Responsive image
博碩士論文 etd-0625102-111310 詳細資訊
Title page for etd-0625102-111310
論文名稱
Title
可程式延遲鎖相迴路倍頻器與無ROM之直接數位式頻率合成器
Programmable DLL-based Frequency Multiplier and A ROM-less Direct Digital Frequency Synthesizer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-12
繳交日期
Date of Submission
2002-06-25
關鍵字
Keywords
延遲鎖相迴路、倍頻器、頻率合成器
Frequency Synthesizer, DLL, Frequency Multiplier
統計
Statistics
本論文已被瀏覽 5752 次,被下載 0
The thesis/dissertation has been browsed 5752 times, has been downloaded 0 times.
中文摘要
本論文包含兩個主題,第一個主題是可程式延遲鎖相迴路倍頻器主要運用於射頻前端之本地震盪源,第二個主題是無ROM之直接數位式頻率合成器主要運用於產生完美參考時脈或基頻信號之數位調變與解調。

可程式延遲鎖相迴路倍頻器是使用CMOS製程,其優點為不需要任何之電感元件,且輸出時脈倍數可利用數位信號控制來達成,頻率倍數為7´ ~ 10´的參考時脈頻率,此晶片實現是使用TSMC 0.25 mm的CMOS製程,供應電壓2.5 V。最後晶片實際量測時,輸出頻率為1.0 GHz ~ 1.5 GHz,晶片操作於1.5 GHz時,最大功率消耗為58.2 mW。

無ROM之直接數位式頻率合成器主要是使用三角函數四倍角公式來實現,其系統層級模擬,寄生信號(spurious tones)抑制效能為-130 dBc,解析度高達13位元,整個頻率合成器誤差極值之發生點,亦同時利用數學方法加以佐證。
Abstract
This thesis includes two topics. The first topic is a programmable DLL-based frequency multiplier, which can be a local oscillator in RF applications. The second one is a ROM-less direct digital frequency synthesizer to serve as a good reference clock or to be used in digital modulation and demodulation.

A CMOS local oscillator using a programmable DLL-based frequency multiplier is presented. In this work, low-Q on-chip inductors are not needed. The clock of the output frequency is digitally controllable, which is ranged from 7´ to 10´ of an input reference clock. The design is carried out by TSMC 1P5M 0.25 mm CMOS process at 2.5 V power supply. The output frequency range of the physical chips measurement is about 1.0 GHz ~ 1.5 GHz. Maximum power dissipation is 58.2 mW at 1.5 GHz output.

A ROM-less direct digital frequency synthesizer (DDFS) employing trigonometric quadruple angle formula is presented. In a system-level simulation, the spurious tones performance is suppressed to be lower than -130 dBc. The resolution is up to 13 bits. The maximum error is also analyzed mathematically to meet the simulation results.

目次 Table of Contents

摘 要 i
Abstract ii
第一章 簡介 1
1.1研究動機 1
1.2論文目的 4
1.3論文大綱 5
第二章 先前相關文獻探討 6
2.1簡介 6
2.2頻率合成器與傳送接收機 7
2.2.1接收機的架構 7
2.2.2傳送機的架構 9
2.2.3結論 10
2.3頻率合成器之相位雜訊與寄生信號 11
2.3.1頻率合成器與傳送機接收機 11
2.3.2相位雜訊 12
2.3.3寄生信號 14
2.4鎖相迴路架構及其相關研究發展 16
2.4.1鎖相迴路之工作原理及特性 16
2.4.2單石整合諧振器(Monolithic Integrated LC-tank) 18
2.4.3製程強化電感 20
2.4.4整合型環型壓控震盪器 21
2.5直接數位式頻率合成器 22
2.5.1直接數位式頻率合成器之工作原理 22
2.5.2直接數位式頻率合成器特性 24
2.6直接數位式頻率合成器之雜訊 26
2.6.1相位累加器位元捨棄效應 26
2.6.2唯讀記憶體有限資料長度效應 27
2.7結論 28
第三章 可程式化延遲鎖相迴路倍頻器 29
3.1簡介 29
3.2延遲鎖相迴路的特性與工作原理 30
3.2.1可程式化延遲鎖相迴路倍頻器之運作 30
3.2.2時間抖動累積效應 32
3.3延遲鎖相迴路之效能 34
3.3.1寄生信號 34
3.3.2相位雜訊 36
3.4電路設計 40
3.4.1相位頻率偵測器 40
3.4.2充電泵與迴圈濾波器 42
3.4.3壓控延遲鏈 45
3.4.4正緣收集器 47
3.4.5時脈產生器 49
3.5佈局後電路模擬 (Post-layout simulation) 51
3.6晶片量測 54
第四章 無ROM之直接數位式頻率合成器 57
4.1簡介 57
4.2無ROM式直接數位式頻率合成器 58
4.2.1三角函數之一階四倍角近似值法 58
4.2.2三角函數之二階四倍角近似值法 62
4.2.3二階四倍角近似值法之數學分析 63
4.3直接數位式頻率合成器之數位系統實作 65
4.3.1無ROM之直接數位式頻率合成器架構 65
4.3.2系統層次模擬 65
4.3.3 FPGA模擬與驗證 67
4.4結論 70
第五章 結論與相關成果 71
參考文獻 72
附錄 75

參考文獻 References
[1] Paul R. Gray, and Robert R. Meyer, “Future Directions in Silicon ICs for RF Personal Communications,” Custom Integrated Circuits Conference, Proceedings of the IEEE 1995, pp. 83-90, May 1995.
[2] A. A. Abidi, A. Rofougaran, G. Chang, J. Rael, J. Chang, M. Rofougaran, and P. Chang, “The Future of CMOS Wireless Transceivers,” Digest of Technical Papers, International Solid-State Circuit Conference, 1997, pp. 118-119, San Francisco, 1997.
[3] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, 1998.
[4] J. C. Rudell, J. J. Ou, T. Cho, G. Chien, F. Brianti, J. Weldon, and P. R. Gray, “A 1.9GHz Wide-Band IF Double Conversion CMOS Integrated Receiver for Cordless Telephone Applications,” Digest of Technical Papers, International Solid-State Circuits Conference, 1997, pp. 304-305, Feb. 1997.
[5] J. C. Rudell, J. J. Ou, T. Cho, G. Chien, F. Brianti, J. A. Weldon, and P. R. Gray, “A 1.9GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless Telephone Applications,” IEEE J. of Solid-State Circuits, vol. 32, no. 12, pp. 2701-2088, Dec. 1997.


[6] J. C. Rudell, J. J. Ou, R. S. Narayanaswami, G. Chien, J. A. Weldon, L. Lin, K. C. Tsai, L. Tee, K. Khoo, D. Au, T. Robinson, D. Gerna, M. Otsuka, and P. R. Gray, “Recent Developments in High Integration Multi-Standard CMOS Transceivers for Personal Communication Systems,” 1998 International Symposium on Low Power Electronics, Monterey, California, Sep. 1998.
[7] N. M. Nguyen, and R. G. Meyer, “Si IC-compatible Inductors and LC Passive Filters,” IEEE J. Solid-State Circuits, vol. 25, no. 4, pp. 1028-1031, Aug. 1990.
[8] J. Craninckx, and M. S. J. Steyaert, “A 1.8-GHz Low-Phase-Noise CMOS VCO Using Optimized Hollow Spiral Inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736-744, May 1997.
[9] J. Craninckx, and M. S. J. Steyaert, “A 1.8-GHz CMOS Low-Phase-Noise Voltage Controlled Oscillator with Prescaler,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1474-1481, Dec. 1995.
[10] C. H. Park, B. Kim, “A Low-Noise, 900-MHz VCO in 0.6-mm CMOS,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 586-591, May 1999.
[11] T. C. Weigandt, Low-Phase-Noise, Low-Timing-Jitter Design Techniques for Delay Cell Based VCOs and Frequency Synthesizers, Ph.D. Thesis, Electronics Research Lab, U.C. Berkeley, 1998.
[12] T. Weigandt, B. Kim, and P. R. Gray, “Analysis of Timing Jitter in CMOS Ring Oscil-lators,” International Symposium on Circuits and Systems, vol. 4, pp. 27-30, Jun. 1994.

[13] B. Kim, T. Weigandt, and P. R. Gray, “PLL/DLL System Noise Analysis for Low Jitter Clock Synthesizer Design,” International Symposium on Circuits and Systems, vol. 4, pp. 31-34, Jun. 1994.
[14] George Chien, Low-Noise Local Oscillator Design Techniques using a DLL-based Frequency Multiplier for Wireless Application, Ph.D. Thesis, Electronics Research Lab, U.C. Berkeley, 2000.
[15] W.-H. Lee, J.-D. Cho, and S.-D. Lee, “A high speed and low power phase-frequency detector for charge pump,” Design Automation Conference Asia and South Pacific, vol. 1, pp. 269-272, Jan. 1999.
[16] A. L. Bramble, “Direct Digital Frequency Synthesis,” Proceeding 35th Annual Frequency Control Symposium, pp. 406-414, May 1981.
[17] Jouko Vankka, and Kari Halonen, Direct Digital Frequency Synthesizers: Theory, Design, and Application, Kluwer Academic Publisher, 2000.
[18] G. Van Andrews, et al., “Recent progress in wideband monolithic direct digital synthesizers,” IEEE MTT-S International Microwave Symposium, vol. 3, pp. 1347-1350, 1996.
[19] M. J. Flanagan, and G. A. Zimmerman, “Spur-reduced digital sinusoid synthesis,” IEEE Trans. on Communication, vol. 43, no. 7, pp. 2254-2262, Jul. 1995.
[20] V. F. Kroupa, V. Cizek, J. Stursa, and H. Svan-dova, “Spurious signals in direct digital frequency synthesizers due to the phase truncation,” IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, no. 5, pp. 1166-1172, Sep. 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.134.107
論文開放下載的時間是 校外不公開

Your IP address is 3.138.134.107
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code