Responsive image
博碩士論文 etd-0624118-181253 詳細資訊
Title page for etd-0624118-181253
論文名稱
Title
探討TGF-β抑制基因失活增進胰臟癌轉移的關聯
Investigation of TGF-β repressors inactivation enhances metastasis in Pancreatic cancer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
207
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-07-26
關鍵字
Keywords
胰臟癌、轉端轉移、胰臟癌小鼠動物模式、KLF10、TGIF1
KLF10, Pancreatic cancer, PDAC mouse model, TGIF1, Metastasis
統計
Statistics
本論文已被瀏覽 5652 次,被下載 0
The thesis/dissertation has been browsed 5652 times, has been downloaded 0 times.
中文摘要
十年之前胰臟癌的五年存活率不到5%,十年過去了胰臟癌的五年存活率依然不到8%。儘管近年來有非常多的團隊、成就非常多的科學努力但我們僅增加了3%的五年存活率。而造成此現象的最大問題在於,胰臟癌的早期症狀不明顯及難以偵測,待有胰臟癌相關症狀被診斷出來時往往已經是晚期並且轉移到其他器官。對於胰臟癌如何發展成高轉移及轉移性前的研究變成胰臟癌治療及延長存活目前最重要的研究課題 - 為何後期的胰臟癌會開始侵犯到其他組織並且發生遠端轉移?許多的研究指出腫瘤組織及其周圍的腫瘤微觀環境在腫瘤的形成過程中會大量表現TGF-β,而這些TGF-β可能是影響癌症轉移的關鍵。已經有許多癌症轉移的研究指出,TGF-β會參與腫瘤的形成過程,並且促使腫瘤轉移的發生。有趣的是在胰臟癌中,TGF-β的下游訊息傳遞中SMAD4有高達50%的突變率,這些訊息透露出胰臟癌的發生以及進程與TGF-β訊息傳遞的極大關聯性。我的博士論文分為兩部分,第一部分是研究Krueppel樣因子10(KLF10),也稱為TGFβ誘導的早期生長反應蛋白1(TIEG-1)對胰腺發育的影響及探討及對於胰臟癌之影響。一開始我們證明胰腺上皮中有條件的KLF10缺失對胰腺發育及生理學沒有可辨別的影響。然而與突變KRASG12D基因搭配時,KLF10喪失使KRASG12D誘導的腫瘤發生快速進展。雖然單獨KRASG12D的突變會引起癌前期胰腺上皮內瘤變(PanIN)緩慢演進至高程度的PanINs,但KRASG12D和KLF10缺失的組合會導致人類胰腺(PDAC)腫瘤的快速發展。 然而KLF10的丟失也加速了KRASG12D; P53L / L搭配的小鼠動物模型的胰腺癌快速發展,並通過參與SDF-1 / CXCR4的路徑的活化了轉移前。在我的研究的第二部分中,我們研究了另一種TGFβ1/ SMAD下游阻遏物TGFβ誘導因子同源框1(TGIF1),以研究TGIF1在PDAC發展中的潛在作用。我們選擇性刪除TGIF1,使用Cre-Loxp系統與Pdx-1Cre KrasG12D和Pdx-1Cre; KRASG12D; P53L / L模型搭配,以研究TGIF1缺失對PDAC惡性程度的影響。我們觀察到Pdx-1Cre; KRASG12D; TGIF1L / L; P53L / L PDAC模型顯示胰腺癌形成伴隨著高頻率的肺和肝轉移。我們進一步發現TGIF1缺失透過活化HAS2-CD44信息傳遞和上調PD-L1促進KRASG12D誘導的胰腺癌的發展。最後我們的研究結果皆顯示這些KLF10-TGIF1所調控的訊息傳遞網絡可能可以成為治療胰腺癌轉移的新治療目標。
Abstract
The overall five-year survival rate for pancreatic cancer reported as low as 5% a decade ago, even now still less than 10%. The main issue in pancreatic cancer is patients in the early stages of pancreatic cancer have no obvious symptoms which leads to be diagnosed almost delay to advanced stages when patients harbored abdominal pain, jaundice or ascites. To explore what makes pancreatic cancer becoming highly invasive and metastatic may prolong survival for pancreatic cancer patients. Several studies have demonstrated that the increased TGF-β secretion in the tumor microenvironment may associate with the survival and poor prognosis of pancreatic cancer patients. Importantly, Smad4, a member of the SMAD family of signaling transduction, which acts as a pivotal mediator of TGF-β, was identified to be inactivated in more than 50% of pancreatic cancer. Alternatively, inactivation of the downstream factors in the TGF-β/SMAD signaling pathway may also affect the development of pancreatic. My thesis work is divided into two parts, the first part of the thesis is to investigate the effect of Krueppel-like factor 10 (KLF10), also named TGFβ-inducible early growth response protein 1(TIEG-1) on pancreas development and pancreatic cancer progression. We demonstrated that conditional KLF10 deletion in the pancreatic epithelium had no discernable impact on pancreatic development or physiology. However, when combined with the activated KRASG12D allele, KLF10 loss enabled rapid progression of KRASG12D –induced tumorigenesis. While activation of KRASG12D alone elicited premalignant pancreatic intraepithelial neoplasia (PanIN) that progressed slowly to high grades of PanINs, the combination of KRASG12D and KLF10 deficiency resulted in the rapid development of tumors resembling pancreatic ductal adenocarcinoma (PDAC) in humans. KLF10 loss also accelerated PDAC development of KRASG12DP53L/L compound mice and altered the prometastatic phenotype by involving the activation of SDF-1/CXCR4 stemness pathway. In the second part of my study, we investigate another TGFβ1/SMAD downstream repressor TGFβ-induced factor homeobox 1 (TGIF1) to study the potential role of TGIF1 in PDAC development. We selective deleted TGIF1, by using Cre-Loxp system to cross with Pdx-1Cre KrasG12D and Pdx-1CreKRASG12D P53L/L models in order to clarify the impact of TGIF1 deletion on malignant progression of PDAC. We observed that Pdx-1CreKRASG12DTGIF1L/LP53L/L PDAC model displayed the high frequency of lung and liver metastasis during PDAC formation in mutant mice. We further revealed that TGIF1 loss contributed to the progression of KRASG12D-induced PDAC through activation of HAS2-CD44 signaling pathway and upregulation of PDL1. Lastly, our results suggested that these KLF10-TGIF1 involving signaling networks might potentially become new therapeutic nodes for the treatment of pancreatic cancer metastasis.
目次 Table of Contents
國立中山大學研究生學位論文審定書 i
摘要 ii
Abstract iv
Chapter I 1
Abstract 2
Introduction 4
Material & Methods 7
Genetically modified mice and mouse genotyping 7
Immunohistochemistry 8
Western blot analysis 8
Mouse cytokine array analysis 9
RNA extraction and microarray detection 9
Complementary DNA microarray analysis 9
GeneGo analysis 10
Real-time–quantitative PCR analysis (RT–qPCR) 11
Cell proliferation assay 11
Primary pancreatic cell culture 11
Plerixafor treatment 11
Wound-healing assay 12
Luciferase reporter assay 12
Soft agar colony formation assay 13
Retroviral production and infection of target cells 13
Mice and injections 13
Statistical analysis 14
Results 15
KLF10 is not required for normal pancreas development in mice. 15
KLF10 loss in the pancreas rapidly provokes mutant Kras-induced PanIN to PDAC. 16
Homozygous deletion of KLF10 accelerates development of metastatic PDAC in Pdx-1-Cre; LSL-KrasG12D/+; p53L/L model. 18
Pathological and immunohistological analysis of PDAC derived from Pdx-1-Cre; LSL-KrasG12D/+; p53L/L; KLF10L/L model. 20
Anti-apoptosis in response to TGFβ and induction of EMT to enhance cell migration in KLF10 null PDAC tumor cells. 21
Characterization of the gene expression profile of Pdx1-Cre; LSL-KrasG12D/+; p53L/L; KLF10L/L PDAC tumor cells. 23
KLF10 loss induces SDF1 expression to promote in vitro cell migration of PDAC. 24
SDF1/CXCR4 antagonist, Plerixafor delays PDAC development and metastasis on mouse pancreatic cancer. 26
Discussion 30
Figures 39
Figure 1. Depletion of KLF10 in the mouse pancreas does not perturb pancreatic development and function. 41
Figure 2. Concomitant KLF10 loss and activated KrasG12D to drive rapid malignant PDAC development in mice. 44
Figure 3. KLF10 deletion promotes metastatic PDAC in cooperation with KrasG12D activation and P53 deficiency. 47
Figure 4. IHC characterization of metastatic PDAC in PKKP mice. 51
Figure 5. Loss of KLF10 modulates TGFb1 and WNT pathways to promote EMT and cell motility in PDAC. 55
Figure 6. cDNA microarray analysis of primary PDAC cells from PKKP and PKP mice. 58
Figure 7. KLF10 loss induces SDF-1 up-regulation resulting in increased c-Jun phosphorylation and enhanced cell migration of PDAC in vitro. 62
Figure 8. Inhibition of SDF-1/CXCR4 signaling blocks PDAC formation in PKKP and PKP mice. 65
Tables 66
Table 1. Comparison of incidence of metastatic lesions present in various organs of Pdx-1Cre LSL-KrasG12D p53L/L and Pdx-1CreLS L-KrasG12DKLF10L/L p53L/L mice. 67
Table 2. Top 10 differentially regulated gens between murine Pdx-1Cre LSL-KrasG12D p53L/L and Pdx-1CreLS L-KrasG12DKLF10L/L p53L/L PDAC cells. 68
Table 3 List of the primary antibodies used in this study, and information on working dilutions of antibodies for Western blotting, immunohistochemistry (IHC) and immunofluorescence (IF) analyses. 69
Table 4. List of the primer sequences used in this study 72
Chapter II 73
Abstract 74
Introduction 76
Material and Methods 79
Genetically modified mice and mouse genotyping 79
Immunohistochemistry (IHC) and immunofluorescence (IF) 80
Human tissue array analysis 81
Western blot analysis 81
Mouse cytokine array analysis 81
Real-time–quantitative PCR analysis (RT–qPCR) 82
Cell proliferation assay 82
Wound-healing assay 82
Glucose tolerance test (GTT) 82
Complementary DNA microarray analysis 83
GeneGo analysis 83
Murine primary PDAC cell culture, cytokine and inhibitor treatment 84
Xenograft isogenic mice 84
Genomic DNA isolation and bisulfite treatment 85
Methylation-specific polymerase chain reaction (MSP) 85
Statistical analysis 86
Lentivirus production and shRNA for gene knockdown 86
Retroviral production and infection of target cells 86
RESULTS 87
Pancreas-specific TGIF1-deficiency in mice does not alter pancreatic development or induce tumorigenesis. 87
An activating KrasG12D mutation coupled with TGIF1 loss is sufficient to initiate pancreatic tumorigenesis in mice. 88
TGIF1 loss accelerates PDAC development with reduced survival and increased metastatic behaviors 90
TGIF1 loss alters tumor microenvironment to suppress tumor immune response in PDAC 91
TGIF1-deficient PDAC displays enhanced EMT program and cancer stem cell (CSC)-like phenotype 94
TGIF1 loss stimulates HAS2 expression to activate HY/CD44 signaling in KrasG12D p53 loxp/loxp PDAC model. 96
TGIF1 loss links to epigenetic regulation of tumorigenesis in PDAC. 98
Assessment effect of HAS2 inhibitor, 4-methylumbelliferone (4-MU), on HA/CD44 signaling and growth, migration of PDAC cells in vitro. 99
Discussion 101
Figures 109
Figure 9. TGIF1 expression in PDAC and TGIF1 ablation in the pancreas do not interrupt pancreatic development in mice. 112
Figure 10. Conditional TGIF1 deletion accelerates progression to PDAC in cooperation with KrasG12D. 114
Figure 11. Conditional TGIF1 deletion promotes the development of highly metastatic PDAC in KrasG12D P53L/L models. 116
Figure 12 Modulation of the inflammatory cytokine profile and tumor immune response in the PDAC microenvironment by TGIF1. 120
Figure 13. TGIF1 loss promotes EMT and CSC activity to increase PDAC cell migration and invasiveness. 125
Figure 14. cDNA microarray analysis compared the differential gene expression of murine primary PDAC cells derived from PKP and PKTP mice. 129
Figure 15. Epigenetic modulation of TGIF1 and targeting HAS2 suppresses TGIF1 loss-induced PDAC cell migration in vitro. 133
Tables 134
Table 1 List of the primay antibodies used in this study, and information on working dilutions of antibodies in Western blotting (WB), immunohistochemistry (IHC) and immunofluorescence (IF). 135
Table 2. List of the primers used in this study. 139
Table 3. List of the MSP primers used in this study. 140
Table 4. Comparison of incidence of metastatic lesions present in various organs of PKP and PKTP mouse models. 141
References 142
Publication 154
參考文獻 References
1. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes & development 2006;20:1218-49
2. Hidalgo M. Pancreatic cancer. The New England journal of medicine 2010;362:1605-17
3. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: a cancer journal for clinicians 2010;60:277-300
4. Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nature reviews Cancer 2002;2:897-909
5. Sidaway P. Pancreatic cancer: TCGA data reveal a highly heterogeneous disease. Nat Rev Clin Oncol 2017;14:648
6. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003;4:437-50
7. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer cell 2005;7:469-83
8. Siveke JT, Schmid RM. Chromosomal instability in mouse metastatic pancreatic cancer--it's Kras and Tp53 after all. Cancer Cell 2005;7:405-7
9. Funahashi H, Satake M, Dawson D, Huynh NA, Reber HA, Hines OJ, et al. Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Res 2007;67:7068-71
10. Siddique HR, Liao DJ, Mishra SK, Schuster T, Wang L, Matter B, et al. Epicatechin-rich cocoa polyphenol inhibits Kras-activated pancreatic ductal carcinoma cell growth in vitro and in a mouse model. Int J Cancer 2012;131:1720-31
11. Massaous J, Hata A. TGF-beta signalling through the Smad pathway. Trends in cell biology 1997;7:187-92
12. Romero-Gallo J, Sozmen EG, Chytil A, Russell WE, Whitehead R, Parks WT, et al. Inactivation of TGF-beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy. Oncogene 2005;24:3028-41
13. Tian F, Byfield SD, Parks WT, Stuelten CH, Nemani D, Zhang YE, et al. Smad-binding defective mutant of transforming growth factor beta type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer research 2004;64:4523-30
14. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995;268:1336-8
15. Iacopetta BJ, Welch J, Soong R, House AK, Zhou XP, Hamelin R. Mutation of the transforming growth factor-beta type II receptor gene in right-sided colorectal cancer: relationship to clinicopathological features and genetic alterations. The Journal of pathology 1998;184:390-5
16. David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, et al. TGF-beta Tumor Suppression through a Lethal EMT. Cell 2016;164:1015-30
17. Hawse JR, Cicek M, Grygo SB, Bruinsma ES, Rajamannan NM, van Wijnen AJ, et al. TIEG1/KLF10 modulates Runx2 expression and activity in osteoblasts. PLoS One 2011;6:e19429
18. Subramaniam M, Gorny G, Johnsen SA, Monroe DG, Evans GL, Fraser DG, et al. TIEG1 null mouse-derived osteoblasts are defective in mineralization and in support of osteoclast differentiation in vitro. Mol Cell Biol 2005;25:1191-9
19. Spittau G, Happel N, Behrendt M, Chao TI, Krieglstein K, Spittau B. Tieg1/Klf10 is upregulated by NGF and attenuates cell cycle progression in the pheochromocytoma cell line PC12. J Neurosci Res 2010;88:2017-25
20. Jin W, Chen BB, Li JY, Zhu H, Huang M, Gu SM, et al. TIEG1 inhibits breast cancer invasion and metastasis by inhibition of epidermal growth factor receptor (EGFR) transcription and the EGFR signaling pathway. Mol Cell Biol 2012;32:50-63
21. Dosen-Dahl G, Munthe E, Nygren MK, Stubberud H, Hystad ME, Rian E. Bone marrow stroma cells regulate TIEG1 expression in acute lymphoblastic leukemia cells: role of TGFbeta/BMP-6 and TIEG1 in chemotherapy escape. Int J Cancer 2008;123:2759-66
22. Liang HD, Yu F, Tong ZH, Zhang HQ, Liang W. Cistanches Herba aqueous extract affecting serum BGP and TRAP and bone marrow Smad1 mRNA, Smad5 mRNA, TGF-beta1 mRNA and TIEG1 mRNA expression levels in osteoporosis disease. Mol Biol Rep 2013;40:757-63
23. Mitsumoto M, Mitsumoto A, Demple B. Nitric oxide-mediated upregulation of the TGF-beta-inducible early response gene-1 (TIEG1) in human fibroblasts by mRNA stabilization independent of TGF-beta. Free Radic Biol Med 2003;34:1607-13
24. Miyake M, Hayashi S, Iwasaki S, Chao G, Takahashi H, Watanabe K, et al. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-beta in myoblasts. Biochem Biophys Res Commun 2010;393:762-6
25. Hu ZC, Shi F, Liu P, Zhang J, Guo D, Cao XL, et al. TIEG1 Represses Smad7-Mediated Activation of TGF-beta1/Smad Signaling in Keloid Pathogenesis. J Invest Dermatol 2017;137:1051-9
26. Taguchi M, Moran SL, Zobitz ME, Zhao C, Subramaniam M, Spelsberg TC, et al. WOUND-HEALING PROPERTIES OF TRANSFORMING GROWTH FACTOR beta (TGF-beta) INDUCIBLE EARLY GENE 1 (TIEG1) KNOCKOUT MICE. J Musculoskelet Res 2008;11:63-9
27. Hsu CF, Sui CL, Wu WC, Wang JJ, Yang DH, Chen YC, et al. Klf10 induces cell apoptosis through modulation of BI-1 expression and Ca2+ homeostasis in estrogen-responding adenocarcinoma cells. Int J Biochem Cell Biol 2011;43:666-73
28. Yang N, Chen J, Zhang H, Wang X, Yao H, Peng Y, et al. LncRNA OIP5-AS1 loss-induced microRNA-410 accumulation regulates cell proliferation and apoptosis by targeting KLF10 via activating PTEN/PI3K/AKT pathway in multiple myeloma. Cell Death Dis 2017;8:e2975
29. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 2001;15:3243-8
30. Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 2000;14:994-1004
31. Subramaniam M, Hawse JR, Rajamannan NM, Ingle JN, Spelsberg TC. Functional role of KLF10 in multiple disease processes. Biofactors 2010;36:8-18
32. Kim J, Shin S, Subramaniam M, Bruinsma E, Kim TD, Hawse JR, et al. Histone demethylase JARID1B/KDM5B is a corepressor of TIEG1/KLF10. Biochem Biophys Res Commun 2010;401:412-6
33. Wang PC, Weng CC, Hou YS, Jian SF, Fang KT, Hou MF, et al. Activation of VCAM-1 and its associated molecule CD44 leads to increased malignant potential of breast cancer cells. Int J Mol Sci 2014;15:3560-79
34. Weng CC, Hawse JR, Subramaniam M, Chang VHS, Yu WCY, Hung WC, et al. KLF10 loss in the pancreas provokes activation of SDF-1 and induces distant metastases of pancreatic ductal adenocarcinoma in the Kras(G12D) p53(flox/flox) model. Oncogene 2017;36:5532-43
35. Weng CC, Kuo KK, Su HT, Hsiao PJ, Chen YW, Wu DC, et al. Pancreatic Tumor Progression Associated With CD133 Overexpression: Involvement of Increased TERT Expression and Epidermal Growth Factor Receptor-Dependent Akt Activation. Pancreas 2016;45:443-57
36. Su HT, Weng CC, Hsiao PJ, Chen LH, Kuo TL, Chen YW, et al. Stem cell marker nestin is critical for TGF-beta1-mediated tumor progression in pancreatic cancer. Mol Cancer Res 2013;11:768-79
37. Mayor S. Immunotherapy improves overall survival in pancreatic cancer. Lancet Oncol 2015;16:e58
38. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013;369:1691-703
39. Sidaway P. Pancreatic cancer: Addition of capecitabine prolongs overall survival. Nat Rev Clin Oncol 2017;14:198
40. Wan L. Pemetrexed improves survival in pancreatic cancer. Lancet Oncol 2007;8:197
41. Muzumdar MD, Chen PY, Dorans KJ, Chung KM, Bhutkar A, Hong E, et al. Survival of pancreatic cancer cells lacking KRAS function. Nat Commun 2017;8:1090
42. Liu F. SMAD4/DPC4 and pancreatic cancer survival. Commentary re: M. Tascilar et al., The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin. Cancer Res., 7: 4115-4121, 2001. Clin Cancer Res 2001;7:3853-6
43. Ottaviani S, Stebbing J, Frampton AE, Zagorac S, Krell J, de Giorgio A, et al. TGF-beta induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression. Nat Commun 2018;9:1845
44. Shiota M, Zardan A, Takeuchi A, Kumano M, Beraldi E, Naito S, et al. Clusterin mediates TGF-beta-induced epithelial-mesenchymal transition and metastasis via Twist1 in prostate cancer cells. Cancer Res 2012;72:5261-72
45. Han G, Lu SL, Li AG, He W, Corless CL, Kulesz-Martin M, et al. Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 2005;115:1714-23
46. Forrester E, Chytil A, Bierie B, Aakre M, Gorska AE, Sharif-Afshar AR, et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res 2005;65:2296-302
47. Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, et al. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002;109:1607-15
48. Medrano EE. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene 2003;22:3123-9
49. Lasfar A, Cohen-Solal KA. Resistance to transforming growth factor beta-mediated tumor suppression in melanoma: are multiple mechanisms in place? Carcinogenesis 2010;31:1710-7
50. Dunfield LD, Dwyer EJ, Nachtigal MW. TGF beta-induced Smad signaling remains intact in primary human ovarian cancer cells. Endocrinology 2002;143:1174-81
51. Papadakis KA, Krempski J, Svingen P, Xiong Y, Sarmento OF, Lomberk GA, et al. Kruppel-like factor KLF10 deficiency predisposes to colitis through colonic macrophage dysregulation. Am J Physiol Gastrointest Liver Physiol 2015;309:G900-9
52. Chang VH, Chu PY, Peng SL, Mao TL, Shan YS, Hsu CF, et al. Kruppel-like factor 10 expression as a prognostic indicator for pancreatic adenocarcinoma. Am J Pathol 2012;181:423-30
53. Hwang YC, Yang CH, Lin CH, Ch'ang HJ, Chang VHS, Yu WCY. Destabilization of KLF10, a tumor suppressor, relies on thr93 phosphorylation and isomerase association. Biochim Biophys Acta 2013;1833:3035-45
54. Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 2010;16:2927-31
55. Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, et al. CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 2010;29:709-22
56. Sleightholm RL, Neilsen BK, Li J, Steele MM, Singh RK, Hollingsworth MA, et al. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Ther 2017;179:158-70
57. Graham NA, Graeber TG. Complexity of metastasis-associated SDF-1 ligand signaling in breast cancer stem cells. Proc Natl Acad Sci U S A 2014;111:7503-4
58. Yi T, Zhai B, Yu Y, Kiyotsugu Y, Raschle T, Etzkorn M, et al. Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 2014;111:E2182-90
59. Tan Y, Du J, Cai S, Li X, Ma W, Guo Z, et al. Cloning and characterizing mutated human stromal cell-derived factor-1 (SDF-1): C-terminal alpha-helix of SDF-1alpha plays a critical role in CXCR4 activation and signaling, but not in CXCR4 binding affinity. Exp Hematol 2006;34:1553-62
60. Tan W, Martin D, Gutkind JS. The Galpha13-Rho signaling axis is required for SDF-1-induced migration through CXCR4. J Biol Chem 2006;281:39542-9
61. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 2009;113:6206-14
62. Kadota M, Sato M, Duncan B, Ooshima A, Yang HH, Diaz-Meyer N, et al. Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA. Cancer Res 2009;69:7357-65
63. Liu T, Zhou W, Cai B, Chu J, Shi G, Teng H, et al. IRX2-mediated upregulation of MMP-9 and VEGF in a PI3K/AKT-dependent manner. Mol Med Rep 2015;12:4346-51
64. Yeh ES, Belka GK, Vernon AE, Chen CC, Jung JJ, Chodosh LA. Hunk negatively regulates c-myc to promote Akt-mediated cell survival and mammary tumorigenesis induced by loss of Pten. Proc Natl Acad Sci U S A 2013;110:6103-8
65. Alarmo EL, Parssinen J, Ketolainen JM, Savinainen K, Karhu R, Kallioniemi A. BMP7 influences proliferation, migration, and invasion of breast cancer cells. Cancer Lett 2009;275:35-43
66. Motoyama K, Tanaka F, Kosaka Y, Mimori K, Uetake H, Inoue H, et al. Clinical significance of BMP7 in human colorectal cancer. Ann Surg Oncol 2008;15:1530-7
67. Koizumi K, Hojo S, Akashi T, Yasumoto K, Saiki I. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response. Cancer Sci 2007;98:1652-8
68. Hillinger S, Yang SC, Zhu L, Huang M, Duckett R, Atianzar K, et al. EBV-induced molecule 1 ligand chemokine (ELC/CCL19) promotes IFN-gamma-dependent antitumor responses in a lung cancer model. J Immunol 2003;171:6457-65
69. Heller RS, Tsugu H, Nabeshima K, Madsen OD. Intracranial ectopic pancreatic tissue. Islets 2010;2:65-71
70. Whipple CA, Young AL, Korc M. A KrasG12D-driven genetic mouse model of pancreatic cancer requires glypican-1 for efficient proliferation and angiogenesis. Oncogene 2012;31:2535-44
71. Pinho AV, Rooman I, Real FX. p53-dependent regulation of growth, epithelial-mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell Cycle 2011;10:1312-21
72. Ma J, Siegel R, Jemal A. Pancreatic cancer death rates by race among US men and women, 1970-2009. Journal of the National Cancer Institute 2013;105:1694-700
73. Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF, et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proceedings of the National Academy of Sciences of the United States of America 2006;103:5947-52
74. Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes & development 2003;17:3112-26
75. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006;127:679-95
76. Borsig L, Wolf MJ, Roblek M, Lorentzen A, Heikenwalder M. Inflammatory chemokines and metastasis--tracing the accessory. Oncogene 2014;33:3217-24
77. Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology 2014;60:1776-82
78. Nirschl CJ, Drake CG. Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research 2013;19:4917-24
79. Zielinski C, Knapp S, Mascaux C, Hirsch F. Rationale for targeting the immune system through checkpoint molecule blockade in the treatment of non-small-cell lung cancer. Annals of oncology : official journal of the European Society for Medical Oncology 2013;24:1170-9
80. Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proceedings of the National Academy of Sciences of the United States of America 2014;111:11774-9
81. Davis RJ, Moore EC, Clavijo PE, Friedman J, Cash H, Chen Z, et al. Anti-PD-L1 Efficacy Can Be Enhanced by Inhibition of Myeloid-Derived Suppressor Cells with a Selective Inhibitor of PI3Kdelta/gamma. Cancer research 2017;77:2607-19
82. Fernandez-Poma SM, Salas-Benito D, Lozano T, Casares N, Riezu-Boj JI, Mancheno U, et al. Expansion of Tumor-Infiltrating CD8+ T cells Expressing PD-1 Improves the Efficacy of Adoptive T-cell Therapy. Cancer research 2017;77:3672-84
83. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer research 2009;69:2514-22
84. Aguiar PN, Jr., Santoro IL, Tadokoro H, de Lima Lopes G, Filardi BA, Oliveira P, et al. A pooled analysis of nivolumab for the treatment of advanced non-small-cell lung cancer and the role of PD-L1 as a predictive biomarker. Immunotherapy 2016;8:1011-9
85. Stankic M, Pavlovic S, Chin Y, Brogi E, Padua D, Norton L, et al. TGF-beta-Id1 signaling opposes Twist1 and promotes metastatic colonization via a mesenchymal-to-epithelial transition. Cell reports 2013;5:1228-42
86. Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV, et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer cell 2012;22:571-84
87. Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. The EMBO journal 2000;19:1745-54
88. de Winter JP, Roelen BA, ten Dijke P, van der Burg B, van den Eijnden-van Raaij AJ. DPC4 (SMAD4) mediates transforming growth factor-beta1 (TGF-beta1) induced growth inhibition and transcriptional response in breast tumour cells. Oncogene 1997;14:1891-9
89. Wotton D, Lo RS, Lee S, Massague J. A Smad transcriptional corepressor. Cell 1999;97:29-39
90. Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 1997;389:631-5
91. Lorda-Diez CI, Montero JA, Martinez-Cue C, Garcia-Porrero JA, Hurle JM. Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. The Journal of biological chemistry 2009;284:29988-96
92. Hneino M, Francois A, Buard V, Tarlet G, Abderrahmani R, Blirando K, et al. The TGF-beta/Smad repressor TG-interacting factor 1 (TGIF1) plays a role in radiation-induced intestinal injury independently of a Smad signaling pathway. PloS one 2012;7:e35672
93. Powers SE, Taniguchi K, Yen W, Melhuish TA, Shen J, Walsh CA, et al. Tgif1 and Tgif2 regulate Nodal signaling and are required for gastrulation. Development 2010;137:249-59
94. Gripp KW, Wotton D, Edwards MC, Roessler E, Ades L, Meinecke P, et al. Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nature genetics 2000;25:205-8
95. Wotton D, Lo RS, Swaby LA, Massague J. Multiple modes of repression by the Smad transcriptional corepressor TGIF. The Journal of biological chemistry 1999;274:37105-10
96. Seo SR, Lallemand F, Ferrand N, Pessah M, L'Hoste S, Camonis J, et al. The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. The EMBO journal 2004;23:3780-92
97. Pessah M, Prunier C, Marais J, Ferrand N, Mazars A, Lallemand F, et al. c-Jun interacts with the corepressor TG-interacting factor (TGIF) to suppress Smad2 transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America 2001;98:6198-203
98. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996;122:983-95
99. Kakizaki I, Kojima K, Takagaki K, Endo M, Kannagi R, Ito M, et al. A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone. The Journal of biological chemistry 2004;279:33281-9
100. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012;148:349-61
101. Whatcott CJ, Diep CH, Jiang P, Watanabe A, LoBello J, Sima C, et al. Desmoplasia in Primary Tumors and Metastatic Lesions of Pancreatic Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2015;21:3561-8
102. Truty MJ, Urrutia R. Basics of TGF-beta and pancreatic cancer. Pancreatology : official journal of the International Association of Pancreatology 2007;7:423-35
103. Villanueva A, Garcia C, Paules AB, Vicente M, Megias M, Reyes G, et al. Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene 1998;17:1969-78
104. Seo SR, Ferrand N, Faresse N, Prunier C, Abecassis L, Pessah M, et al. Nuclear retention of the tumor suppressor cPML by the homeodomain protein TGIF restricts TGF-beta signaling. Molecular cell 2006;23:547-59
105. Pathak A, Kumar S. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proceedings of the National Academy of Sciences of the United States of America 2012;109:10334-9
106. Welm AL. TGFbeta primes breast tumor cells for metastasis. Cell 2008;133:27-8
107. Kim C, Yang H, Park I, Chon HJ, Kim JH, Kwon WS, et al. Rho GTPase RhoJ is Associated with Gastric Cancer Progression and Metastasis. Journal of Cancer 2016;7:1550-6
108. Wang H, Schaefer T, Konantz M, Braun M, Varga Z, Paczulla AM, et al. Prominent Oncogenic Roles of EVI1 in Breast Carcinoma. Cancer research 2017;77:2148-60
109. Kudo-Saito C, Fuwa T, Murakami K, Kawakami Y. Targeting FSTL1 prevents tumor bone metastasis and consequent immune dysfunction. Cancer research 2013;73:6185-93
110. Heeg S, Das KK, Reichert M, Bakir B, Takano S, Caspers J, et al. ETS-Transcription Factor ETV1 Regulates Stromal Expansion and Metastasis in Pancreatic Cancer. Gastroenterology 2016;151:540-53 e14
111. Li Z, Zhang L, Ma Z, Yang M, Tang J, Fu Y, et al. ETV1 induces epithelial to mesenchymal transition in human gastric cancer cells through the upregulation of Snail expression. Oncology reports 2013;30:2859-63
112. Udabage L, Brownlee GR, Nilsson SK, Brown TJ. The over-expression of HAS2, Hyal-2 and CD44 is implicated in the invasiveness of breast cancer. Experimental cell research 2005;310:205-17
113. Hiraga T, Ito S, Nakamura H. Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Res 2013;73:4112-22
114. Mima K, Okabe H, Ishimoto T, Hayashi H, Nakagawa S, Kuroki H, et al. CD44s regulates the TGF-beta-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer research 2012;72:3414-23
115. Yoon C, Park DJ, Schmidt B, Thomas NJ, Lee HJ, Kim TS, et al. CD44 expression denotes a subpopulation of gastric cancer cells in which Hedgehog signaling promotes chemotherapy resistance. Clinical cancer research : an official journal of the American Association for Cancer Research 2014;20:3974-88
116. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem cells 2009;27:1006-20
117. Su YJ, Lai HM, Chang YW, Chen GY, Lee JL. Direct reprogramming of stem cell properties in colon cancer cells by CD44. The EMBO journal 2011;30:3186-99
118. Park D, Kim Y, Kim H, Kim K, Lee YS, Choe J, et al. Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFbeta receptor interaction via CD44-PKCdelta. Molecules and cells 2012;33:563-74
119. Ahrens T, Sleeman JP, Schempp CM, Howells N, Hofmann M, Ponta H, et al. Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid. Oncogene 2001;20:3399-408
120. Kim HR, Wheeler MA, Wilson CM, Iida J, Eng D, Simpson MA, et al. Hyaluronan facilitates invasion of colon carcinoma cells in vitro via interaction with CD44. Cancer research 2004;64:4569-76
121. Okuda H, Kobayashi A, Xia B, Watabe M, Pai SK, Hirota S, et al. Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer research 2012;72:537-47
122. Van Phuc P, Nhan PL, Nhung TH, Tam NT, Hoang NM, Tue VG, et al. Downregulation of CD44 reduces doxorubicin resistance of CD44CD24 breast cancer cells. OncoTargets and therapy 2011;4:71-8
123. Cho SH, Park YS, Kim HJ, Kim CH, Lim SW, Huh JW, et al. CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion. International journal of oncology 2012;41:211-8
124. Ruffell B, Johnson P. Hyaluronan induces cell death in activated T cells through CD44. Journal of immunology 2008;181:7044-54
125. Guo Q, Jin Z, Yuan Y, Liu R, Xu T, Wei H, et al. New Mechanisms of Tumor-Associated Macrophages on Promoting Tumor Progression: Recent Research Advances and Potential Targets for Tumor Immunotherapy. Journal of immunology research 2016;2016:9720912
126. Georgoudaki AM, Prokopec KE, Boura VF, Hellqvist E, Sohn S, Ostling J, et al. Reprogramming Tumor-Associated Macrophages by Antibody Targeting Inhibits Cancer Progression and Metastasis. Cell reports 2016;15:2000-11
127. Watanabe N, Suzuki Y, Inokuchi S, Inoue S. Sepsis induces incomplete M2 phenotype polarization in peritoneal exudate cells in mice. Journal of intensive care 2016;4:6
128. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 2011;117:4501-10
129. Bertucci F, Finetti P, Perrot D, Leroux A, Collin F, Le Cesne A, et al. PDL1 expression is a poor-prognosis factor in soft-tissue sarcomas. Oncoimmunology 2017;6:e1278100
130. Hinshelwood RA, Huschtscha LI, Melki J, Stirzaker C, Abdipranoto A, Vissel B, et al. Concordant epigenetic silencing of transforming growth factor-beta signaling pathway genes occurs early in breast carcinogenesis. Cancer research 2007;67:11517-27
131. Papageorgis P, Cheng K, Ozturk S, Gong Y, Lambert AW, Abdolmaleky HM, et al. Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer research 2011;71:998-1008
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.36.141
論文開放下載的時間是 校外不公開

Your IP address is 3.144.36.141
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code