木彬、簡光勵、余崇聖、洪沂潁,"燃煤過程重金屬物種形成潛勢預測分析與相態分佈特性之研究",環保署/國科會空污防制科研合作計畫研究成果,2011。
行政院主計總處,綠色國民所得帳,2014。
行政院農業委員會,農業統計年報,2015。
吳俊哲,"污泥資源化再利用",逢甲大學環境工程與科學系,專題報告,2015。
李中光、劉新校、侯佳蕙,"淺談污泥脫水及加熱乾燥技術",桃園縣大學校院產業環保技術服務團,環保簡訊,第20期,2013。
李易璜,"響日葵種子裂解行為分析研究",國立中正大學機械工程學系,碩士論文,2008。
李得元,"煤渣資源回收再利用之成本效益分析",嘉南藥理科技大學環境資源管理系,嘉南學報,第三十七期, 第182-187頁,2011。
阮慕玲、林燕輝、黃浩梁,"事業廢棄物重金屬溶出回收現況概述",工安環保專欄,第22期,2004。
林彥廷,"宜蘭都市下水污泥焙燒碳化技術之探討",國立宜蘭大學,2014。
林錕松,"高科技產業污泥再利用技術與原理及案例",元智大學化材系,104年度產服團高科技廠之廢棄物減量及再利用技術講習會,2015。
張添晉,"污泥處理現況及減量技術", 國立臺北科技大學環境工程與管理研究所,2016。
連興隆,奈米量測技術簡報,國立高雄大學土木與環境工程系,2018。
郭貹隆,污泥資源化與再利用簡報,國立勤益科技大學。
陳弘梅,"合成方沸石對聶、錳、鉻、鍶離子吸附之研究",國立成功大學資源工程研究所,碩士論文,2010。
陳尊賢,"土壤污染管制標準規定之探討",國立臺灣大學農業化系,台灣行政院環境保護署計畫,2003。
黃建賓,"以赤子愛勝蚓去除工業污泥中重金屬之研究",國立屏東科技大學環境工程與科學系,碩士論文,2012。
雷菊霞,"德國污泥處置技術的分析與研究",寧夏工程技術,第4期,第389-392頁,2005。
廖怡慧,"稻稈生質炭對重金屬銅、鋅、鎳、鎘、鉛吸附反應之探討",國立中興大學土壤環境科學系所,碩士論文,2012。
劉家佑、陳冠邦、李嘉文、趙怡欽,"五節芒草與其生質炭燃燒特性之研究",國立成功大學,2015。
蔡文田,"快速熱裂解技術應用於生質燃料之製作",行政院國家科學委員會/經濟部能源委員會能源科技學術合作研究計畫成果報告,2003。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code