Responsive image
博碩士論文 etd-0625103-042548 詳細資訊
Title page for etd-0625103-042548
論文名稱
Title
碳源的添加對等鞭金藻增殖的影響
The influence of carbon addition on the growth of microalga Isochrysis galbana
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
46
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-05-30
繳交日期
Date of Submission
2003-06-25
關鍵字
Keywords
等鞭金藻、pH迴饋控制、微藻、碳酸氫鈉、二氧化碳、碳
Isochrysis galbana, carbon dioxide, carbon, pH feedback, sodium bicarbonate
統計
Statistics
本論文已被瀏覽 5729 次,被下載 11851
The thesis/dissertation has been browsed 5729 times, has been downloaded 11851 times.
中文摘要
對大多數藻類而言,在天然的水域中,二氧化碳的濃度是充足的,但在人工培養的情況下,藻類的密度很高,二氧化碳的供應往往不足,成為光合作用的限制因子,進而影響藻細胞的生長繁殖。本研究嘗試小量靜置培養用添加二氧化碳的方式,調整初始pH至7.5、6.5和5.5(CO2-7.5i、CO2-6.5i、CO2-5.5i),且以鹽酸調整至相同pH(HCl-7.5i、HCl-6.5i、HCl-5.5i)及都未添加 (blank) 為對照,連續照光養殖。結果為第二至第五天的細胞數都以添加二氧化碳至初始pH為6.5的最佳,5.5的最差。再選用CO2-6.5i、HCl-6.5i和blank三組,用每日調回pH的方式,亦有相同的結果,以CO2-6.5e的最佳,第三天的細胞數為blank的221 %。另一個小量靜置培養為添加碳酸氫鈉,起始濃度為1 g/l、0.5 g/l、0.1 g/l、0.05 g/l、0.01 g/l和未添加的blank,在五天的養殖期間,每天的細胞數除1 g/l較低外,其餘五組無顯著差異。再選用 0.5 g/l為起始碳酸氫鈉濃度,調整初始pH為6.5(SBH),以不調整pH (SB)及都未處理(Blank)為對照,SBH第二至第五天有最大的細胞數,為blank的212 %。大量打氣式培養則採用二氧化碳迴饋控制的方式,控制藻水的pH為6.5、7.0和7.5,另以鹽酸迴饋控制pH為7.5和未控制為對照,重覆實驗兩次,兩次結果為添加二氧化碳的三組間,細胞的增殖雖無差異,但都明顯高於鹽酸控制組和未控制組,最大細胞數於第七天左右可達1100-1400 x 104 個/ml,約為未控制組的兩倍,且藻細胞數達到最大值時,水中的氮源剛好用盡,而磷源還有餘。本研究顯示等鞭金藻在良好的培養環境下,適量碳源的添加及維持適當的pH,可以使此藻有較快的生長和獲得較高的藻細胞濃度。
Abstract
The concentration of carbon dioxide in natural seawater is sufficient for microalgal growth, but insufficient for high algal-density culture due to limitation of photosynthesis in the artificial medium. This study was adjusted the initial pH to 5.5, 6.5 and 7.5 by adding CO2 or HCl in 1L flask cultured stagnantly with continuous illumination. The best growth of Isochrysis galbana was found in the culture (CO2-6.5i) with initial pH 6.5 using CO2 adjustment and maintaining the same during day 2 to day 5, while the worst was in CO2-5.5i. Furthermost, we adjusted the pH of cultures daily to the set values; the best growth was also found in CO2-6.5e having the cell number 221% of the blank. Initial addition of NaHCO3 with doses of 0.01 g/L, 0.05 g/L, 0.1 g/L, 0.5 g/ L and 1g/ L in the culture, showed the lowest cell number after 5 days culture is in the group of 1.0 g/L and no significant difference among the rest groups. Addition of 0.5 g/L NaHCO3 and adjusted the pH to 6.5 by HCl in the beginning promoted algal growth and resulted in the culture having 212 % cell number of the blank. Using the feedback control system, 100 L algal cultures with aeration and providing CO2 gas or HCl liquid to maintain the pH as 5.5, 6.5 and 7.5 or 7.5 individually were conducted to test the effect of pH control on the mass culture of I. galbana. Better growth was found in the culture with CO2 feedback control than HCl-control in duplicate experiments. It also showed significant difference among the groups adjusted pH between 6.5-7.5. The cell concentration could reach 1100-1400 x 104 cells/ml and was about double the amount of the blank without pH control cultured in 7 days. Meanwhile, the NO3-N concentration was nearly exhausted while the PO4-P still replete. This study reveals the high concentration and fast growth of I. galbana can be maintained under the suitable physical condition providing the carbon source in an optimal pH.
目次 Table of Contents
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅱ
總目錄…………………………………………………………………..Ⅲ
表目錄…………………………………………………………..………Ⅵ
圖目錄…………………………………………………………………..Ⅸ
附錄目錄……………………………………………………………….Ⅹ
壹、前言……………………………………………………………….…1
一、微藻的功用……………………………………………………….…1
(一)、微藻在水產養殖的應用…………………………………………..1
(二)、微藻在醫藥食品的應用………………………………………..…3
(三)、微藻在污染上的應用……………………………………………...4
二、微藻成長與營養鹽的關係……………………………………….….6
(一)、微藻成長與碳的關係……………………………………………...6
(二)、微藻成長與氮的關係……….……………………………………..8
(三)、微藻成長與磷的關係……………………………………………..9
(四)、微藻成長與pH的關係……………………...……………………10
三、等鞭金藻的相關研究……………………………………………....11
四、本研究探討的方向…………………………………………………12
貳、材料方法……………………………………………………………14
一、實驗材料與實驗生物的來源與培養………………………………14
(一)、等鞭金藻大溪地株(Isochrysis aff. galbana )及培養設備………14
(二)、韋音培養液……………………………………………………….14
(三)、培養用海水處理………………………………………………….15
(四)、CO2氣體的裝置…………………….…………………………….15
(五)、pH迴饋控制…………………………………………………. 16
二、實驗方法……………………………………………………….…..15
(一)、小量靜置培養…………………………………………………….16
1. 起始添加二氧化碳和鹽酸試驗…………………………………….16
2. 每日添加二氧化碳和鹽酸試驗………………………………….…17
3. 碳酸氫鈉試驗…………………………………………………...…..17
4. 碳酸氫鈉加酸試驗……………………………………………...…..17
(二)、大量培養……………………………………………………..….18
1. 打氣量試驗……………………………………………………….…19
2. 接種濃度試驗………………………………………………….……19
3. pH迴饋控制試驗…………………………...…………………..…...19
(三)、營養鹽測定…………………………………………………..…..20
1. 海水中亞硝酸鹽(N02-)含量測定…………………………...…....…20
2. 海水中硝酸鹽(NO3-)含量測定………………...………………...…21
3. 海水中銨(NH4+)含量測定……………………………………….….21
4. 海水中無機磷(PO43-)含量測定………………………………..…....22
5. 總鹼度測定……………………………………………………….…22
(四)、增殖率和細胞密相對百分比的計算……………………………23
1. 增殖率………………………………………………………………..23
2. 細胞密度相對百分比………………………………………………..24
(五)、統計分析…………………………………………………………24
參、結果……………………………………………………………...….25
一、1l小量靜置培養………………………………………………..….25
(一)、起始添加二氧化碳和鹽酸試驗……………………………….…25
(二)、每日添加二氧化碳和鹽酸試驗………………………………….26
(三)、碳酸氫鈉試驗……………………………………………….……27
(四)、碳酸氫鈉加酸試驗………………………………………….……28
二、大量培養試驗………………………………………………………29
(一)、不同打氣量試驗………………………………………………….29
(二)、不同接種濃度試驗……………………………………………….30
(三)、pH迴饋試驗………………………………………………….…..31
肆、討論………………………………………………………………....34
一、起始添加和每日添加二氧化碳和鹽酸試驗………………...…….35
二、碳酸氫鈉和碳酸氫鈉加酸試驗……………………………………37
三、pH迴饋試驗………………………………………………….…….39
伍、參考文獻…………………………………………………………....46
陸、附錄……………………………
參考文獻 References
林良平. 1994. 小球藻(Chllorella)之大量培養及在健康食品工業上的
應用. Journal of the Biomass Energy Society of China 13: 155-167.
林燕輝 , 張富龍, 林畢修平, 藍啟仁. 2001. 利用板型光合反應器處
理電廠排放之二氧化碳. 工業安全衛生技術輔導成果發表會.
周宏農, 李佳峰. 1992. 藻類在廢水處理上的應用. 台灣環境保護 3:
27-34.
高炳昀. 1986. Isochrysis galbana培養的研究. 台灣水產試驗報告 40:
211-217.
陳明耀編. 1997. 生物餌料培養. 水產出版社, pp. 329.
陳椒芬, 潘永堯. 1987, 等鞭金藻的生長及其主要營養成份的研究.
海洋與湖沼 18: 55-63.
雷淇祥,蘇惠美 1985. 草蝦苗以不同餌料餵飼時之生長及生存率. 台
灣水產學會刊 12: 54-67.
楊盛行, 張義宏, 呂誌翼, 洪瑛金英,藍啟仁. 1999. 篩選本土性微生
物固定二氧化碳之研究. 台灣電力綜合研究所研究計畫論文.
鄧達祺. 1993. 棘輻肛參(Actinopyga echinites)初期幼生飼育方法的研
究. 台灣大學漁業科學研究所碩士論文.
鄭金華, 陳紫媖, 蘇惠美, 陳鏗元, 黃美英, 蘇茂森, 廖一久. 1998.
台灣產巨牡蠣之種苗培育與單體牡蠣之幼發試驗. 水產研究 6:
25-33.
蕭登福譯. 1995. 微細藻類之發現與培養-對二氧化碳之吸收、固定化
能力約為熱帶雨林四倍. 今日經濟 331: 61.
蘇惠美. 1994. 東港株等鞭金藻的生物特性及增殖條件. 國科會專題
研究報告.
蘇惠美, 廖一久. 1986. 綜論餌料生物的營養價. 台灣省水產學會專
集第五號,台灣水產餌料之研究與發展(下冊),123-151頁.
蘇惠美, 蘇茂森, 廖一久. 1995. 極小型輪蟲之篩選及其培養條件. 水
產研究.
APHA (American Public Health Association), American Water Work Association, and Water Environment Federation. 1995. Standard method for the examination of water and wastewater. 19th editon. APHA, Washington, D.C., pp. 1268.
Baird, M.E., S.M. Emslet, and J.M. Mgglade. 2001. Modeling the interacting effects of nutrient uptake, light capture and temperature on phytoplankton growth. Journal of Plankton Research 33: 829-840.
Bakker, D.C.E., H.J.W. deBaar, and H.P.J. deWilde. 1996. Dissolved carbon dioxide in Dutch coastal waters. Marine Chemistry 55: 247-263.
Bakker, D.C.E., H.J.W. deBaar, and U.V. Bathmann. 1997. Changes of carbon dioxide in surface waters during spring in the southern ocean. Deep Sea Research Part II 44: 91-127.
Beardall, J., A. Johnston, and J. Raven. 1998. Environmental regulation of CO2-concentrating mechanisms in microalgae. Canadian Journal of Botany 76: 1010-1017.
Becker, E.W. 1983. Limitations of heavy metal removal from waste water by means of algae. Water Research 17: 459-466.
Becker, E.W. 1994. Microalgae: biotechnology and microbiology. University of Cambridge Press, New York, pp. 293.
Berges, J.A., and P.G. Falkowski. 1998. Physiological stress and cell depth in marine phytoplankton: Induction of proteases in response to nitrogen or light limitation. Limnology and Oceanography 43: 129-135.
Berges, J.A., D.O. Chaelebois, D.C. Mauzerall, and P.G. Falkowski. 1996. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and Ⅱ in microalage. Plant Physiology 110: 689-696.
Bhatti, S., I.E. Huertas, and B. Colman. 2002. Acquisition of inorganic carbon by the marine haptophyte Isochrysis galbana (Prymnesiophyceae). Journal of Phycology 38: 914-921.
Boney, A.D. 1989. Phytoplankton. Edward Arnold, London, pp. 118.
Boussiba, S., E. Sandbank, G. Shelef, A. Cohen, A. Vonshak, A. Ben-Amotz, S. Arad, amd A. Richmond. 1988. Outdoor cultivation of marine microalga Isochrysis galbana in open reactors. Aquaculture 72: 247-253.
Brown, M.R., C.D. Garland, S.W. Jeffrey, I.D. Jameson, and J.M. Leroi. 1993. The gross and amino acid compositions of batch and semi-continuous culture of Isochrysis sp. (clone T.ISO), Pavlova lutheri and Nannochloropsis oculata. Journal of Applied Phycology 5: 285-296.
Brown, M.R., S.W. Jeffery, J.K. Volkman, and G.A. Dunstan. 1997. Nutritional properties of microalgae for mariculture. Aquaculture 151: 315-331.
Brown, M.R., and S. Hohmann. 2002. Effects of irradiance and growth phase on the ascorbic acid content of Isochrysis sp. T.ISO (Prymnesiophyta). Journal of Applied Phycology 14: 211-214.
Burgess, J.G., K. Iwamoto, Y. Miura, H. Takano, and T. Matsunaga. 1993. An optical fiber photobioreactor for enhanced production of the marine unicellular alga Isochrysis aff. galbana T-Iso (UTEX LB 2307) rich in docosahexaenoic acid. Applied Microbiology and Biotechnology 39: 456-459.
Burns, B.D., amd J. Beardall. 1987. Utilization of inorganic carbon by marine microalgae. Journal of Experimental Marine Biology and Ecology 107: 75-86.
Chohji, T., T. Masahiro, amd E. Hirai. 1996. CO2 recovery from flue gas by an ecotechnological (environmentally friendly) system. Pergamon 96: 151-159.
Clark, D.R., M.J. Merrett, and K.J. Flynn. 1999. Utilization of dissolved inorganic carbon (DIC) and the response of the marine flagellate Isochrysis galbana to carbon or nitrogen stress. The New Phytologist 144: 463-470.
Coutteau, P., and P. Sorgeloos. 1992. The use of algal substitute and the requirement for live algae in the hatchery and nursery of bivalve molluscs: an international survey. Journal of Shellfish Research 11: 467-476.
Davidson, K., K.J. Flynn, amd A. Cunningham. 1992. Non-steady state ammonium-limited growth of marine phytoflagellate, Isochrysis galbana Parke. The New Phytologist 122: 433-438.
Epifanio, C.E. 1979. Growth in bivalve molluscs: nutritional effects of two or more species of algae in diets fed to the American oyster Crassostrea virginica (Gmelin) and the hard clam Mercemaria mercenaria. Aquaculture 18: 1-12.
Eppley, R.W., and J.N. Rogers. 1970. Inorganic nitrogen assimilation of Ditylum brightwellii, a marine plankton diatom. Journal of Phycology 6: 344-351.
Eppley, R.W., E.H. Rogers, E.L. Venrick, and M.M. Mullin. 1973. A study of plankton dynamics and nutrient cycling in the central gyre of North Pacific Ocean. Limnology and Oceanography 18: 534-551.
Falkowski, P.G., and D.P. Stone. 1975. Nitrate uptake in marine phytoplankton: energy sources and the interaction with carbon fixation. Marine Biology 32: 77-84.
Falkowski, P.G., A. Sukenik, and R. Herzig. 1989. Nitrogen limitation in Isochrysis galbana (Haptophyceae). Ⅱ. Relative abundance of chloroplast proteins. Journal of Phycology 25: 471-478.
Fernandez, F.G.A., F.G. Camacho, J.A.S. Perez, J.M.F. Sevilla, and E.M. Grima. 1998. Modeling of biomass productivity in tubular photoreactors for microalgal culture: effects of dilution rate, tube diameter, and solar irradiance. Biotechnology and Bioengineering 58: 605-613.
Gehl, K.A., C.M. Cook, and B. Colman. 1987. The effect of external pH on the apparent CO2 affinity of Chlorella saccharophila. Journal of Experimental Botany 38: 1203-1210.
Graham, L.E., amd L.W. Wilcox. 2000. Algae. Upper Saddler River, Prentice Hall, US, pp. 602.
Green, J.C., amd R.N. Pienaar. 1977. The taxonomy of the order Isochrysidales (Prymnesiophyceae) with special reference to the genera Isochrysis Parke, Dictateria Parke and Imantonia Reynolds. Journal of the Marine Biological Association of the United Kingdom 57: 7-17.
Grima, E.M., J.A.S. Perez, and L.G. Sanchez. 1992. EPA from Isochrysis galbana, growth conditions and productivity. Process Biochemistry 27: 299-305.
Guerin, M., M.E. Huntley, and M. Olaizola. 2002. Haematococcus astaxanthin: health and nutritional applications. The 1st Congress of the International Society for Applied Phycology/9th International Conference on Applied Phycology, Almeria, Spain.
Gustafson, K.R., J.H. Cardellina, R.W. Fuller, O.S. Weislow, R.F. Kiser, K.M. Snader, G.M.L. Patterson, and M.R. Boyd. 1989. AIDS-Antiviral sulfolipids from yanobacteria (blue-green algae). Journal of the National Cancer Institute 81: 1254-1258.
Helm, M.M., and I. Laing. 1987. Preliminary observations on the nutrient value of “Tahiti isochrysis” to bivalve larvae. Aquaculture 62: 281-288.
Hori, T. 1991. The ultrastructure of the flagellar root system of Isochrysis galbana (Prymnesiophyta). Journal of the Marine Biological Association of the United Kingdom 71: 137-152.
Jones, D.A., K. Kurmaly, and A. Arshard. 1987. Paneid shrimp hatchery trials using microencapsulated diets. Aquaculture 64: 133-164.
Kain, J.M., and G.E. Fogg. 1958. Studies on the growth of marine phytoplankton. Journal of the marine biological Association of the United Kingdom 37: 397-413.
Kaplan, D., Z. Cohen, and A. Abeliovich. 1986. Optimal growth conditions for Isochrysis galbana. Biomass 9: 37-48.
Knuckey, R., G. Semmens, and B. Della-Rodolfa. 2000. Research in progress at the live prey. QDPI Northern Fisheries Center, Cairns, 35-41.
Kodama, M., H. Ikemoto, and S. Miyachi. 1993. A new species of highly CO2-tolerant fast-growing marine microalga suitable for high-density culture. Journal of Marine Biotechnology 1: 21-25.
Kurano, N., H. Ikemoto, H. Miyashita, T. Hasegawa, H. Hata, and S. Miyachi. 1995. Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Conversion and Management 36: 689-692.
Laing, I. 1991. Cultivation of marine unicellular algae. Ministry of Agriculture, Fisheries and Food Directorate of Fisheries Research Laboratory, Lowestoft 67, pp. 31.
Lapointe, B.E. 1987. Phosphorus- and nitrogen-limitation photosynthesis and growth of Gracilaria tikvahiae (Rhodophyceae) in the Florida Keys: an experimental field study. Marine Biology 93: 561-568.
Liao, W.R., R. Huang, and H.M. Su. 2001. Hemagglutinating activity from marine microalgae. Nova Hedwigla Beiheft 122: 99-106.
Liu, C.P., and L.P. Lin. 2001. Ultrastructural study and lipid formation of Isochrysis sp. CCMP1324. Botanical Bulletin of Academia Sinica 42: 207-214.
Lopez, A.D., G.E. Molina, P.E. Sanchez, and C.F. Garcia. 1992. Isolation of clones of Isochrysis galbana rich in eicosapentaenoic acid. Aquaculture 102: 363-371.
Lyman, J. 1956. Buffer mechanism of sea water. Ph.D. Thesis, University of California, Los Angeles..
Matthess, G., F. Frimmel, P. Hirsch, H.D. Schulz, and H.E. Usdowski. 1992. Progress in hydrogeochemistry: organics-carbonate-system-silicate-system-microbiology-models. Springer-Verlag, Berlin Heidelberg New York, pp. 544.
McCarthy, J.J., W.R. Taylor, and J.L. Taft. 1977. Nitrogenous nutrition of the plankton in the Chesapeake Bay. I. Nutrient availability and phytoplankton preferences. Limnology and Oceanography 22: 996-1011.
Michael, K., N. Kiyoshi, and M. Tadashi. 1995. Purification of docosahexaenoic acid (DHA) produced by the marine microalgae Isochrysis galbana. Journal of Marine Biotechnology 2; 139-142.
Merrett, M.J. 1990. Inorganic carbon transport in some marine microalgal species. Canadian Journal of Botany 69: 1032-1039.
Millero, F.J., and M.L. Sohn. 1992. Chemical oceanography. Boca Raton, CRC press, pp. 531.
Morel, F.M.M., R.J.M. Hudson, and N.M. Price. 1991. Limitation of productivity by trace metals in the sea. Limnology and Oceanography 36: 1742-1755.
Morel, F.M.M., J.R. Reinfelder, S.B. Roberts, C.P. Chamberlain, J.G. Lee, and D. Yee. 1994. Zinc and carbon co-limitation of marine phytoplankton. Nature 369: 740-742.
Morris, I. 1980. The Physiological Ecology of Phytoplankton. Blackwell Scientific Publication, Oxford, pp. 625.
Murphy, P.P., and M.F. Lamb. 1995. The role of pH measurements in modern oceanic CO2-system characterizations: precision and thermodynamic consistency. Deep Sea Research 42: 403-411.
Nakaya, N., Y. Homma, and Y. Goto. 1988. Cholesterol lowering effect of Spirulina. Nutrition Reports International 37: 1329-1337.
Negoro, M., N. Shioji, K. Miyamoto, and Y. Miura. 1991. Growth of microalgae in high CO2 gas and effects of SOx and NOx. Applied Biochemistry and Biotechnology 28-29: 877-886.
Nimer, N.A., M. Warren, and M.J. Merrett. 1998. The regulation of photosynthetic rate and activation of extracellular carbonic anhydrase under CO2-limiting conditions in the marine diatom Skeletonema costatum. Plant, Cell and Environment 21: 805-812.
Otero, A., D. Garcia, E.D. Morales, E.D. Aran, J. Fabregas. 1997. Manipulation of the biochemistry composition of the eicosapentaenoic acid-rich microalga Isochrysis galbana in semicontinuous culture. Applied Biochemistry and Biotechnology 26: 171-177.
Parson, S., Y. Maita, and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, pp. 173.
Pedini, M., and Z.H. Shehadeh. 1997. Aquaculture in Sub-Saharan Africa: situation and outlook. The FAO Aquaculture Newsletter 15: 3-6.
Phatarpekar, P.V., R.A. Sreepada, C. Pednekar, and C.T. Achuthankutty. 2000. A comparative study on growth performance and biochemical composition of mixed culture of Isochrysis galbana and Chaetoceros calcitrans with monocultures. Aquaculture 181: 141-155.
Philips, S. 1997. A biology of the algae. Second edition. Cambridge University Press, London, pp. 259.
Poisson, L., and F. Ergan. 2001. Docosahexaenoic acid ethyl esters from Isochrysis galbana. Journal of Biotechnology 91: 75-81.
Qiang, H., and A. Richmond. 1994. Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. Journal of Applied Phycology 6: 391-396.
Raven, J.A. 1993. Limits on growth rates. Nature 361: 209-210.
Reinfelder, J.R., A.M.L. Kraepiel, and F.M.M. Morel. 2000. Unicellular C4 photosynthesis in a marine diatom. Nature 407: 996-999.
Renaud, S.M., L.V. Thinh, G. Lambrinidis, and D. Parry. 2002. Effects of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211: 195-214.
Riebesell, U.D., D.A. Wolf-Gladrow, and V. Smetacel. 1993. Carbon dioxide limitation of marine phytoplankton growth rate. Nature 361: 249-251.
Scott, A.P., and L. Middleton. 1979. Unicellular algae as a food for turbot (Scophthalmus maximus L.) larvae. The importance of dietary long-chain polyunsaturated fatty acids. Aquaculture 18: 227-241.
Sevilla, J.M.F., E.M. Grima, F.G. Camacho, J.A. Fernandez, J.A., and S. Perez. 1998. Photolimitation and photoinhibition as factors determining optimal dilution rate to produce eicosapentaenoic acid from cultures of the microalga Isochrysis galbana. Applied Microbiology Biotechnology 50: 199-205.
Shiraiwa, Y., A. Goyal, and N.E. Tolbert. 1993. Alkalisation of the medium by unicellular green algae during uptake of dissolve inorganic carbon. Plant and Cell Physiology 34: 649-652.
Strickland, J.D.H., O. Holm-Hansen, R.W. Eppley, and R.J. Linn. 1969. The use of a deep tank in plankton ecology. I. Studies of the growth and composition of phytoplankton crops at low nutrient levels. Limnology and Oceanography 14: 23-34.
Stryer, L. 1996. Biochemistry, 4th edition. W.H. Freeman and Company, New York, pp. 795.
Sultemeyer, D. 1997. Changes in the CO2 concentrating mechanism during the cell cycle in Dunaliella tertiolecta. Botanica Acta 110: 55-61.
Su, H.M., M.S. Su, and I.C. Liao. 1997. Preliminary results of providing various combinations of live foods to grouper (Epinephelus coioides) larvae. Hydrobiology 358: 301-304.
Swift, D.G., and W.R. Taylor. 1974. Growth of vitamin B12-limited cultures: Thalassiosira pseudonana, Monochrysis Lutheri, and Isochrysis galbana. Journal of Phycology 10: 385-391.
Tanaka, K., F. Konishi, K. Himeno, K. Taniguchi, and K. Nomoto. 1984. Augmentation of antitumor resistance by a strain of unicellular green algae, Chlorella wvulgaris. Cancer Immunology and Immunotherapy 17: 90-94.
Theodorou, M.E., I.R. Elrifi, D.H. Turpin, and W.C. Plaxton, W.C. 1991. Effects of phosphorus limitation on respiratory metabolism in the green alga Selenastrum minutum. Plant Physiology 95: 1089-1095.
Turpin, D.H. 1991. Effect of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of Phycology 27: 14-20.
Volkman, J.K., S.W. Jeffrey, P.D. Nichols, G.I. Rogers, and C.D. Garland. 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology 128: 219-240.
Wada, E., and A. Hattori. 1971. Nitrite metabolism in the euphotic layer of the central North Pacific Ocean. Limnology and Oceanography 16: 766-772.
Watanabe, T., and V. Kiron. 1994. Prospects in larval dietetics. Aquaculture 124: 223-251.
Windholz, M., editor. 1983. The Merk Index. 10th edition, US., pp. 8408.
Yongmanitchai, W., and O.P. Ward. 1991. Screening of algal for eicosapentaenoic acid. Phytochemistry 30: 2963-2967.
Yoshihara, K., H. Nagase, K. Eguchi, K. Hirata, and K. Miyamato. 1996. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. Journal of Fermentation and Bioengineering 82: 351-354.
Yun, Y., S.B. Lee, J.M. Park, C. Lee, and J. Yang. 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrient. Journal of Chemical Technology and Biotechnology 69: 451-455.
Zhu, C.J., Y.K. Lee, and T.M. Chao. 1997. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. Journal of Applied Phycology 9: 451-457.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code