Responsive image
博碩士論文 etd-0625101-004726 詳細資訊
Title page for etd-0625101-004726
論文名稱
Title
光纖光柵波長塞取多工/交接系統與 寬頻光放大技術之設計
Designs of MZ FBG-based Optical Add-Drop Multiplexing /Cross-Connect Systems and Wideband Optical Amplification Technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
140
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-18
繳交日期
Date of Submission
2001-06-25
關鍵字
Keywords
有線電視、波長交接器、波長塞取多工器、摻鉺光纖放大器
CATV, OXC, OADM, EDFA
統計
Statistics
本論文已被瀏覽 5728 次,被下載 3681
The thesis/dissertation has been browsed 5728 times, has been downloaded 3681 times.
中文摘要
本論文針對分波多工長距離幹線與環形網路,設計幾項重要元件與系統在分波多工網路中的應用,如光纖光柵分波多工塞取/交接系統、多模光纖區域網路及雙向次載波類比視訊傳輸系統,寬頻光放大器在都會區域網路之應用。光纖光柵分波多工塞取/交接系統方面,已有許多相關性的技術研究,首先利用多個埠的光旋轉器與光纖光柵來作為降低串音並簡化光纖光柵的架構;除此之外,也提出利用馬克-詹德式光纖布拉格光纖光柵元件,配合光開關串接建構成一大型的多波長且不需要外加多工或解多工器的光纖光柵波長塞取/交接多工器,來完成固定型和可動態選擇型波長塞取/交接多工的機制。
在多模光纖區域網路及雙向次載波類比視訊傳輸系統部分,我們提出在多模光纖區域網路上進行同時傳輸1.55 mm調幅視訊信號與傳輸速率為155 Mb/s的1.3 mm數據信號,研究結果證實可利用以佈放的區域網路作為視訊廣播與資料傳輸的展示。另外,利用光旋轉器和光濾波器、多工/解多工器來達成雙向無中繼/中繼放大的系統實驗,並且也探討如何延伸傳輸的距離與消除散射干擾,因此對類比調幅視訊在環形區域網路與點對點雙向的都會區域網路之傳輸可能性作展示。
寬頻光放大器在都會區域網路之應用方面,我們探討不同雙向泵激架構混合調幅視訊/數位系統傳輸之研究的摻鉺光纖放大器,以及展示結合拉曼放大與半導體光放大器的寬頻光放大器,來同時作為多個10 Gb/s傳輸系統的色散和傳輸損失補償,研究結果有益於分波多工長距離幹線與環形網路的規劃和設計。

Abstract
In this dissertation, we investigate the designs and applications of fiber Bragg grating-based optical add-drop/cross-connect multiplexing systems for WDM long-distance trunk and ring networks, multiple AM-VSB signals transmission systems, and wideband optical amplifiers in metropolitan area network. In fiber Bragg grating-based optical add-drop/cross-connect multiplexing systems, the utilization of multi-port circulator and fiber Bragg gratings can hugely reduce the crosstalk and compact the configurations. Furthermore, we propose the utilization of Mach-Zehnder fiber Bragg grating-based devices with the associated mechanical Optical switches to construct large-dimension fixed and reconfigurable optical add-drop/cross-connect multiplexing system without the needs of additional WDM multiplexers and demultiplexers.
In multiple AM-VSB signals transmission systems, we demonstrate the transmission of AM-VSB CATV video signal at 1.55-mm and 155-Mb/s data signal at 1.3-mm over a multi-mode fiber local area network (MMF-LAN) link. On the other hand, we not only demonstrate the possibility of optical circulator with optical bandpass filter, and MUX/DEMUX configurations, but also discuss the transmission distance of extension and the elimination of crosstalk for bi-directional transmission systems of multiple AM-VSB CATV signals. The system demonstration confirms the feasibility of multiple AM-VSB signals over the existing MMF-LAN and bi-directional transmission systems.
For the application of wideband optical amplifiers in metropolitan area network, we also present erbium-doped fiber amplifier (EDFA) for hybrid WDM systems, and the dispersion-compensated gain-clamped 90 nm wideband optical amplifier in 10 Gb/s DWDM transmission systems. These designs, demonstrations, and results will be useful for WDM long-distance trunk and ring networks applications.

目次 Table of Contents
List of Contents
Page
Acknowledgments i
Chinese Abstract ii
English Abstract iii
List of Contents v
List of Tables ix
List of Figures x
List of Acronyms xv

Chapter 1 General Introduction 1

1.1 Brief Introduction of WDM Architectures 1

1.2 Review of Fiber Bragg Gratings 2

1.3 Properties of Wideband Optical Amplifier 4

1.4 The Dissertation Organization 7

Chapter 2 Overview and Motivation 9

2.1 Fiber Bragg Grating-Based Multiplexing Systems 9

2.1.1 Low-Crosstalk and Compact Optical Add-Drop Multiplexer Based on A
Multi-Port Circulator and Fiber Bragg Gratings 10
2.1.2 Mach-Zehnder Fiber Bragg Grating-based Fixed and Reconfigurable Optical
Add-Drop Multiplexers 10
2.1.3 Mach-Zehnder Fiber Bragg Grating-based Dynamic Optical
Cross-Connect 12

2.2 Multiple AM-VSB Signals Transmission Systems 12

2.2.1 Simultaneous Video and Data Signals Transmission System over
Multi-Mode Fiber Local Area Network 13
2.2.2 Repeaterless Bi-directional Transmission of Multiple AM-VSB CATV
Signals 13
2.2.3 Bi-directional AM-VSB 100 km Transmission Systems 14
2.3 Wideband Optical Amplifier for Metropolitan Area Network 15

2.3.1 Erbium-Doped Fiber Amplifier for Hybrid WDM Systems 15
2.3.2 Dispersion-Compensated Gain-Clamped 90 nm Wideband
Optical Amplifier 16

Chapter 3 Fiber Bragg Grating-based Optical Add-Drop Multiplexing and Cross-Connect
Systems 17

3.1 Low-Crosstalk and Compact Optical Add-Drop Multiplexer Using a Multi-port
Circulator and Fiber Bragg Gratings 17

3.1.1 Optical Add-Drop Multiplexing Configurations and Experimental Setup 17
3.1.2 Experimental Results and Discussions 19
3.1.3 Summary 20

3.2 Mach-Zehnder Fiber Bragg Grating-Based Fixed and Reconfigurable Multi-
Channel Optical Add-Drop Multiplexers for DWDM Networks 20

3.2.1 Basic MZ-FBG Add-Drop Devices 21
3.2.2 Fixed MZ-OADM Architecture 23
3.2.3 Reconfigurable MZ-OADM Architectures 24
3.2.4 Characteristic Comparison and Dimension Limits 26
3.2.5 Discussions and Summary 35

3.3 Mach-Zehnder Fiber Bragg Grating-based Dynamic Optical Cross-Connect
System 37

3.3.1 Optical Cross-Connect Architecture 38
3.3.2 Experimental Setup and Results 38
3.3.3 Discussions and Summary 39

Chapter 4 Multiple AM-VSB Signals Transmission Systems 41

4.1 Simultaneous Transmission of 1.55-mm Video and 1.3-mm Data Signals Transmission System over a Multi-Mode Fiber Local Area Network 41

4.1.1 Network Configuration and Design 41
4.1.2 Experiment and Demonstration 43
4.1.3 Experimental Results and Discussions 44
4.1.4 Summary 45
4.2 Repeaterless Bi-directional Transmission of Multiple AM-VSB CATV Signals
over Conventional Single-Mode Fiber 45

4.2.1 Experimental Setup 46
4.2.2 Experimental Results and Discussions 47
4.2.3 Summary 48

4.3 Bi-directional Lightwave CATV 100 km SMF and LEAF Transmission
System 49

4.3.1 Experimental Setup 49
4.3.2 Results and Discussions 50
4.3.3 Summary 51

Chapter 5 Wideband Optical Amplifiers for Metropolitan Area Networks 52

5.1 Erbium-Doped Fiber Amplifier for Hybrid Digital/Analog WDM Systems 52

5.1.1 H-WDM EDFA Configurations and Modeling 52
5.1.2 Characteristic Comparison 55
5.1.3 Simulation Discussions 58
5.1.4 Summary 59

5.2 Dispersion-Compensated Gain-Clamped 90 nm Wideband Optical Amplifier for
Metropolitan Area Network 60

5.2.1 Experimental Setup 60
5.2.2 Results and Discussions 61
5.2.3 Summary 62

Chapter 6 Conclusions 63

References 67
Tables 78
Figures 87
Biography 137
Publication List 138
Errata 139


參考文獻 References
References
[1] K. O. Hill, Y. Fujji, D. C. Johnson, and B. S. Kawasaki, “Photo-sensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett., vol. 32 pp. 647-649, 1978.
[2] W. W. Morey, “Tunable narrow-line bandpass filter using fiber gratings,”in Tech. Dig. OFC’91, San Diego, CA, Feb. 1991, paper PD-20.
[3] C. Tai, S. L. Tzeng, H. C. Chang, and W. I. Way, “Reduction of saturation induced nonlinear distortion in MQW semiconductor optical amplifier using light injection and its application in multi-channel M-QAM signal transmission systems,” IEEE Photon. Technol. Lett., vol. 10, pp. 609-611, 1998.
[4] W. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1550 nm,” IEEE/OSA J. Lightwave Technol., vol. 9 pp. 234-250, 1991.
[5] E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Amplifications, John Wiley & Sons, Inc., New York, 1994.
[6] A. Bjarklev, Optical Fiber Amplifier: Design and System Applications, Artech House, Boston, 1993.
[7] C. R. Giles, “System application of optical amplifier,”in Tutorial Sessions, OFC’92, paper TuF.
[8] M. Yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photon. Technol. Lett., vol. 8, pp. 58-59, 1996.
[9] S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Broadband high-gain dispersion compensating Raman amplifier,” Electron. Lett., vol. 36, pp. 1355-1356, 2000.
[10] K. X. Liu, and E. Garmire, “Understanding the formation of the SRS stokes spectrum in fused silica fibers,” IEEE J. Quantum Electron., vol. 27, pp. 1022-1030, 1991.
[11] Special Issue on Multi-wavelength Optical Technology and Networks, IEEE/OSA J. Lightwave Technol., vol. 14, pp. 110-120, 1996.
[12] G. K. Chang, G. Ellinas, J. K. Gamelin, M. Z. Iqbal, and C. A. Brackett, “Acousic-optic tunable filters for multiwavelength optical cross-connects: crosstalk considerations,” IEEE/OSA J. Lightwave Technol., vol. 14, pp. 1056-1066, 1996.
[13] R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “MONET: multiwavelength optical networking,” IEEE/OSA J. Lightwave Technol., vol. 14, pp. 1349-1358, 1996.
[14] N. V. Srinivasan, “Add-drop multiplexers and cross-connects for multiwavelength optical networking,” Tech. Dig. OFC’98, San Jose, CA, paper TuJ1, 1998.
[15] C. R. Giles, and V. Mizrahi, “Low-loss add/drop multiplexers for WDM lightwave networks,” in Tech. Dig. IOOC’95, Hong Kong, paper ThC2-1, 1995.
[16] K. P. Jones, M. S. Chaudhry, D. Simeondidou, N. H. Taylor, and P. R. Morkel, “Optical wavelength add-drop multiplexer in installed submarine WDM network,” Electron. Lett., vol. 31, pp. 2117-2118, Nov. 1995.
[17] E. L. Goldstein, A. F. Elrefaie, N. Jackman, and S. Zaidi, “Fiber-amplifier cascades with gain equalization in multiwavelength unidirectional inter-office ring networks,” Tech. Dig. OFC/IOOC’93, paper TuJ3, 1993.
[18] K. Oda, and H. Toba, “Wavelength-division-multiplexing add/drop multiplexer employing a novel polarisation independent acousto-optic tunable filter,” IEEE Photon. Technol. Lett., vol. 6, pp. 754-756, 1994.
[19] H. Toba, K, Oda, K Inoue, K. Nosu, and T. Kitou, “Experimental Verification Of Cascadability Of 12 Channel X 2.5 Gb/s WDM Add/drop Multiplexer Employing Unequally-spaced Arrayed-waveguide Grating,” Tech Dig. 20th European Conference on Optical Communications (ECOC’96), paper Tu.A.3.2, Italy, 1996.
[20] Y. Tachikawa, Y. Inoue, M. Ishii, and T. Nozawa, “Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications,” IEEE/OSA J. Lightwave Technol., vol. 14, pp. 977-984, 1996.
[21] C. R. Giles, and V. Mizrahi, “2.5 and 10 Gb/s transmission experiments using a 137 photon/bit erbium-fiber preamplifier receiver,” Tech. Dig. IOOC’95, paper ThC2-1, 1995.
[22] D. C. Johnson, K. O. Hill, F. Bilodeau, and S. Faucher, “Unbalanced dissimilar-fibre Mach-Zehnder interferometer: application as filter,” Electron. Lett., vol. 25, pp. 1416-1417, 1989.
[23] F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett., vol. 7, pp. 388-390, 1995.
[24] G. E. Kohnke, C. H. Henry, E. J. Laskowski, M. A. Cappuzzo, T. A. Strasser, and A. E. Whilte, “Silica based Mach-Zehnder add-drop filter fabricated with UV induced gratings,” Electron. Lett., vol. 32, pp. 1579-1580, 1996.
[25] I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 8, pp. 1331-1333, 1996.
[26] B. Glance, “Wavelength-tunable add/drop optical filter,” IEEE Photon. Technol. Lett., vol. 8, pp. 245-247, 1996.
[27] G. Nykolak, M. R. X. de Barros, T. N. Nielsen, and L. Eskildsen, “All-fiber active add-drop wavelength router,” IEEE Photon. Technol. Lett., vol. 9, pp. 605-607, 1997.
[28] B. Glance, “Tunable add/drop optical filter providing arbitrary channel arrangements,” IEEE Photon. Technol. Lett., vol. 7, pp. 1303-1305, 1995.
[29] W. D. Zhong, S. Dods, J. P. R. Lacey, and R. S. Tucker, “Reconfigurable multichannel add-drop multiplexer with improved performance,” Electron. Lett., vol. 32 pp. 1477-1478, 1996.
[30] K. Okamoto, K. Takiguchi, and Y. Ohmori, “16-channel optical add/drop multiplexer using silica-based arrayed-waveguide gratings,” Electron. Lett., vol. 31, pp.723-724, 1995.
[31] H. Okayama, Y. Ozeki, T. Kamijoh, C. Q. Xu, and I. Asabayashi, “Dynamic wavelength selective add/drop node comprising fibre gratings and optical switches,” Electron. Lett., vol. 33, pp. 403-404, 1997.
[32] A. D. Ellis, R. Kashyap, I. Crisp, and D. J. Malyon, “Dispersion compensating, reconfigurable optical add drop multiplexer using chirped fibre Bragg gratings,” Electron. Lett., vol. 33, pp. 1474-1475, 1997.
[33] D. A. Smith, R. S. Chakravarthy, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” IEEE/OSA J. Lightwave Technol., vol. 14, pp. 1005-1019, 1996.
[34] C. G. M. Vreeburg, T. Uitterdijk, Y. S. Oei, M. K. Smit, F. H. Groen, E. G. Metaal, P. Demeester, and H. J. Frankena, “First InP-based reconfigurable integrated add-drop multiplexer,” IEEE Photon. Technol. Lett., vol. 9, pp. 188-190, 1997.
[35] Special Issue on Fiber Gratings, Photosensitivity, and Poling, IEEE/OSA J. Lightwave Technol., vol. 15, pp., Aug. 1997.
[36] C. R. Giles, “Lightwave applications of fiber Bragg gratings,” IEEE/OSA J. Lightwave Technol., vol. 15, pp. 1391-1400, 1997.
[37] W. W. Morey, “Fiber gratings for WDM applications,” Tech. Dig. OFC’91, San Diego, CA, Feb. 1991, paper PD-20.
[38] N. N. Khrais, A. F. Elrefaie, and R. E. Wagner, “Performance degradations of WDM systems due to laser and optical filter misalignments,” Tech. Dig. OFC’95, San Diego, CA, Feb. 1995, paper TuC-5.
[39] G. Meltz, W. W. Morey, and W. H. Glenn, “Fiber Bragg grating technology fundamentals and overview,” IEEE/OSA J. Lightwave Technol., vol. 15, pp. 1263-1276, 1997.
[40] Y. K. Chen and C. C. Lee, “Fiber-Bragg-grating-based large nonblocking multiwavelength cross-connects,” IEEE/OSA J. Lightwave Technol., vol. 16, pp. 1746-1756, 1998.
[41] F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, K. O. Hill, “An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett., vol. 7, pp. 388-390, 1995.
[42] X. Zheng, and F. Liu, “A novel dynamic wavelength cross-connect based on Mach-Zehnder interferometer optical add/drop multiplexer and optical space switch,” Tech. Dig., CLEO/Pacific Rim’99, pp. 783-784, 1999.
[43] F. Liu, R. J. S. Pedersen, and P Jeppesen, “Performance analysis of a novel multi-wavelength cross-connect based on optical add/drop multiplexers,” Proc. 1999 European Conference on Optical Communications (ECOC’99), vol. 1, pp. 422-423, Nice, France, Sept. 1999.
[44] Special Issue on Broad-Band Lightwave Video Transmission, J. Lightwave Technol., vol. 11, 1993.
[45] M. R. Phillips, “Amplified 1550-nm CATV lightwave systems,” in Tech. Dig. OFC’98, Feb. 1998, paper TuO3.
[46] C. Y. Kuo, D. Piehler, C. Gall, J. Kleefeld, A. Nilsson, and D. L. Middleton, “High-performance optically amplified 1550-nm lightwave AM-VSB CATV transport system,” in Tech. Dig. OFC’96, Feb. 1996, paper WN2.
[47] H. Dai, S. Ovadia, and C. Lin, “Hybrid AM-VSB/M-QAM multichannel video transmission over 120 km of standard single-mode fiber with cascaded erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., vol. 8, pp. 1713-1715, 1996.
[48] W. Muys, J. C. van der Platts, F. W. Willems, H. J. van Dijk, J. S. Leong, and A. M. J. Koonen, “A 50-channel externally modulated AM-VSB video distribution system with three cascaded EDFA’s providing 50-dB power budget over 30 km of standard single-mode fiber,” IEEE Photon. Technol. Lett., vol. 7, pp. 691-693, June 1995.
[49] M. R. Phillips, T. E. Darcie, D. Marcuse G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett., vol. 3, pp. 481–483, 1991.
[50] C. Y. Kuo, D. Piehler, C. Gall, J. Kleefeld, A. Nilsson, and L. Middleton, “High-performance optically amplified 1550-nm lightwave AM-VSB CATV transport system,” Tech. Dig. OFC‘96, paper WN2, San Jose, CA, 1996.
[51] S. Ovadia and C. Lin, “Performance characteristics and applications of hybrid multichannel AM-VSB/M-QAM video lightwave transmission systems,” IEEE/OSA J. Lightwave Technol., vol. 16, pp. 1171-1186, 1998.
[52] J. H. Su, C. C. Lee, W. Y. Guo, F. Y. Tsai, C. S. Wang, Y. K. Tu, and Y. K. Chen, “Composite-second-order improvement of 15 dB in an optically amplified 110-km AM-VSB CATV transport system using chirped fiber grating,” Tech. Dig. OFC’99, paper TuP2, San Diego, CA, 1999.
[53] J. Haugen, J. Freeman, and J. Conradi, '”Bidirectional transmission at 622 Mb/s utilizing erbium-doped fiber amplifiers,”' IEEE Photon. Technol. Lett., vol. 4, pp. 913 - 916, 1992.
[54] S. Seikai, K. Kusunoki, and S. Shimokado, “'Experimental studies on wavelength division bidirectional optical amplifiers using an Er3+-doped fiber,”' IEEE/OSA J. Lightwave Technol., vol. 12, no. 5, pp. 849 - 854, 1994.
[55] K. Kannan and S. Frisken, '”Unrepeatered bi-directional transmission system over a single fiber using optical fiber amplifiers,'” IEEE Photon. Technol. Lett., vol. 5, pp. 76 -79, 1993.
[56] R. J. Orazi, and M. N. McLandrich, “Bi-directional transmission at 1.55 microns using fused fiber narrow channel wavelength division multiplexers and erbium-doped fiber amplifiers,”' IEEE Photon. Technol. Lett,. vol. 6, pp. 571 - 574, 1994.
[57] Y. K. Chen, W. Y. Guo, S. Chi, and W. I. Way, “Demonstration of in-service supervisory repeaterless bi-directional wavelength-division-multiplexing transmission system,” IEEE Photon. Technol. Lett., vol. 7, pp.1084 -1086, 1995.
[58] M. Tachiban, R. I. Laming, P. R. Morkel, and D. N. Payne, “Erbium-doped fiber amplifier with flatted gain spectrum,” IEEE Photon. Technol. Lett., vol. 3, pp.118-120, 1991.
[59] H. Masuda, K. –I. Suzuki, S. Kawai, and K Aida, “Ultra-wideband optical amplification with 3 dB bandwidth of 65 nm using a gain-equalised two-stage erbium-doped fiber amplifier and Raman amplification,” Electron. Lett., vol. 33, no. 9, pp. 753-754, 1997.
[60] K. -P. Ho, H. Dai, C. Lin, S. K. Liaw, H. Gysel, and M. Ramachandran, “Hybrid wavelength-division-multiplexing systems for high-capacity digital and analog video trunking applications,” IEEE Photon. Technol. Lett., vol. 10, pp. 297-299, 1998.
[61] Masuda, H., Kawai, S., Suzuki, K. I., and Aida, K.: “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photon. Technol. Lett., vol. 10, pp. 516-518, 1998.
[62] Lewis, S. A. E., Chernikov, S. V., and Taylor, J. R.: “Broadband high-gain dispersion compensating Raman amplifier,” Electron. Lett., vol. 36, pp. 1355-1356, 2000.
[63] Spiekman, L. H., Wiesenfeld, J. M., Gnauck, A. H., Garrett, L. D., van der Hoven, G. N., van Dongen, T., Sander-Jochem, M. J. H., and Binsma, J. J. M.: “8´10Gb/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol. 12, pp. 1082-1084, 2000.
[64] Schaafsma, D. T., Miles, E., and Bradley, E. M.: “Comparison of conventional and gain-clamped semiconductor optical amplifiers for wavelength-division-multiplexed transmission system,” IEEE/OSA J. Lightwave Technol., vol. 18, pp. 922-925, 2000.
[65] Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, Chia-Hsiung Chang, Y. K. Tu, and S. L. Tzeng, “Low-Crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 12, pp. 1394-1396, 2000.
[66] Y. K. Chen, Chia-Hsiung Chang, Y. L. Yang, I. Y. Kuo, and T. C. Liang, “Mach-Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Comms., pp. 245-262, 1999.
[67] C. M. Lee, C. J. Hu, Chia-Hsiung Chang, Y. K. Chen, K. M. Feng, C. C. Lee, J. Hu, and S. L. Tzeng, “Mach-Zehnder Fiber-Grating-Based Dynamic Optical Cross-Connect,” IPC2000, paper Th-T2-D003, Dec. 2000.
[68] G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,”Opt. Lett., vol.14, pp. 823-825, 1989.
[69] T. Mizuochi, T. Kitayama, K. Shimizu, and K. Ito, ”Interferometric crosstalk-free optical add/drop multiplexer using Mach-Zehnder-based fiber gratings,” IEEE/OSA J. Lightwave Technol., vol. 16, pp. 265-276, 1998.
[70] E. Goldstein, I. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol. 6, pp. 657-660, 1994.
[71] P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett., vol. 9, pp. 1343-1345, 1997.
[72] Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80 nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett., vol. 33, pp. 1965-1967, 1997.
[73] M. Yamada, A. Mori, K. Kobayashi, P. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett., vol. 10, pp. 1244-1246, 1998.
[74] W. I. Way, T. H. Wu, A. Yi-Yan, M. J. Andrejco, and C. Lin, “Optical power limiting amplifier and its applications in an SONET self-healing ring network,” IEEE/OSA J. Lightwave Technol., vol. 10, pp. 206-214, 1992.
[75] Y. K. Chen, W. Y. Guo, S. Chi, and W. I. Way, “Demonstration of in-service supervisory repeaterless bi-directional wavelength-division-multiplexing transmission system,” IEEE Photon. Technol. Lett., vol. 7, pp. 1084-1086, 1995.
[76] S. K. Liaw, C. C. Lee, Y. K. Chen, K. P. Ho, and S. Chi, “Chirped fiber-grating-integrated optical limiting amplifier for dispersion compensation,” Tech. Dig. IEEE/Laser and Electro-Optics Society Annual Meeting (LEOS’97), paper MC3, Nov. 1997.
[77] Y. K. Chen, and C. C. Lee, “Fiber Bragg grating-based large nonblocking multiwavelength cross-connect,” IEEE/OSA J. Lightwave Technol., vol. 16, pp. 1746-1756, 1998.
[78] F. Liu, R. J. S. Pedersen, and P Jeppesen, “Performance analysis of a novel multiwavelength cross-connect based on optical add/drop multiplexers,” Proc. ECOC’99, vol. 1, pp. 422-423, Nice, France, Sept. 1999.
[79] Y. K. Chen, S. K. Liaw, W. Y. Guo, and S. Chi, “Multiwavelength erbium-doped power limiting amplifier in all-optical self-healing ring network,” IEEE Photon. Technol. Lett., vol. 8, pp. 842-844, 1996.
[80] Y. K. Chen, Chia-Hsiung Chang, and C. C. Lee, “Simultaneous transmission of 1.55-mm CATV video signal and 1.3-mm data signal over a multi-mode fiber local area network,” IEEE Photon. Technol. Lett., vol. 10, pp. 1790-1792, 1998.
[81] Chia-Hsiung Chang, and Y. K. Chen, “Demonstration of repeaterless bidirectional transmission of multiple AM-VSB CATV signals over conventional single-mode fiber,” IEEE Photon. Technol. Lett., vol. 12, pp. 734-736, 2000.
[82] Chia-Hsiung Chang, and Y. K. Chen, “Experimental demonstration of bidirectional lightwave CATV 100km transmission system using SMF and LEAF links,” Electron. Lett., vol. 36, pp. 243-244, 2000.
[83] G. P. Agrawal, Fiber-Optic Communication Systems, chapter 5, John Wiley & Sons, New York, 1993.
[84] C. C. Lee and S. Chi, “101-km repeaterless transmission of 80-Channel AM-SCM signals using large-effective-area fiber,” to be published in IEEE Photon. Technol. Lett., 1999.
[85] F. W. Williems, W. Muys, and J. C. van der Platts, “Experimental verification of self-phase-modulation-induced nonlinear distortion in externally modulated AM-VSB lightwave systems,” Tech. Dig. OFC’96, Feb. 1996, paper ThR4.
[86] M. R. Philips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “1 Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett., vol.3, pp. 481-483, 1991.
[87] T. C. Liang, Chia-Hsiung Chang, and Y. K. Chen, “Optimum configuration and characteristic comparisons of multiwavelength erbium-doped fiber amplifier for hybrid digital/analog WDM systems,” Opt. Comms., pp. 259-269, 1999.
[88] Chia-Hsiung Chang, and Y. K. Chen, “Dispersion-compensated gain-clamped 90nm wideband optical amplifier including an semiconductor optical amplifier and a DCF-based Raman fiber amplifier,” submitted to Electron. Lett. , March. 2001.
[89] C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” IEEE/OSA J. Lightwave Technol., vol. 9, pp. 271-283, 1991.
[90] C. C. Lee, Chia-Hsiung Chang, K. M. Feng, S. L. Tzeng, J. W. Liaw, Y. K. Tu, and Y. K. Chen, “Hybrid 10-Gb/s, 2.5-Gb/s, 64-QAM, and AM-VSB high-capacity wavelength-division-multiplexing transport systems using standard single-mode fiber and LEAF fibers,” Lasers and Electro-Optics, 2000. (CLEO 2000). Conference on , pp. 327-329, 2000
[91] F. W. Willems, W. Muys, and J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photon. Technol. Lett., vol. 6, pp. 1476-1478, 1994.
[92] F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett., vol. 12, pp. 847-849, 1987.
[93] K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Hohnson, and J. Albert, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett., vol. 19, pp. 1314-1316, 1994.
[94] D. Atkinson, W. H. Loh, J. J. O’Reilly, and R. I. Laming, “Numerical study of 10-cm chirped-fiber grating pairs for dispersion compensation at 10 Gb/s over 600 km of nondispersion shifted fiber,” IEEE Photon. Technol. Lett., vol. 8, pp. 1085-1087, 1996.
[95] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” IEEE/OSA J. Lightwave Technol., vol. 14, pp. 58-65, 1996.
[96] A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett., vol. 21, pp. 336-338, 1996.
[97] S. I. Pegg, M. J. Fice, M. J. Adams, and A. Hadjifotious, “Noise in wavelength conversion by cross-gain modulation in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 11, pp. 724-726, 1999.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code