Responsive image
博碩士論文 etd-0625105-152032 詳細資訊
Title page for etd-0625105-152032
論文名稱
Title
利用濕蝕刻製作新幾何結構之行波式電致吸收光調變器
New-Geometrical-Structure Traveling-Wave Electroabsorption Modulator by Wet Etching
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-18
繳交日期
Date of Submission
2005-06-25
關鍵字
Keywords
寄生電容、高速、底切蝕刻、行波式、電致吸收光調變器
Traveling-Wave, undercut etching, parasitic capacitance, high-speed, Electroabsorption modulator
統計
Statistics
本論文已被瀏覽 5878 次,被下載 0
The thesis/dissertation has been browsed 5878 times, has been downloaded 0 times.
中文摘要
摘要
本論文中,我們提出一種新幾何結構波導的行波式電致吸收光調變器(Traveling-Wave Electroabsorption Modulator,TWEAM)。為了要獲得元件高速操作,以得到良好的微波傳遞特性,降低在波導的寄生電容是必要的。在本工作中,一種叫做兩次底切蝕刻的製程是被發展,為了降低在波導的寄生電容。
在論文一開始,首先用BPM的軟體去計算這新結構二維的光模態形式,確定像這種形狀的波導確實有侷限光模態的能力。接著基於等效電路的模型,不同波導結構的微波特性是被研究,用來決定所要製作的底切蝕刻結構,模擬的結果用來說明新幾何結構可以提供我們製作出特性更好的電致吸收光調變器。
藉由選擇性蝕刻溶液的配方,底切蝕刻的製程方式是被使用,以降低在波導的寄生電容。而H3PO4 :HCl的配方被使用去蝕刻在多量子井(MQW)層上的P-InP層;H3PO4:H2O2:H2O的配方被使用去蝕刻在多量子井(MQW)層,以決定出波導核心的寬度。
底切蝕刻的製程已成功的被發展,元件經過量測的結果:其元件的電對電響應(E-E Response)在40GHz頻率時,其S11為-17.5 dB、而S21為-2.7dB在40GHz的電傳輸,如此顯示因連續二次的底切蝕刻所造成的低寄生電容,確實可以改善元件的頻帶寬。
Abstract
Abstract
In this thesis, we propose a new geometrical structure of waveguide for the application of traveling-wave electroabsorption modulator (TWEAM). As approaching to high-speed performance in TWEAM, low parasitic capacitance in the waveguide is necessary to get good microwave propagation properties. In this work, a novel processing called two-step undercut-etching the active region (UEAR) is developed to reduce the parasitic capacitance.
First of all, Beam Propagation Method (BPM) is used to calculate this 2-D structure optical modes ensuring the guiding capability in such kind of waveguides. Based on an equivalent circuit model, the microwave propagation on different structures of waveguide is then investigated to decide the UEAR waveguide structure.
By the selectively etching solution on InP/InGaAsP, the processing by two-step UEAR is developed to reduce the parasitic capacitance in the waveguide core. H3PO4:HCl is used to selectively etch P-InP layer on the top of InGaAsP M.Q.W. (multiple quantum wells, active region). H3PO4:H2O2:H2O is subsequently and selectively remove InGaAsP M.Q.W.s to define the waveguide core.
This processing has been successfully developed. The electrical transmission measurement on this kind of TWEAM shows low reflection S11 of < -17.5dB and a low insertion loss S21 of < –2.7dB from D.C. to 40GHz, indicating high microwave performance on such two-step UEAR waveguide can be achieved due to the low parasitic capacitance.
目次 Table of Contents
目錄

目錄……………………………………………………………………….….ii
誌謝…………………………………………………………………………..iv
中文摘要……………………………………………………………………...v
英文摘要……………………………………………………………………..vi

第一章 緒論.………………………………………………………………… 1
1.1 前言 1 1.2 研究動機 1
1.3 論文架構 2

第二章 電致吸收光調變器之工作原理……………………………………..3
2.1 Franz-Keldysh effect的描述 3
2.2量子侷限史塔克效應 (Quantum Confined Stark Effect) 4
2.3電子、電洞波函數的影響 7

第三章 光波導和行波式電極模擬分析………..……………………………9
3.1光波導的模擬分析 9
3.1.1 材料結構和特性 9
3.1.2 光波導的模擬結果 12
3.2 行波式電極模擬分 13
3.2.1 行波式電極 13
3.2.2 微波模擬分析 14
3.3 總結 16

第四章 元件製作………….…….………………………………..……….….18
4.1 元件製作步驟 18
4.2 製程討論.…………………………………………………...……….. 36

第五章 量測結果………………………..………………………………..… 41
5.1 電對電微波傳輸特性 42
5.2 光對光傳輸特性 44

第六章 結論…………………………………………………………………..45

參考文獻……..……………………………………………………….. ……..46

附錄一……..……………………………………………………….. ……..48
參考文獻 References
[1] F. Devaux and A. Carenco, ”Optical processing electroabsorption modulators,” in OFC’98 Tech. Dig., 1998, pp. 285-287, paper ThH3.
[2] Y.-J. Chiu, H.-F. Chou, V. Kaman, P. Abraham, and J. E. Bowers, “High extinction ratio and saturation power traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 14, pp. 792–794, June 2002.
[3] S. Zhang, “Traveling-wave electroabsorption modulators,” Ph. D. Dissertation, Dept. Elect. Comput. Eng. Univ. Calif. Santa Barbara, CA,1999.
[4] M. Shirai, H. Arimoto, K. Watanbe, A. Taike, K. Shinoda, J. Shimizu, H. Sato, T. Ido, T. Tsuchiya, M. Aoki, S. Tsuji, N. Sasada, S. Tada, and M. Okayasu, “40 Gbit/s electroabsorption modulators with impedance controlled electrodes,” Electron. Lett., vol. 39, no. 9, pp. 734–735, May 2003.
[5] Y. Akage, K. Kawano, S. Oku, R. Iga, H. Okamoto, Y. Miyamoto, and H. Takeuchi, “Wide bandwidth of over 50 GHz traveling wave electrode electroabsorption modulator integrated DFB lasers,” Electron. Lett., vol.37, no. 5, pp. 299–300, 2001.
[6] S. Irmscher, R. Lew&eacute;n, and U. Eriksson,“InP/InGaAsP high-speed trav- eling-wave electro-absorption modulators with integrated termination resistors,” Photon. Technol. Lett., vol. 14, pp. 923–925, 2002.
[7] G. L. Li, S. A. Pappert, P. Mages, C. K. Sun, W. S. C. Chang, and P. K. L. Yu, “High-saturation high-speed traveling-wave InGaAsP-InP electroab- sorption modulator,” IEEE Photon. Technol. Lett., vol. 13, pp. 1076-1078, 2001.
[8] S. Kodoma, T. Yoshihide, and H. Ito, “320-Gbit/s demultiplexing with monolitic PD-EAM optical gate,” in Eur. Conf. Optical Communication (ECOC’02), 2002, Paper 8.4.1.
[9] Dan-Long Lee, ”Fabrication of the InGaAsP/InGaAsP Electroabsorption Modulator by Wet Etching,” Institute of Electro-Optical Engineering, NSYSU, 2004. (Thsis).
[10] W. Franz, Z. Naturforsch., vol. 13, pp. 484, 1958.
[11] L. V. Keldysh,Zh. Eksp. Sov. Phys., vol. JETP7,pp. 788, 1953.


[12] J. D. Dow and D. Redfield, ’’Electroabsorption in semiconductors: The excitonic absorption edge,” Phys. Lett. B, Solid State, vol. 1, pp.3358- 3371 , 1970.
[13] I. A. Merkulov and V. I. Perel, ”Effects of electron-hole interaction on electroabsorption in semiconductors,” Phys. Lett. A, vol. 45A, pp. 83-84, 1973.
[14] I. Kotaka, K. Stato, K. Wakita, M. Yamamoto,and T. Kataoka , ”High- speed (20Gb/s),low-drive voltage(2V/sub p-p/) srtained InGaAsP MQW modulator /DFB laser light source,” Electron. Commun. Jpn. 2, Electron.,vol. 78, pp. 1-9, 1995.
[15] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann,T. H. Wood, and C. A. Burrus, ”Electric field dependence of optical absorpyion near the band gap of quantum-well structures,” Phys. Rev. B, Condens. Matter , vol. 32, pp 1043-1060, 1985.
[16] G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, ”Variational calculations on a quantum well in an electric field,” Phys. Rev. B, Condens. Matter, vol. 28, pp. 3241-3245, 1983.
[17] K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector design and measurements,” IEEE J. Sel. Top. Quantum Electron. , vol. 2, pp. 622-629, 1996.
[18] K. S. Giboney, J. W. Rodwell, and J. E. Bowers, “Traveling-wave photo- detector theory,” IEEE Trans. Microw. Theory Tech, vol. 45, pp. 1310-1319, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.108.22
論文開放下載的時間是 校外不公開

Your IP address is 3.139.108.22
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code