Responsive image
博碩士論文 etd-0624118-154932 詳細資訊
Title page for etd-0624118-154932
論文名稱
Title
質子交換膜燃料電池之螺栓鎖緊順序對其電池效率影響
Effects of Bolt Screwing Sequences on the Efficiency of Proton Exchange Membrane Fuel Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-29
繳交日期
Date of Submission
2018-08-09
關鍵字
Keywords
質子交換膜燃料電池、接觸電阻、多孔性、功率密度、鎖緊順序
Proton Exchange Membrane Fuel Cell, Contact Resistance, Bolt Pre-loading, Porosity, Power Density
統計
Statistics
本論文已被瀏覽 5620 次,被下載 0
The thesis/dissertation has been browsed 5620 times, has been downloaded 0 times.
中文摘要
本研究建立了質子交換膜燃料電池之模型,結構分析方面是藉由有限元素法為基礎,進行模擬分析,使用的套裝軟體為ANSYS15.0,本次研究的目的是探討三種不同螺栓鎖緊方式下,透過順序的變化對於氣體擴散層的接觸電阻以及多孔性的影響,然後將上述兩者參數變化代入電化學分析軟體Fluent15.0,進一步討論螺栓鎖緊順序對於質子交換膜燃料電池整體之發電效率影響。
在結構分析中,本次論文使用SolidWorks 建立出質子交換模燃料電池的模型,建立的反應區域為9cm2,並使用8組螺栓及螺帽進行組裝。本次模擬忽略溫度所造成結構的影響,在約束條件方面是採用螺帽底部xy平面拘束,因此忽略了整體橫向位移之因素。研究中採用分次將八顆螺栓依序上鎖,並透過軟體中的螺栓鎖緊壓力施加在八組螺栓上,模擬整體結構應力與應變的變化。由於螺栓鎖緊順序(對角對稱鎖緊、中間對稱鎖緊、順時鐘鎖緊)的不同,其模型之邊界受鎖緊順序的不同而導致條件的改變,在不同螺栓鎖緊順序會有不同的位移及應力分布的情況。並將其氣體擴散層應力與應變的結果帶入電化學分析中,進行多孔性與電流密度的分析,並討論其鎖緊順序(對角對稱鎖緊、中間對稱鎖緊、順時鐘鎖緊)對發電效率之影響。從電化學分析模擬結果中,於三種不同螺栓鎖緊順序(對角對稱鎖緊、中間對稱鎖緊、順時鐘鎖緊)下, 接觸電阻的大小順序對角對稱鎖緊(13.39 mΩ) > 順時鐘鎖緊(10.14 mΩ) > 中間對稱鎖緊(11.41 mΩ),多孔性的大小順序為對角對稱鎖緊(0.77) > 順時鐘鎖(0.76) > 中間對稱鎖之為(0.75)。當接觸電阻愈高時會增加歐姆損失,進而降低電池的發電效率,其發電效率的大小順序為對角對稱鎖緊(0.211W/ cm2)> 順時鐘鎖緊(0.208W/ cm2 )> 中間對稱鎖緊(0.205W/ cm2)。由上述可知,對角對稱鎖緊之發電效率最高,比順時鐘鎖緊提升了5%,與中間對稱鎖相比提升了10.8%。
Abstract
In this study, a 3D finite element PEMFC (Proton Exchange Membrane Fuel Cell) model has been built and performed the structural analysis, the commercial software ANSYS Workbench 15.0 was adopted in order to observe the effect of bolt pre-loading variation on the contact resistance and porosity of GDL (Gas Diffusion Layer) in PEMFC. The obtained values of contact resistance and porosity of GDL were substituted into the electro-chemistry simulation software Fluent 15.0 to investigate bolts locking sequence on the efficiency of PEMFC was discussed.
In structural analysis, the 3D PEMFC model with the reactive area of 9cm2 had been established through 3D drawing software SolidWroks. The model includes membrane, catalyst layer, gas diffusion layer, flow channel plate, current collector and body plate which all elements were assembled by 8 pairs of bolt and nut. In order to apply bolt pre-loading on each pair of bolt and nut, the nuts were assumed to be constrained on xy plane and the ANSYS built-in function, bolt pretension, was adopted. Temperature effect do not consider in this study.
In addition, in the order of bolt locking, the bolts are locked in eight times, so the boundary conditions of the model are changed; three different bolt locking sequences (diagonal symmetric lock, intermediate symmetric lock, and clockwise lock) were selected as the purposes of case studies. Different displacements and stress distributions on the inside layers of PEMFC model due to boundary condition changed in each sequence of the bolt locking.
From the simulation results, the gas diffusion layer is subjected to the intermediate symmetric locking sequence would maximize the contact resistance and the porosity would be minimal; that lead to increase the ohmic loss as well as reduce the efficiency of PEMFC. Conversely, the diagonal symmetrical locking sequence performed the lowest contact resistance and the largest porosity, so the efficiency of PEMFC is better than the other two locking methods; it could increase the efficiency about 5% by compared with the clockwise locking sequence and about 10.8% by compared with the intermediate symmetrical lock sequence.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
表目錄 viii
圖目錄 ix
符號表 xi
第一章 緒論 1
1.1前言 1
1.2燃料電池簡介 2
1.3文獻回顧 3
1.4研究動機與目的 8
1.5全文架構 9
第二章 基礎理論簡介 11
2.1 FEM有限元素法簡介 11
2.1.1應力與平衡方程式 11
2.1.2應變與位移關係 12
2.1.3應力與應變之關係 13
2.1.4能量法 14
2.1.5形狀函數與剛性矩陣 14
2.2 FDM有限體積法簡介 18
2.2.1流體控制方程式 18
2.2.2 FDM計算方式 20
2.3套裝軟體ANSYS 15.0/Workbench簡介 21
2.4 Fluent 15.0簡介[39, 40] 23
第三章 研究方法 32
3.1 研究流程 32
3.2 基本假設 33
3.3模型收斂性分析 33
3.4 FEM結構分析模型 35
3.5 FDM電化學分析模型 36
3.6 GDL接觸電阻分析 38
3.7 GDL多孔性分析 39
第四章 結果與討論 47
4.1模擬驗證 47
4.2 螺栓鎖緊順序對於GDL應力及應變分佈 49
4.3 螺栓鎖緊順序對於GDL之接觸電阻與多孔性變化討論 49
4.4螺栓鎖緊力對於整體質子交換膜燃料電池效率之提升與優化 50
4.5螺栓鎖緊順序變化對於單電池電流密度分佈之影響 51
4.6螺栓鎖緊順序變化對於單電池反應氣體分佈之影響 52
第五章 結論與未來展望 70
5.1 結論 70
5.2 未來展望 71
參考文獻 72
參考文獻 References
[1] C.-C. Juan, "A Strategic Assessment of Taiwan’s Hydrogen Fuel Industry," Master, Submitted to Institute of Management of Technology College of Management, National Chiao Tung University, 2010.
[2] 黃鎮江, "燃料電池," 全華圖書股份有限公司, 2007.
[3] T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, "Polymer Electrolyte Fuel Cell Model," Journal of The Electrochemical Society, vol. 138, no. 8, pp. 2334-2342, 1991.
[4] V. Gurau, H. Liu, and S. Kakaç, "Two‐dimensional model for proton exchange membrane fuel cells," AIChE Journal, vol. 44, no. 11, pp. 2410-2422, 2004.
[5] J. Kim, S. M. Lee, S. Srinivasan, and C. E. Chamberlin, "Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation," Journal of The Electrochemical Society, vol. 142, no. 8, pp. 2670-2674, 1995.
[6] J. H. Lee, T. R. Lalk, and A. J. Appleby, "Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks," Journal of Power Sources, vol. 70, no. 2, pp. 258-268, 1998.
[7] H. Dohle, A. A. Kornyshev, A. A. Kulikovsky, J. Mergel, and D. Stolten, "The current voltage plot of PEM fuel cell with long feed channels," Electrochemistry Communications, vol. 3, no. 2, pp. 73-80, 2001.
[8] J. Ge, A. Higier, and H. Liu, "Effect of gas diffusion layer compression on PEM fuel cell performance," Journal of Power Sources, vol. 159, no. 2, pp. 922-927, 2006.
[9] A. Bazylak, D. Sinton, Z. S. Liu, and N. Djilali, "Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers," Journal of Power Sources, vol. 163, no. 2, pp. 784-792, 2007.
[10] W. R. Chang, J. J. Hwang, F. B. Weng, and S. H. Chan, "Effect of clamping pressure on the performance of a PEM fuel cell," Journal of Power Sources, vol. 166, no. 1, pp. 149-154, 2007.
[11] J.-H. Lin, W.-H. Chen, Y.-J. Su, and T.-H. Ko, "Effect of gas diffusion layer compression on the performance in a proton exchange membrane fuel cell," Fuel, vol. 87, no. 12, pp. 2420-2424, 2008.
[12] X. Liu, H. Guo, F. Ye, and C. F. Ma, "Flow dynamic characteristics in flow field of proton exchange membrane fuel cells," International Journal of Hydrogen Energy, vol. 33, no. 3, pp. 1040-1051, 2008.
[13] C.-Y. Wen, Y.-S. Lin, and C.-H. Lu, "Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack," Journal of Power Sources, vol. 192, no. 2, pp. 475-485, 2009.
[14] S. G. Kandlikar, Z. Lu, T. Y. Lin, D. Cooke, and M. Daino, "Uneven gas diffusion layer intrusion in gas channel arrays of proton exchange membrane fuel cell and its effects on flow distribution," Journal of Power Sources, vol. 194, no. 1, pp. 328-337, 2009.
[15] H. N. Yu, S. S. Kim, J. D. Suh, and D. G. Lee, "Composite endplates with pre-curvature for PEMFC (polymer electrolyte membrane fuel cell)," Composite Structures, vol. 92, no. 6, pp. 1498-1503, 2010.
[16] D. Singh, D. M. Lu, and N. Djilali, "A two-dimensional analysis of mass transport in proton exchange membrane fuel cells," International Journal of Engineering Science, vol. 37, no. 4, pp. 431-452, 1999.
[17] W.-k. Lee, C.-H. Ho, J. W. Van Zee, and M. Murthy, "The effects of compression and gas diffusion layers on the performance of a PEM fuel cell," Journal of Power Sources, vol. 84, no. 1, pp. 45-51, 1999.
[18] D. Natarajan and T. Van Nguyen, "A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors," Journal of The Electrochemical Society, vol. 148, no. 12, pp. A1324-A1335, 2001.
[19] V. Gurau, F. Barbir, and H. Liu, "An Analytical Solution of a Half‐Cell Model for PEM Fuel Cells," Journal of The Electrochemical Society, vol. 147, no. 7, pp. 2468-2477, 2000.
[20] J. Nordlund and G. Lindbergh, "A Model for the Porous Direct Methanol Fuel Cells Anode," Journal of The Electrochemical Society, vol. 149, no. 9, pp. A1107-A1113, 2002.
[21] P. Zhou, C. W. Wu, and G. J. Ma, "Contact resistance prediction and structure optimization of bipolar plates," Journal of Power Sources, vol. 159, no. 2, pp. 1115-1122, 2006.
[22] 錢志回, 石益三, 謝曉星, 蔡黃修, 黃衍龍, and 林智偉, "The Effects of Variations of Flow Field and Geometry of Micro-Channel on the Cracked Ag-SU8 Interface in a Micro-PEMFC," 中國機械工程學刊, vol. 28, no. 4, pp. 357-365, 2007.
[23] M. A. R. Sadiq Al-Baghdadi, "A CFD study of hygro–thermal stresses distribution in PEM fuel cell during regular cell operation," Renewable Energy, vol. 34, no. 3, pp. 674-682, 2009.
[24] P. Zhou and C. W. Wu, "Numerical study on the compression effect of gas diffusion layer on PEMFC performance," Journal of Power Sources, vol. 170, no. 1, pp. 93-100, 2007.
[25] D. H. Ahmed, H. J. Sung, and J. Bae, "Effect of GDL permeability on water and thermal management in PEMFCs—II. Clamping force," International Journal of Hydrogen Energy, vol. 33, no. 14, pp. 3786-3800, 2008.
[26] J.-H. Jang, W.-M. Yan, H.-Y. Li, and W.-C. Tsai, "Three-dimensional numerical study on cell performance and transport phenomena of PEM fuel cells with conventional flow fields," International Journal of Hydrogen Energy, vol. 33, no. 1, pp. 156-164, 2008.
[27] S.-W. Perng and H.-W. Wu, "Effects of internal flow modification on the cell performance enhancement of a PEM fuel cell," Journal of Power Sources, vol. 175, no. 2, pp. 806-816, 2008.
[28] A. Bates et al., "Simulation and experimental analysis of the clamping pressure distribution in a PEM fuel cell stack," International Journal of Hydrogen Energy, vol. 38, no. 15, pp. 6481-6493, 2013.
[29] S.-K. Park and S.-Y. Choe, "Dynamic modeling and analysis of a 20-cell PEM fuel cell stack considering temperature and two-phase effects," Journal of Power Sources, vol. 179, no. 2, pp. 660-672, 2008.
[30] S. P. Philipps and C. Ziegler, "Computationally efficient modeling of the dynamic behavior of a portable PEM fuel cell stack," Journal of Power Sources, vol. 180, no. 1, pp. 309-321, 2008.
[31] S. Ravishankar and K. Arul Prakash, "Numerical studies on thermal performance of novel cooling plate designs in polymer electrolyte membrane fuel cell stacks," Applied Thermal Engineering, vol. 66, no. 1, pp. 239-251, 2014.
[32] T. V. Nguyen and R. E. White, "A Water and Heat Management Model for Proton‐Exchange‐Membrane Fuel Cells," Journal of The Electrochemical Society, vol. 140, no. 8, pp. 2178-2186, 1993.
[33] J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, P. R. Roberge, and T. J. Harris, "Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell: I . Mechanistic Model Development," Journal of The Electrochemical Society, vol. 142, no. 1, pp. 1-8, 1995.
[34] J. S. Yi and T. V. Nguyen, "An Along‐the‐Channel Model for Proton Exchange Membrane Fuel Cells," Journal of The Electrochemical Society, vol. 145, no. 4, pp. 1149-1159, 1998.
[35] Y. Tang, M. H. Santare, A. M. Karlsson, S. Cleghorn, and W. B. Johnson, "Stresses in Proton Exchange Membranes Due to Hygro-Thermal Loading," Journal of Fuel Cell Science and Technology, vol. 3, no. 2, pp. 119-124, 2005.
[36] M. A. R. S. Al-Baghdadi and H. A. K. S. Al-Janabi, "Effect of operating parameters on the hygro–thermal stresses in proton exchange membranes of fuel cells," International Journal of Hydrogen Energy, vol. 32, no. 17, pp. 4510-4522, 2007.
[37] J. Hinebaugh, J. Lee, C. Mascarenhas, and A. Bazylak, "Quantifying Percolation Events in PEM Fuel Cell Using Synchrotron Radiography," Electrochimica Acta, vol. 184, pp. 417-426, 2015.
[38] E. Alizadeh, M. M. Barzegari, M. Momenifar, M. Ghadimi, and S. H. M. Saadat, "Investigation of contact pressure distribution over the active area of PEM fuel cell stack," International Journal of Hydrogen Energy, vol. 41, no. 4, pp. 3062-3071, 2016.
[39] E. Alizadeh, M. Ghadimi, M. M. Barzegari, M. Momenifar, and S. H. M. Saadat, "Development of contact pressure distribution of PEM fuel cell's MEA using novel clamping mechanism," Energy, vol. 131, pp. 92-97, 2017.
[40] L. Yip and A. Hamzehdoost, "Package warpage evaluation for high performance PQFP," in 1995 Proceedings. 45th Electronic Components and Technology Conference, pp. 229-233 ,1995.
[41] B. Kiang, J. Wittmershaus, R. Kar, and N. Sugai, "Package warpage evaluation for multi-layer molded PQFP," in [1991 Proceedings] Eleventh IEEE/CHMT International Electronics Manufacturing Technology Symposium, pp. 89-93, 1991.
[42] G. Kelly et al., "Importance of molding compound chemical shrinkage in the stress and warpage analysis of PQFPs," IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, vol. 19, no. 2, pp. 296-300, 1996.
[43] E. Suhir, "Interfacial Stresses in Bimetal Thermostats," Journal of Applied Mechanics, vol. 56, no. 3, pp. 595-600, 1989.
[44] J. W. Eischen, C. Chung, and J. H. Kim, "Realistic Modeling of Edge Effect Stresses in Bimaterial Elements," Journal of Electronic Packaging, vol. 112, no. 1, pp. 16-23, 1990.
[45] W. T. Chen and C. W. Nelson, "Thermal Stress in Bonded Joints," IBM Journal of Research and Development, vol. 23, no. 2, pp. 179-188, 1979.
[46] G. Kelly, C. Lyden, C. O. Mathuna, and J. S. Campbell, "Investigation of thermo-mechanically induced stress in a PQFP 160 using finite element techniques," in 1992 Proceedings 42nd Electronic Components & Technology Conference, pp. 467-472,1992.
[47] N. Limjeerajarus and P. Charoen-amornkitt, "Effect of different flow field designs and number of channels on performance of a small PEFC," International Journal of Hydrogen Energy, vol. 40, no. 22, pp. 7144-7158, 2015.
[48] H. T. Liu, "The Effect of Boits Pre-loading on the Efficiency of PEMFC and Performance of GDL," 2017.
[49] T. R. Chandrupatla and A. D. Belegundu, "Introduction to Finite Elements in Engineering," Pearson, USA, 2012.
[50] 鄭力銘, "ANSYS Fluent 15.0 流體計算-從入門到精通," 電子工業出版社, 2015.
[51] "ANSYS 15.0 Help," 2013.
[52] C. w. Che, "Simulation of Model Analysis of Micro Proton Exchange Membrane Fuel Cell by Finite Element Method," Master, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, 2013.
[53] 陳立崇, "Effect of Bolts Assembly on the Deformation and Pressure Distribution of Flow-Channel Plates in Micro-PEMFC," Master, Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, 2010.
[54] C.-H. Chien et al., "Effects of bolt pre-loading variations on performance of GDL in a bolted PEMFC by 3-D FEM analysis," Energy, vol. 113, pp. 1174-1187, 2016.
[55] A. Inc., "Modeling a Single-Channel, Counter-Flow Polymer Electrolyte Membrane (PEM) Fuel Cell," 2007.
[56] P. Zhou, C. W. Wu, and G. J. Ma, "Contact resistance prediction and structure optimization of bipolar plates," Journal of Power Sources, vol. 163, pp. 1115-1122, 2006.
[57] P. Zhou, C. W. Wu, and G. J. Ma, "Influence of clamping force on the performance of PEMFCs," Journal of Power Sources, vol. 163, p. 874881, 2006.
[58] M. Matian, A. J. Marquis, and N. P. Brandon, "Application of thermal imaging to validate a heat transfer model for polymer electrolyte fuel cells," International Journal of Hydrogen Energy, vol. 35, no. 22, pp. 12308-12316, 2010.
[59] W. R. Chang, J. J. Hwang, F. B. Weng, and S. H. Chan, "Effect of clamping pressure on the performance of a PEM fuel cell," Journal of Power Sources, vol. 166, pp. 149-154, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code