Responsive image
博碩士論文 etd-0625104-125545 詳細資訊
Title page for etd-0625104-125545
論文名稱
Title
射頻電漿輔助分子束磊晶第三族氮化物半導體薄膜成長與分析之研究
The study of growth and characterization of Group III nitride semiconductor by RF Plasma-assisted Molecular Beam Epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-01-09
繳交日期
Date of Submission
2004-06-25
關鍵字
Keywords
氮化鎵、分子束磊晶、高解析度X光繞射儀、穿透式電子顯微鏡、氮化物、光致激光
Nitrides, Molecular beam epitaxy, High-resolution X-ray diffraction, Transmission election microscopy, Photoluminescence, Gallium Nitride
統計
Statistics
本論文已被瀏覽 5780 次,被下載 2738
The thesis/dissertation has been browsed 5780 times, has been downloaded 2738 times.
中文摘要
在此論文中我們探討了在藍寶石基板上以射頻電漿輔助分子束磊晶成長第三族氮化物半導體。藍寶石基板的氮化和低溫緩衝層被用來克服基板與氮化鎵之間的晶格不匹配以形成良好品質之氮化鎵。低溫長時間的氮化對氮化鎵薄膜的光學性質與磊晶品質有明顯的改善;而以基板溫度522℃,鎵略多餘氮的比例下成長兩分鐘緩衝層可得到較佳之氮化鎵薄膜。較高的基板溫度與足夠的氮對鎵比例則是控制氮化鎵薄膜品質的兩個重要因素。而三族氮化物的極性常以化學蝕刻以及觀察表面重建來檢驗,鎵極性的氮化鎵薄膜表現出2x表面重建和良好抵抗化學蝕刻而氮極性則表現出3x表面重建和無法抵抗化學蝕刻。成長溫度對銦在氮化銦鎵中的比例佔了很重要的影響,銦的成分隨著基板溫度的增加而減少同時亦隨著薄膜成長方向而遞減。

以銦輔助成長技術來成長氮極性之氮化鎵薄膜也在此論文中探討,隨著增加摻入銦的量,氮化鎵薄膜之光致激光強度和電子遷移率分別增加15倍和6倍,而載子濃度也增加幾個等級。從拉曼量測上也發現氮化鎵薄膜的應力從0.6729減少到0.5044GPa。相對應所有螺旋差排密度之(10-12) X光繞射半高寬從593增加到744 arcsec;而對應伯格向量c不為零的螺旋差排量測之 (0002)X光繞射半高寬則從528減少至276 arcsec。 氮化鎵薄膜之光學性質的增益主要導因為伯格向量之c不為零的螺旋差排減少,而此差排密度的減少也經由穿透式電子顯微鏡得到進一步的驗證 。
Abstract
The group III nitride semiconductor grown on c-plane sapphire by radio frequency plasma assisted molecular beam epitaxy has been studied. To archive good quality GaN film, nitridation and low temperature buffer layer were applied to overcome the issue of lattice mismatch. Low temperature and long period nitridation process shows better improved of optical properties and crystal quality of GaN film. Buffer layer grown with slightly Ga-rich, substrate temperature at 522℃, for 2 minutes leads to better GaN film. High substrate temperature and sufficient nitrogen to gallium ratio are two important factors to control the growth of the good quality GaN epilayer. Chemical etching and observation of surface reconstructions were used to characterize the polarity of group III nitrides. The Ga-polarity GaN film shows 2x surface reconstruction with high chemical resistance while the N-polarity is sensitive to chemical and displays the 3x reconstruction pattern. The process of indium incorporated with GaN is very sensitive to growth temperature. The indium content decreased with increasing the substrate temperature and also decreased along the growth direction.

The N-polar GaN with an indium-facilitated growth technique was also studied. Upon the incorporation of indium during growth, the photoluminescence intensity and electron mobility of GaN has been enhanced by a factor of 15 and 6 respectively. The electron concentration drastically increases by several orders of magnitude. The biaxial strain of GaN film estimated with Micro-Raman technique reduces from 0.6729 to 0.5044GPa. The full-widths at half maximum of asymmetric (10-12) x-ray reflection which related to the density of overall threading dislocations increases from 593 to744 arcsec. In contrast, the symmetric (0002) reflection related only to threading dislocations having a non-zero c-component Burgers vectors reduces from 528 to 276 arcsec. The enhancement of GaN optical property is generally attributed to the reduction of non-zero c-component dislocations. The reduction in density is confirmed by cross-sectional transmission electron microscopy.
目次 Table of Contents
Abstract i
摘要 iii
Chapter 1 Introduction 1
Reference 10
Figures 16
Chapter 2 Growth and Characteristics 25
2.1 Radio frequency plasma assisted molecular beam epitaxy 25
2.2 Growth procedure 27
2.2.1 Sapphire preparation 27
2.2.2 Nitridation 27
2.2.3 Buffer layer 28
2.2.4 GaN epilayer 28
2.2.5 InGaN bulk 28
2.3 Characteristic measurements 28
2.3.1 Reflective high energy electron diffraction 28
2.3.2 Alpha step surface profiler 29
2.3.3 X-ray diffraction 29
2.3.4 Field emission scanning electron microscopy 30
2.3.5 Transmission electron microscopy 30
2.3.6 Raman spectroscopy 31
2.3.7 Electron probe microanalyzer 31
2.3.8 Secondary ion mass spectrometry 31
2.3.9 Photoluminescence 32
2.3.10 Hall effect measurement 32
2.3.11 Quantitative dislocation density from TEM
image 33
2.3.11.1 Plane view TEM 33
2.3.11.2 Cross sectional TEM 34
Reference 39
Figures 40
Chapter 3 Result and Discussion 49
3.1 Nitridation 49
3.2 Low temperature GaN buffer layer 51
3.3 GaN Epilayer 53
3.4 Polarity of GaN epilayer 57
3.5 InGaN bulk 58
Reference 60
Figures 62
Chapter 4 Indium-facilitated Growth 88
Reference 95
Figures 97
Chapter 5 Conclusions 105
Chapter 6 Future Works 108
Reference 111
參考文獻 References
Chapter 1
[1]S. Nakamura, T. Mukai, and M. Senoh, Candela-class high-brightness InGaN/AlGaN double heterostructure blue-light-emitting diodes. Applied Physics Letters, 64 (1994) 1687.
[2]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoru, and Y. Sugimoto, InGaN-Based Multi-Quantum-Well-Structure Laser Diodes. Japan Journal of Applied Physics, 35 (1996) L74.
[3]G.Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, and H. Morkoc, High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures. Applied Physics Letters, 71 (1997) 2154.
[4]W.C. Johnson, J.B. Parsons, and M.C. Crew, Nitrogen Compounds of Gallium III. Gallic Nitride. Journal of Physical Chemistry, 36 (1932) 2651.
[5]H.P. Maruska and J.J. Tietjen, The Prepartion and Properties of Vapor-deposited Singel-crystalline GaN. Applied Physics Letters, 15 (1969) 327.
[6]J.I. Pankove, E.A. Miller, and J.E. Berkeyheiser, GaN electroluminescent diodes. RCA Review, 32 (1971) 383.
[7]H. Amano, N. Sawaki, and I. Akasaki, Effects of hydrogen in an ambient on the crystal growth of GaN using Ga(CH3)3 and NH3. Journal of Crystal Growth, 68 (1984) 163.
[8]Z. Sitar, M.J. Paisley, B. Yan, J. Ruan, W.J. Choyke, and R.F. Davis, Growth of AlN/GaN layered structures by gas source molecular-beam epitaxy Growth of AlN/GaN layered structures. Journal of Vacuum Science and Technology B, 8 (1990) 316.
[9]S.C. Jain, M. Willander, J. Narayan, and R.V. Overstraeten, III-nitrides: Growth, characterization, and properties. Journal of Applied Physics, 87 (2000) 965.
[10]S. Nakamura and G. Fasol, The Blue Laser Diode. 1997: Springer.
[11]J.C. Vesely, M. Shatzkes, and P.J. Burkhardt, Space-charge-limited current flow in gallium nitride thin films. Physical Review B, 10 (1974) 582.
[12]H. Okumura, S. Misawa, S. Yoshida, and E. Sakuma, Epitaxial Growth of GaAs and GaN by Gas Source Molecular Beam Epitaxy using Organic Group V Compounds. Journal of Crystal Growth, 120 (1992) 114.
[13]A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, and R. Ishigami, Nitridation effects of GaP(111)B substrate on MOCVD growth of InN. Journal of Crystal Growth, 212 (2000) 379.
[14]C.J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, M. Razeghi, and D.K. Gaskill, Thermal stability of GaN thin films grown on (0001) Al2O3, (0112)Al2O3 and (0001)Si 6H-SiC substrates. Journal of Applied Physics, 76 (1994) 236.
[15]R.C. Powell, G.A. Tomasch, Y.-W. Kim, J.A. Thornton, and J.E. Greene, Growth of high-resistivity wurtiza and zincblende structure single crystal GaN by reactive-ion molecular beam epitaxy. Materials Research Society Symposium Proceedings, 162 (1990) 525.
[16]F. Hamdani, M. Yeadon, D.J. Smith, H. Tang, W. Kim, A. Salvador, A.E. Botchkarev, J.M. Gibson, A.Y. Polyakov, M. Skowronski, and H. Morkoc, Microsturecture and optical properties of epitaxial GaN on ZnO (0001) grown by reactive molecular beam epitaxy. Journal of Applied Physics, 83 (1998) 983.
[17]A. Kuramata, K. Horino, K. Domen, and K. Shinohara, High-quality GaN epitaxial layer grown by metalorganic vapor phase epitaxy on (111) MgAl2O4 substrate. Applied Physics Letters, 67 (1995) 2521.
[18]S. Kang, W.A. Doolittle, and A.S. Brown, Electrical and structural characterization of AlxGa1-xN/GaN heterostructures grown on LiGaO2 substrate. Applied Physics Letters, 74 (1999) 3380.
[19]P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K.H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature, 406 (2000) 865.
[20]H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Applied Physics Letters, 48 (1986) 353.
[21]S. Nakamura, GaN Growth Using GaN Buffer Layer. Japan Journal of Applied Physics, 30 (1991) L1705.
[22]N. Grandjean, M. Leroux, M. Laugt, and J. Massies, Gas source molecular beam epitaxy of wurtize GaN on sapphire substrates using GaN buffer layers. Applied Physics Letters, 71 (1997) 240.
[23]Y. Kim, S.G. Subramanya, H. Siegle, J. Kruger, P. Perlin, and E.R. Weber, GaN thin films by growth on Ga-rich GaN buffer layers. Journal of Applied Physics, 88 (2000) 6032.
[24]V. Bousquet, J. Heffernan, J. Barnes, and S. Hooper, Effect of buffer layer preparation on GaN epilayers grown by gas-source molecular-beam epitaxy. Applied Physics Letters, 78 (2001) 754.
[25]L. Sugiura, K. Itaya, J. Nishio, H. Fujimoto, and Y. Kokubun, Effects of thermal treatment of low-temperature GaN buffer layers on the quality of subsequent GaN layers. Journal of Applied Physics, 82 (1997) 4877.
[26]S. Keller, B.P. Keller, Y.-F. Wu, B. Heying, D. Kapolnek, J.S. Speck, U.K. Mishra, and S.P. DenBaars, Influence of sapphire nitridation on properties of gallium nitride grown by metalorganic chemical vapor deposition. Applied Physics Letters, 68 (1996) 1525.
[27]N. Grandjean, J. Massies, and M. Leroux, Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers. Applied Physics Letters, 69 (1996) 2071.
[28]G. Namkoong, W.A. Doolittle, A.S. Brown, M. Losurdo, P. Capezzuto, and G. Bruno, Role of sapphire nitridation temperature on GaN growth by plasma assisted molecular beam epitaxy: Part I. Impact of the nitridation chemistry on material characteristics. Japan Journal of Applied Physics, 91 (2001) 2499.
[29]M. Losurdo, P. Capezzuto, G. Bruno, G. Namkoong, W.A. Doolittle, and A.S. Brown, Role of sapphie nitridation temperature on GaN growth by plasma assisted molecular beam epitaxy: Part II. Interplay between chemistry and structure of layers. Journal of Applied Physics, 91 (2001) 2508.
[30]F. Widmann, G. Feuillet, B. Daudin, and J.L. Rouviere, Low temperature sapphire nitridation: A clue to optimiza GaN layers grown by molecular beam epitaxy. Journal of Applied Physics, 85 (1998) 1550.
[31]C. Heinlein, J.K. Grepstad, S. Einfeldt, D. Hommel, T. Berge, and A.P. Grande, Preconditioning of c-plane sapphire for GaN molecular beam epitaxy by electron cyclotron resonance plasma nitridation. Journal of Applied Physics, 83 (1998) 6023.
[32]D.D. Koleske, A.E. Wickenden, R.L. Henry, W.J. DeSisto, and R.J. Gorman, Growth model for GaN with comparison to structural, optical, and electrical properties. Journal of Applied Physics, 84 (1998) 1998.
[33]J.M. Myoung, O. Gluschenkov, K. Kim, and S. Kim, Growth kinetics of GaN and effects of flux ratio on the properties of GaN films grown by plasma-assisted molecular beam epitaxy. Journal of Vacuum Science and Technology A, 17 (1999) 3019.
[34]B. Heying, I. Smorchkova, C. Poblenz, C. Elsass, P. Fini, S.D. Baars, U. Mishra, and J.S. Speck, Optimization of the surface morphologies and electron mobilities in GaN grown by plasma-assisted molecular beam epitaxy. Applied Physics Letters, 77 (2000) 2885.
[35]B. Heying, R. Averbeck, L.F. Chen, E. Haus, H. Riechert, and J.S. Speck, Control of GaN surface morphologies using plasma-assisted molecular beam epiaxty. Journal of Applied Physics, 88 (2000) 1855.
[36]B. Heying, X.H. Wu, S. Keller, Y. Li, D. Kapolnek, B.P. Keller, S.P. DenBaars, and J.S. Speck, Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Applied Physics Letters, 68 (1995) 643.
[37]T. Sasaki and T. Matsuoka, Substrate-polarity dependence of metal -organic vapor-phase expitaxy-grown GaN on SiC. Journal of Applied Physics, 64 (1988) 4531.
[38]F.A. Ponce, D.P. Bour, W.T. Young, M. Saunders, and J.W. Steeds, Determination of lattice polarity for growth of GaN bulk single rystals and epitaxial layers. Applied Physics Letters, 69 (1996) 337.
[39]E.S. Hellman, The Polarity of GaN: a Critical Review. Internet Journal of Nitride Semiconductor Research, 3 (1998) 11.
[40]X.Q. Shen, T. Ide, S.H. Cho, M. Shimizu, S. Hara, H. Okumura, S. Sonoda, and S. Shimizu, Realization of Ga-polarity GaN films in radio-frequency plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 218 (2000) 155.
[41]X.-Q. Shen, T. Ide, S.-H. Cho, M. Shimizu, S. Hara, H. Okumura, S. Sonoda, and S. Shimizu, Essential Change in Crystal Qualities of GaN Films by Controlling Lattice Polarity in Molecular Beam Epitaxy. Japan Journal of Applied Physics, 39 (2000) L16.
[42]K. Xu, N. Yano, A.W. Jia, A. Yoshikawa, and K. Takahashi, Polarity control of GaN grown on sapphire substrate by RF-MBE. Journal of Crystal Growth, 237-239 (2002) 1003.
[43]D. Huang, M.A. Reshchikov, P. Visconti, F. Yun, A.A. Baski, T. King, H. Morkoc, J. Jasinski, Z. Liliental-Weber, and C.W. Litton, Comparative study of Ga- and N-polar GaN films grown on sapphire substrates by molecular beam epitaxy. Journal of Vacuum Science and Technology B, 20 (2002) 2256.
[44]X.Q. Shen, T. Ide, S.H. Cho, M. Shimizu, S. Hara, and H. Okumura, Stability of N- and Ga-polarity GaN surfaces during the growth interruption studied by reflection high-energy electron diffraction. Applied Physics Letters, 77 (2000) 4013.
[45]X.Q. Shen, T. Ide, M. Shimizu, and H. Okumura, Growth and characterizations of InGaN on N- and Ga-polarity GaN grown by plasma-assisted molecular-beam epitaxy. Journal of Crystal Growth, 237-239 (2002) 1148.
[46]M. Seelmann-Eggebert, J.L. Weyher, H. Obloh, H. Zimmermann, A. Rar, and S. Porowski, Polarity of (00.1) GaN epilayers grown on a (00.1) sapphire. Applied Physics Letters, 71 (1997) 2635.
[47]L.L. Li, M.J. Jurkovic, W.I. Wang, J.M.V. Hove, and P.P. Chow, Surface polarity dependence of Mg doping in GaN grown by molecular-beam epitaxy. Applied Physics Letters, 76 (2000) 1740.
[48]A.R. Smith, R.M. Feenstra, D.W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, and J.E. Northrup, Determination of wurtzite GaN lattice polarity based on surface reconstruction. Applied Physics Letters, 72(2114) (1998).
[49]A.R. Smith, R.M. Feenstra, D.W. Greve, M.S. Shin, M. Skowronski, J. Neugebauer, and J.E. Norhrup, Reconstruction of GaN (0001) and (000-1) surfaces: Ga-rich metallic structures. Journal of Vacuum Science and Technology B, 16 (1998) 2242.
[50]Q.K. Xue, Q.Z. Xue, S. Kuwano, T. Sakurai, T. Ohno, I.S.T. Tsong, X.G. Qiu, and Y. Segawa, Imaging wurtzite GaN surfaces by molecular beam epitaxy-scanning tunneling microscopy. Thin Solid Films, 367 (2000) 149.
[51]D.C. Reynolds, D.C. Look, W. Kim, O. Aktas, A. Botchkarev, A. Salvador, H. Morkoc, and D.N. Talwar, Ground and excited state exciton spectra from GaN grown by molecular-beam epitaxy. Journal of Applied Physics, 80 (1996) 594.
[52]K. Reimann, M. Steube, D. Frohlich, and S.J. Clarke, Exciton binding energies and band gaps in GaN bulk crystals. Journal of Crystal Growth, 189/190 (1998) 652.
[53]S. Loughin, R.H. French, W.Y. Ching, Y.N. u, and G.A. Slack, Electronic structure of aluminum nitride: Theory and eperiment. Applied Physics Letters, 63 (1993) 1182.
[54]I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. Applied Physics Review, 89 (2001) 5815.
[55]J. Wu, W. Walukiewicz, K.M. Yu, J.W.A. III, E.E. haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, Unusual properties of the fundamental band gap of InN. Applied Physics Letters, 80 (2002) 3967.
[56]T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Optical bandgap energy of wurtzite InN. Applied Physics Letters, 81 (2002) 1246.
[57]S. Nakamura, T. Mukai, M. Senoh, S.-i. Nagahama, and N. Iwasa, InxGa(1-x)N/InyGa(1-y)N superlattices grown on GaN films. Journal of Applied Physics, 74 (1993) 3911.
[58]T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amano, and I. Akasaki, Optical properties of strained AlGaN and GaInN on GaN. Japan Journal of Applied Physics, 36 (1997) L177.
[59]X.-Q. Shen, T. Ide, M. Shimizu, S. Hara, and H. Okumura, High-Quality InGaN Films Grown on Ga-Polarity GaN by Plasma-Assisted Molecular-Beam Epitaxy. Japan Journal of Applied Physics, 39 (2000) L1270.
[60]K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R.F. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM charaterization. Internet Journal of Nitride Semiconductor Research, 2 (1997) 6.
[61]C. Adelmann, R. Langer, G. Feuillet, and B. Daudin, Indium incorporation during the growth of InGaN by molecular-beam epitaxy studied by reflection high-energy electron diffraction intensity oscillations. Applied Physics Letters, 75 (1999) 3518.
[62]X.-Q. Shen, P. Ramvall, P. Riblet, and Y. Aoyagi, Improvements of the Optical and Electrical Properties of GaN Films by Using In-doping Method During Growth. Japan Journal of Applied Physics, 38 (1999) L411.
[63]X.Q. Shen, P. Ramvall, P. Riblet, Y. Aoyagi, K. Hosi, S. Tanaka, and I. Suemune, Investigations of optical and electrical properties of In-doped GaN films grown by gas-source molecular beam epitaxy. Journal of Crystal Growth, 209 (2000) 396.
[64]G. Pozina, J.P. Bergman, B. Monemar, S. Yamaguchi, H. Amano, and I. Akasaki, Optical spectroscopy of GaN grown by metalorganic vapor phase epitaxy using indium surfactant. Applied Physics Letters, 76 (2000) 3388.
[65]C. Kruse, S. Einfeldt, T. Bottcher, and D. Hommel, In as a surfactant for the growth of GaN(0001) by plasma-assisted molecular beam epitaxy. Applied Physics Letters, 79 (2001) 3425.
[66]X.-Q. Shen, M. Shimizu, and H. Okumura, Indium Roles on the GaN Surface Studied Directly by Reflection High-Energy Electron Diffraction Observations. Jpn. J. Appl. Phys., 41 (2002) L873.
[67]W.K. Fong, C.F. Zhu, B.H. Leung, C. Surya, B. Sundaravel, E.Z. Luo, J.B. Xu, and I.H. Wilson, Characterizations of GaN films grown with indium surfactant by RF-plasma assisted molecular beam epitaxy. Microelectronics Reliablity, 42 (2002) 1179.

Chapter 2
[1]Model 930H MBE System Operation Manual. 2000: Veeco Applied Epi.
[2]W. Braun, Applied RHEED. 1999: Springer.
[3]B.D. Cullity, Elements of X-ray Diffraction. Second ed. 1978: Addison Wesley.
[4]W.H. Weber and R. Merlin, Raman Scattering in Materials Science. 2000: Springer.
[5]http://www.eeel.nist.gov
[6]D.B. Williams and C.B. Carter, Transmission Electron Microscopy. 1996: Plenum.
[7]M.H. Loretto, Electron Beam Analysis of Materials. Second ed. 1994: Chapman & Hall.
[8]S. Nakamura and G. Fasol, The Blue Laser Diode. 1997: Springer.

Chapter 3
[1]G. Namkoong, W.A. Doolittle, A.S. Brown, M. Losurdo, P. Capezzuto, and G. Bruno, Role of sapphire nitridation temperature on GaN growth by plasma assisted molecular beam epitaxy: Part I. Impact of the nitridation chemistry on material characteristics. Japan Journal of Applied Physics, 91 (2001) 2499.
[2]M. Losurdo, P. Capezzuto, G. Bruno, G. Namkoong, W.A. Doolittle, and A.S. Brown, Role of sapphie nitridation temperature on GaN growth by plasma assisted molecular beam epitaxy: Part II. Interplay between chemistry and structure of layers. Journal of Applied Physics, 91 (2001) 2508.
[3]C. Heinlein, J.K. Grepstad, S. Einfeldt, D. Hommel, T. Berge, and A.P. Grande, Preconditioning of c-plane sapphire for GaN molecular beam epitaxy by electron cyclotron resonance plasma nitridation. Journal of Applied Physics, 83 (1998) 6023.
[4]G. Namkoong, W.A. Doolittle, A.S. Brown, M. Losurdo, P. Capezzuto, and G. Bruno, Role of low-temperature (200C) nitridation in the growth of GaN by plasma-assisted molecular-beam epitaxy. Journal of Vacuum Science and Technology B, 20 (2002) 1221.
[5]S. Nakamura and G. Fasol, The Blue Laser Diode. 1997: Springer.
[6]Y. Kim, S.G. Subramanya, H. Siegle, J. Kruger, P. Perlin, and E.R. Weber, GaN thin films by growth on Ga-rich GaN buffer layers. Journal of Applied Physics, 88 (2000) 6032.
[7]N. Newman, J. Ross, and M. Rubin, Thermodynamic and kinetic processes involved in the growth of epitaxial GaN thin films. Applied Physics Letters, 62 (1993) 1242.
[8]M.A. Herman and H. Sitter, Molecular Beam Epitaxy Fundamentals and Current Status. 1996: Springer.
[9]W. Rieger, T. Metzger, H. Angerer, R. Dimitrov, O. Ambacher, and M. Stuzmann, Influence of substrate-indeced biaxial compressive stress on the optical properties of thin GaN films. Applied Physics Letters, 68 (1996) 970.
[10]B. Heying, X.H. Wu, S. Keller, Y. Li, D. Kapolnek, B.P. Keller, S.P. DenBaars, and J.S. Speck, Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Applied Physics Letters, 68 (1995) 643.
[11]J.K. Tsai, I. Lo, K.L. Chuang, L.W. Tu, J.H. Huang, C.H. Hsieh, and K.Y. Hsieh, Effect of N and Ga flux ratio on the GaN surface morphologies grown at high temperature by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, (2004).
[12]X.-Q. Shen, T. Ide, S.-H. Cho, M. Shimizu, S. Hara, H. Okumura, S. Sonoda, and S. Shimizu, Essential Change in Crystal Qualities of GaN Films by Controlling Lattice Polarity in Molecular Beam Epitaxy. Japan Journal of Applied Physics, 39 (2000) L16.
[13]X.Q. Shen, T. Ide, S.H. Cho, M. Shimizu, S. Hara, H. Okumura, S. Sonoda, and S. Shimizu, Realization of Ga-polarity GaN films in radio-frequency plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 218 (2000) 155.
[14]M. Seelmann-Eggebert, J.L. Weyher, H. Obloh, H. Zimmermann, A. Rar, and S. Porowski, Polarity of (00.1) GaN epilayers grown on a (00.1) sapphire. Applied Physics Letters, 71 (1997) 2635.
[15]L.L. Li, M.J. Jurkovic, W.I. Wang, J.M.V. Hove, and P.P. Chow, Surface polarity dependence of Mg doping in GaN grown by molecular-beam epitaxy. Applied Physics Letters, 76 (2000) 1740.
[16]A.R. Smith, R.M. Feenstra, D.W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, and J.E. Northrup, Determination of wurtzite GaN lattice polarity based on surface reconstruction. Applied Physics Letters, 72(2114) (1998).
[17]D.C. Reynolds, D.C. Look, W. Kim, O. Aktas, A. Botchkarev, A. Salvador, H. Morkoc, and D.N. Talwar, Ground and excited state exciton spectra from GaN grown by molecular-beam epitaxy. Journal of Applied Physics, 80 (1996) 594.
[18]I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. Applied Physics Review, 89 (2001) 5815.
[19]T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amano, and I. Akasaki, Optical properties of strained AlGaN and GaInN on GaN. Japan Journal of Applied Physics, 36 (1997) L177.
[20]T. Bottcher, S. Einfeldt, V. Kirchner, S. Figge, H. Heinke, D. Hommel, H. Selke, and P.L. Ryder, Incorporation of indium during molecular beam epitaxy of InGaN. Applied Physics Letters, 73 (1998) 3232.

Chapter 4
[1]J.E. Northrup and J. Neugebauer, Indium-induced changes in GaN(0001) surface morphology. Physical Review B, 60 (1998) R8473.
[2]C. Kruse, S. Einfeldt, T. Bottcher, and D. Hommel, In as a surfactant for the growth of GaN (0001) by plsma-assisted molecular beam epitaxy. Applied Physics Letters, 79 (2001) 3425.
[3]W.K. Fong, C.F. Zhu, B.H. Leung, C. Surya, B. Sundaravel, E.Z. Luo, J.B. Xu, and I.H. Wilson, Characterizations of GaN films grown with indium surfactant by RF-plasma assisted molecular beam epitaxy. Microelectronics Reliablity, 42 (2002) 1179.
[4]X.-Q. Shen, P. Ramvall, P. Riblet, and Y. Aoyagi, Improvements of theOptical and Electrical Properties of GaN Films by Using In-doping Method During Growth. Jpn. J. Appl. Phys., 38 (1999) L411.
[5]X.Q. Shen, P. Ramvall, P. Riblet, Y. Aoyagi, K. Hosi, S. Tanaka, and I. Suemune, Investigations of optical and electrical properties of In-doped GaN films grown by gas-source molecular beam epitaxy. Journal of Crystal Growth, 209 (2000) 396.
[6]G. Pozina, J.P. Bergman, B. Monemar, S. Yamaguchi, H. Amano, and I. Akasaki, Optical spectroscopy of GaN grown by metalorganic vapor phase epitaxy using indium surfactant. Applied Physics Letters, 76 (2000) 3388.
[7]G. Namkoong, W.A. Doolittle, A.S. Brown, M. Losurdo, P. Capezzuto, and G. Bruno, Role of sapphire nitridation temperature on GaN growth by plasma assisted molecular beam epitaxy: Part I. Impact of the nitridation chemistry on material characteristics. Journal of Applied Physics, 91 (2002) 2499.
[8]M. Losurdo, P. Capezzuto, G. Bruno, G. Namkoong, W.A. Doolittle, and A.S. Brown, Role of sapphire nitridation temperature on GaN growth by plasma assisted molecular beam epitaxy: Part II. Interplay between chemistry and structure of layers. Journal of Applied Physics, 91 (2002) 2508.
[9]X.-Q. Shen, M. Shimizu, and H. Okumura, Indium Roles on the GaN Surface Studied Directly by Reflection High-Energy Electron Diffraction Observations. Jpn. J. Appl. Phys., 41 (2002) L873.
[10]C. Adelmann, R. Langer, G. Feuillet, and B. Daudin, Indium incorporation during the growth of InGaN by molecular-beam epitaxy studied by reflection high-energy electron diffraction intensity oscillations. Applied Physics Letters, 75 (1999) 3518.
[11]H. Chen, R.M. Feenstra, J.E. Northup, T. Zywietz, J. Neugebauer, and D.W. Greve, Surface structures and growth kinetics of InGaN(0001) grown by molecular beam epitaxy. Journal of Vacuum Science and Technology B, 18 (2000) 2284.
[12]C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J.W. Ager, E. Jones, Z. Lilienthal-Weber, M. Rubin, M.D. Bremser, and R.F. Davis, Strain-related phenomena in GaN thin films. Physical Review B, 54 (1996) 17745.
[13]P. Perlin, C. Jauberthie-Carullon, J.P. Itie, A.S. Miguel, I. Grezgory, and A. Polian, Raman scattering and x-ray absorption spectroscopy in gallium nitride under high pressure. Physical Review B, 45 (1992) 83.
[14]B. Heying, X.H. Wu, S. Keller, Y. Li, D. Kapolnek, B.P. Keller, S.P. DenBaars, and J.S. Speck, Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Applied Physics Letters, 68 (1995) 643.
[15]I.-H. Lee, I.-H. Choi, C.-R. Lee, E.-j. Shin, D. Kim, S.K. Noh, S.-J. Son, K.Y. Lim, and H.J. Lee, Stress relaxtion in Si-doped GaN studied by Raman spectroscopy. Journal of Applied Physics, 83 (1998) 5787.
[16]S. Ruvimov, Z. Liliental-Weber, T. Suski, J.W.A. III, J. Washburn, J. Krueger, C. Kisielowski, E.R. Weber, H. Amano, and I. Akasaki, Effect of Si doping on the dislocation structure of GaN grown on the A-face of sapphire. Applied Physics Letters, 69 (1996) 990.
[17]H. Heinke, V. Krichner, S. Einfeldt, and D. Hommel, X-ray diffraction analysis of the defect structure in epitaxial GaN. Applied Physics Letters, 77 (2000) 2145.
[18]T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, Characterization of threading dislocations in GaN epitaxial layers. Applied Physics Letters, 76 (2000) 3421.

Chapter 6
[1]S. Nakamura, T. Mukai, and M. Senoh, Candela-class high-brightness InGaN/AlGaN double heterostructure blue-light-emitting diodes. Applied Physics Letters, 64 (1994) 1687.
[2]X.-Q. Shen, T. Ide, S.-H. Cho, M. Shimizu, S. Hara, H. Okumura, S. Sonoda, and S. Shimizu, Essential Change in Crystal Qualities of GaN Films by Controlling Lattice Polarity in Molecular Beam Epitaxy. Japan Journal of Applied Physics, 39 (2000) L16.
[3]W.K. Fong, C.F. Zhu, B.H. Leung, and C. Surya, Growth of high quality GaN thin films by MBE on intermediate-temperature buffer layers. Materials Research Society Symposium Proceedings, 5 (2000) 12.
[4]B.H. Leung, W.K. Fong, and C. Surya, Influence of intermediate-temperature buffer layer on flicker noise characteristics of MBE-grown GaN thin films and devices. Applied Surface Science, 212-213 (2003) 897.
[5]F. Yung, M.A. Reshchikov, P. Visconti, K.M. Jones, D. Wang, M. Redmond, J. Cui, C.W. Litton, and H. Morkoc, Investigation of buffer layers for GaN grown by MBE. Materials Research Society Symposium Proceedings, (2001).
[6]W.K. Fong, S.W. Ng, B.H. Leung, and C. Surya, Characterization of low-frequency noise in molecular beam epitaxy-grown GaN epilayers deposited on double buffer layers. Journal of Applied Physics, 94 (2003) 387.
[7]I.H. Lee, I.H. Choi, C.R. Lee, E.J. Shin, D. Kim, S.K. Noh, S.J. Son, K.Y. Lim, and H.J. Lee, Stree relaxtion in Si-doped GaN studied by Raman spectroscopy. Journal of Applied Physics, 83 (1998) 5787.
[8]J. Sanchez-Paramo, J.M. Calleja, M.A. Sanchez-Garcia, and E. Calleja, Optical investigation of strain in Si-doped GaN films. Applied Physics Letters, 78 (2001) 4124.
[9]T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, Characterization of threading dislocations in GaN epitaxial layers. Applied Physics Letters, 76 (2000) 3421.
[10]M. Albrecht, H.P. Strunk, J.L. Weyher, I. Grzegory, S. Porowski, and T. Wosinski, Carrier recombination at single dislocations in GaN measured by cathodoluminescence in a transmission electron microscope. Journal of Applied Physics, 92 (2002) 2000.
[11]D.T. McInturff, J.M. Woodall, A.C. Warren, N. Braslau, G.D. Pettit, P.D. Kirchner, and M.R. Melloch, Photoemission spectroscopy of GaAs:As photodiodes. Applied Physics Letters, 60 (1992) 448.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code