Responsive image
博碩士論文 etd-0625106-200042 詳細資訊
Title page for etd-0625106-200042
論文名稱
Title
PTTG基因在大腸直腸癌細胞株的表現與化學治療藥物5-FU和胰島素的影響
Expression of PTTG Gene in the Colon-Rectal Carcinoma Cell Line, and the Effect of the Chemotherapeutic Drug 5-FU and Insulin
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-13
繳交日期
Date of Submission
2006-06-25
關鍵字
Keywords
胰島素、大腸直腸癌
Insulin, Colorectal cancer, Securin, 5-FU, PTTG
統計
Statistics
本論文已被瀏覽 5702 次,被下載 2737
The thesis/dissertation has been browsed 5702 times, has been downloaded 2737 times.
中文摘要
大腸直腸癌在全世界是第三常見的惡性腫瘤,由於大腸直腸癌病人手術後五年存活率,第三期後就降到60%以下,因此目前有關大腸直腸癌首要的兩個課題,就是早期診斷與更好的化學治療方法。深入地去研究大腸直腸癌分子病理機轉,正是解決這兩大課題的不二法門。胰島素與大腸癌的致癌機轉與發展有關,而5-FU在大腸直腸癌是標準的且重要的化學治療藥物。此外PTTG是一多功能的人類securin,在很多功能上扮演重要角色。我們在蛋白質二維電泳的研究發現,PTTG與大腸直腸癌的侵犯程度有關,而化學治療正是用於侵犯性的大腸直腸癌。另外,PTTG過度的表現在許多腫瘤,而在正常組織它的表現量是低的或沒有的,這種腫瘤專一性表現的特徵,正適合我們臨床上研究針對以PTTG為目標的藥物或標靶治療。所以本研究利用細胞株HT-29,研究5-FU與胰島素對PTTG表現的影響。在實驗中,我們發現在生理值的胰島素會向上控制PTTG。在正常的生理值,胰島素向上控制PTTG呈劑量決定方式,但在大於正常生理值,PTTG向上調控的表現量反而有減少的情形。而在5-FU的實驗,5-FU的確會使PTTG有比較高的表現量,但並不與劑量成正相關,在較高的劑量反而有向上控制表現量減少的情形。在癌症細胞,胰島素控制的路徑與腫瘤的生長、增長和細胞凋亡有關,而這作用可能經由活化致癌的分子目標,如PTTG。我們發現生理濃度的胰島素可以在大腸直腸癌細胞株HT-29向上控制PTTG,意味著一個與胰島素啓動的機轉,與大腸直腸癌發展和(或)進行有關。由於腫瘤轉一性表現,胰島素誘發PTTG,也可能做為大腸直腸癌治療的一個目標。在5-FU與PTTG方面,我們發現5-FU在HT-29約其IC50的濃度時可以誘發PTTG,而且達到作用的高峰。意外的是,在這個濃度之後,誘發的作用有下降的趨勢,這是目前為止所未發現的5-FU對PTTG影響的方式。由於這個發現,我們可以合理解釋為何有些細胞株在DNA受損後被抑制,有些會有較高的表現。重要的是,因為這一個發現,在DNA受損後,PTTG的表現與染色體分離和DNA修補的關聯與機轉,可以得到合理的解釋。而基於這一個發現,我們推測,在DNA受損後,PTTG連結DNA damage response pathways、染色體分離與細胞凋亡,亦即PTTG是細胞在DNA受損後,決定細胞進行DNA修補�細胞周期停止或進行細胞凋亡的關鍵。
Abstract
Colorectal cancer (CRC) is the 3rd common cancer in the world. Because the five-year survival rate is below 60 % in the patients with CRC, two important respects in CRC researches are early diagnosis and more effective chemotherapeutic drugs. In fact, the studies on molecular pathology of CRC can resolve these two problems. Insulin has a role in the carcinogenesis and developments of CRC, and 5-FU is a standard chemotherapeutic drug for the patients with stage III CRC. As a human securin, PTTG has a major role in many functions. In our studies of 2-D proteomics, PTTG correlates with the invasiveness of CRC. Besides, it is found to be highly expressed in many types of cancer, but the expression of PTTG is, however, low or undetectable in normal tissues. This character of tumor-specific expression is suitable for drug and target therapy. Therefore, we use cell line HT-29 to study the effects of 5-FU and insulin on the expression of PTTG. We have found that insulin in the physiologic level up-regulates PTTG. In normal physiologic level, insulin up-regulates PTTG, in a dose-dependent manner. On the other hand, the induction of PTTG by insulin more than normal physiologic level is decreased. In the studies with 5-FU, PTTG has a higher level after treatment, but not in dose-dependent manner. The up-regulation of PTTG by 5-FU is decreased in a higher dose. In cancer cells, insulin regulated pathways may contribute to the growth, proliferation, and apoptosis of tumors by activating oncogenic molecular targets such as PTTG. We have showed that insulin of bio-physiologic level can up-regulate PTTG in colon cancer HT-29 cell lines. Induction of PTTG by insulin suggests a mechanism by which insulin may contribute to the development and/or progression of colon cancers. To tumor- specific expression of PTTG, induction of PTTG by insulin, consequently, may be a target of colon cancer treatment. In the studies of 5-FU and PTTG, we have found that 5-FU in HT-29 cells can induce PTTG, with a peak effect in a dose around IC50. Interestingly, the induction of PTTG is decreased in a higher dose of 5-FU. This is a new finding in the effect of 5-FU on PTTG. Accordingly, we can realize why PTTG in some studies is suppressed; the others have a higher level. More importantly, the connection of PTTG expression between sister chromatic separation and DNA repair after DNA damage is more reasonable. Based on this finding, we propose that PTTG connects DNA damage response pathways, sister chromatic separation and apoptosis after DNA damage. Therefore, PTTG has a key role after DNA damage, deciding cells to have DNA repair/cell cycle arrest or to progress to apoptosis.
目次 Table of Contents
中文摘要……………………………………………………………(I)
英文摘要………………………………………………………… (II)
英文縮寫表……………………………………………………… (IV)

論文內文……………………………………………………………(1)
壹. 緒言……………………………………………………………(1)
一. 大腸直腸癌…………………………………………… (1)
1. 大腸直腸癌流行概況………………………………… (1)
2. 大腸直腸癌的分類…………………………………… (3)
3. 大腸直腸癌在解剖位置上的分佈…………………… (4)
4. 大腸直腸癌致癌機轉(carcinogenesis)………… (5)
5. 大腸直腸癌臨床上的分期與預後…………………… (8)
二. 胰島素(Insulin)與大腸直腸
     癌……………………………………………………… (9)
1. 胰島素為重要的生長因子…………………………… (9)
2. 胰島素増加類胰島素生長素-1(IGF-1)的生化活性       ……………………………………………………… (10)
三. 5-FU……………………………………………………(11)
1. 5-FU的代謝……………………………………………(11)
2. Thymidylate synthase(TS)的抑制………………(12)
3. DNA的錯誤篏入……………………………………… (14)
4. RNA的錯誤篏入……………………………………… (14)
四. PTTG之研究……………………………………………(14)
1. PTTG的promoter………………………………………(15)
2. PTTG蛋白質……………………………………………(15)
3. PTTG的表現……………………………………………(17)
(1) PTTG的表現量是細胞周期依賴性的(cell cycle-
dependent)且是因細胞増長的功能函數………… (17)
(2) PTTG的次細胞部位的表現(subcellular expression)是
細胞周期依賴性的(cell cycle-dependent)……(17)
(3) PTTG的表現具組織專一性與腫瘤專一性………… (17)
(4) PTTG在腫瘤中的過度表現-非突變……………… (18)
4. PTTG的控制……………………………………………(19)
5. PTTG的功能……………………………………………(22)
(1) 致癌基因-細胞轉型與增長…………………………(22)
(2) 細胞周期的進行與有絲分裂…………………………(22)
(3) 轉錄活化(transcriptional activation)的能力(24)
(4) PTTG可與其它的蛋白質結合………………………..(25)
A. PTTG binding factor(PBF)……………………..(25)
B. S10與DnaJ…………………………………………….(25)
C. DNA-PK和Ku-70……………………………………… (25)
D. PTTG與P53之關係…………………………………… (26)
五. 實驗目的………………………………………………(27)

貳. 材料方法…………………………………………………… (28)
一. 大腸直腸癌細胞株HT29之培養與處理………………(28)
1. 材料……………………………………………………(28)
2. 細胞培養………………………………………………(28)
(1) 冷凍細胞解凍程序……………………………………(28)
(2) 細胞繼代培養(Subculture)與細胞計數…………(28)
(3) 細胞冷凍程序…………………………………………(29)
二. 大腸直腸癌細胞株SW480、SW620、HT29之蛋白質萃
取………………………………………………………(29)
三. 蛋白質定量……………………………………………(29)
四. 藥物試驗………………………………………………(30)
1. 化學治療藥物試驗……………………………………(30)
2. 胰島素藥物試驗………………………………………(30)
五. 蛋白質西方漬點電泳法(Western Blotting)……(30)
六. 實驗分析流程…………………………………………(31)
1. 胰島素藥物對PTTG表現影響的實驗分析流程………(31)
2. 抗癌藥物5-FU對PTTG表現影響的實驗分析流程……(32)
參. 結果………………………………………………………… (32)
一. 大腸直腸癌細胞株HT-29的生長曲線……………… (32)
二. 在生理濃度,胰島素向上調控PTTG……………… (33)
三. 5-FU向上調控PTTG……………………………………(34)
肆. 討論………………………………………………………… (34)
一. 胰島素對基因活性的控制-可能包括PTTG…………(34)
二. 在生物生理的濃度胰島素向上控制PTTG蛋白質-在正常生
物生理的濃度,依劑量決定方式……………………(35)
三. 在大於正常生物生理濃度,胰島素向上控制PTTG蛋白質的
效果是減少的…………………………………………(35)
四. 胰島素經由活化PI3K/AKT與Ras-MAPK刺激新的PTTG mRNA
的合成…………………………………………………(37)
五. PTTG的磷酸化…………………………………………(38)
六. 胰島素向上控制PTTG可用來解釋胰島素-大腸癌的轉機
. …………………………………………………………(39)
1. PTTG促進細胞增長的功能:解釋胰島素-大腸癌關聯的機
轉………………………………………………………(39)
2. PTTG的抗細胞凋亡功能:解釋胰島素-大腸癌關聯的機
轉………………………………………………………(41)
七. 在HT-29 p53(-/-)細胞株,加入5-FU後PTTG有較高的表
現量……………………………………………………(41)
八. DNA受損對PTTG的影響……………………………… (42)
1. DNA受損對PTTG的影響-p53的狀態……………… .(42)
2. DNA受損對PTTG的影響-作用時間………………… (43)
3. DNA受損對PTTG的影響-使用劑量………………… (44)
4. DNA受損對PTTG的影響-抑制或先向上控制再抑制 (44)
九. PTTG與DNA修補……………………………………… (46)
1. PTTG與DNA修補-連結DNA damage response path- ways
與染色體分離………………………………………. (46)
2. PTTG與DNA修補-PTTG是被表現的或是被抑制的?..(47)
十. PTTG與細胞凋亡………………………………………(48)
十一. 在DNA受損後,PTTG連結DNA damage response path-
ways、染色體分離與細胞凋亡………………………(49)

伍. 結論………………………………………………………… (50)

參考文獻………………………………………………………… (51)

表一  臺灣地區(2000年)大腸直腸癌申報發生人數--按年齡分
類……………………………………………………… (2)
表二  胰島素的生理濃度…………………………………… (68)
表三  胰島素對PTTG表現的影響…………………………….(69)
表四  5-FU對PTTG表現的影響……………………………….(70)

圖一  臺灣地區(2000年)大腸直腸癌申報發生人數--按年齡分
類……………………………………………………… (2)
圖二  大腸直腸癌的發生途徑……………………………… (4)
圖三  大腸直腸癌在解剖位置上的分佈…………………… (5)
圖四  大腸直腸癌致癌機轉:腺瘤-癌症序列…………… (6)
圖五  與de novo大腸直腸癌有關的扁平狀病灶...……… (7)
圖六  手術後大腸直腸癌病人的五年存活率……………… (8)
圖七  5-FU的代謝…………………………………………… (12)
圖八  5-FU抑制Thymidylate Synthase (TS) 的機轉…… (13)
圖九  PTTG的關鍵功能區域………………………………… (16)
圖十  PTTG的promoter含有可被胰島素控制的區域……… (21)
圖十一 PTTG在細胞周期的進行與有絲分裂的角色………….(23)
圖十二 PTTG過度表現造成Aneuploid的機轉…………………(24)
圖十三 PTTG在Western Blotting的位置…………………… (71)
圖十四 大腸直腸癌細胞株HT-29的生長曲線…………………(72)
圖十五 Insulin對PTTG表現的影響……………………………(73)
圖十六 在正常生理值胰島素對PTTG表現的影響,呈劑量決定方
式……………………………………………………… (74)
圖十七 5-FU對PTTG表現的影響……………………………….(75)
圖十八 PTTG連結DNA damage response pathways、染色體分離與
細胞凋亡-決定細胞何時進行DNA修補?何時進行細胞凋
亡?………………………………………………….. (76)
參考文獻 References
Abdel-Rahman WM, Mecklin JP, Peltomaki P. The genetics of HNPCC: Appli- cation to diagnosis and screening. Crit Rev Oncol Hematol. 2006 Jan 20

Akagi Y, Liu W, Zebrowski B, Xie K, Ellis LM. Regulation of vascular endothe- lial growth factor expression in human colon cancer by insulin-like growth factor-I. Cancer Res. 1998 Sep 1;58(17):4008-14.

Akino K, Akita S, Mizuguchi T, Takumi I, Yu R, Wang XY, Rozga J, Demetriou AA, Melmed S, Ohtsuru A, Yamashita S. A Novel Molecular Marker of Pitui- tary Tumor Transforming Gene Involves in a Rat Liver Regeneration. J Surg Res. 2005 Jun 2.

Alexandru G, Zachariae W, Schleiffer A, Nasmyth K. Sister chromatid separa- tion and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J. 1999 May 17;18(10):2707-21.

Altreuter DH, Dordick JS, Clark DS. Nonaqueous biocatalytic synthesis of new cytotoxic doxorubicin derivatives: exploiting unexpected differences in the region-selectivity of salt-activated and solubilized subtilisin. J Am Chem Soc. 2002 Mar 6;124(9):1871-6.

Arkenau HT, Bermann A, Rettig K, Strohmeyer G, Porschen R; Arbeitsgemein- schaft Gastrointestinale Onkologie. 5-Fluorouracil plus leucovorin is an effect -tive adjuvant chemotherapy in curatively resected stage III colon cancer: long-term follow-up results of the adjCCA-01 trial. Ann Oncol. 2003 Mar; 14(3):395-9.

Azuma K, Katsukawa F, Oguchi S, Murata M, Yamazaki H, Shimada A, Saruta T. Correlation between serum resistin level and adiposity in obese individuals. Obes Res. 2003 Aug;11(8):997-1001.

Bernal JA, Luna R, Espina A, Lazaro I, Ramos-Morales F, Romero F, Arias C, Silva A, Tortolero M, Pintor-Toro JA. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat Genet. 2002 Oct;32(2):306-11.

Bodmer WF, Bailey CJ, Bodmer J, Bussey HJ, Ellis A, Gorman P, Lucibello FC, Murday VA, Rider SH, Scambler P. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 1987 Aug 13-19;328 (6131):614-6.

Boelaert K, Tannahill LA, Bulmer JN, Kachilele S, Chan SY, Kim D, Gittoes NJ, Franklyn JA, Kilby MD, McCabe CJ. A potential role for PTTG/securin in the developing human fetal brain. FASEB J. 2003 Sep; 17(12):1631-9.

Boelaert K, McCabe CJ, Tannahill LA, Gittoes NJ, Holder RL, Watkinson JC, Bradwell AR, Sheppard MC, Franklyn JA. Pituitary tumor transforming gene and fibroblast growth factor-2 expression: potential prognostic indicators in differentiated thyroid cancer. J Clin Endocrinol Metab. 2003a May;88(5): 2341-7.

Boelaert K, Yu R, Tannahill LA, Stratford AL, Khanim FL, Eggo MC, Moore JS, Young LS, Gittoes NJ, Franklyn JA, Melmed S, McCabe CJ. PTTG's C-terminal PXXP motifs modulate critical cellular processes in vitro. J Mol Endocrinol. 2004 Dec;33(3):663-77.

Boyd DB. Insulin and cancer. Integr Cancer Ther. 2003 Dec;2(4):315-29.

Burks DJ, White MF. IRS proteins and beta-cell function. Diabetes. 2001 Feb;50 Suppl 1:S140-5. Review.

Cats A, Dullaart RP, Kleibeuker JH, Kuipers F, Sluiter WJ, Hardonk MJ, de Vries EG. Increased epithelial cell proliferation in the colon of patients with acromegaly. Cancer Res. 1996 Feb 1;56(3):523-6.

Cezard JP, Forgue-Lafitte ME, Chamblier MC, Rosselin GE. Growth-promoting effect, biological activity, and binding of insulin in human intestinal cancer cells in culture. Cancer Res. 1981 Mar;41(3): 1148-53.

Chamaon K, Kirches E, Kanakis D, Braeuninger S, Dietzmann K, Mawrin C. Regulation of the pituitary tumor transforming gene by insulin-like-growth factor-I and insulin differs between malignant and non-neoplastic astrocytes. Biochem Biophys Res Commun. 2005 May 27;331(1):86-92.

Chang CK, Ulrich CM. Hyperinsulinaemia and hyperglycaemia: possible risk factors of colorectal cancer among diabetic patients. Diabetologia. 2003 May; 46(5):595-607.

Chao JI, Hsu SH, Tsou TC. Depletion of Securin Increases Arsenite-Induced Chromosome Instability and Apoptosis via a p53-independent Pathway. Toxicol Sci. 2005 Dec 7.

Chen L, Puri R, Lefkowitz EJ, Kakar SS. Identification of the human pituitary tumor transforming gene (hPTTG) family: molecular structure, expression, and chromosomal localization. Gene. 2000 May 2;248(1-2):41-50.

Chien W, Pei L. A novel binding factor facilitates nuclear translocation and transcriptional activation function of the pituitary tumor- transforming gene product. J Biol Chem. 2000 Jun 23;275(25): 19422-7.

Chu G, Chang E. Cisplatin-resistant cells express increased levels of a factor that recognizes damaged DNA. Proc Natl Acad Sci U S A. 1990 May;87(9): 3324-7.

Chu E, Drake JC, Koeller DM, Zinn S, Jamis-Dow CA, Yeh GC, Allegra CJ. Induction of thymidylate synthase associated with multidrug resistance in human breast and colon cancer cell lines. Mol Pharmacol. 1991 Feb;39(2): 136-43.

Clem AL, Hamid T, Kakar SS. Characterization of the role of Sp1 and NF-Y in differential regulation of PTTG/securin expression in tumor cells. Gene. 2003 Dec 11;322:113-21.
Compton CC, Greene FL. The staging of colorectal cancer: 2004 and beyond. CA Cancer J Clin. 2004 Nov-Dec;54(6):295-308.

Cooper GS, Yuan Z, Landefeld CS, Johanson JF, Rimm AA. A national population-based study of incidence of colorectal cancer and age. Implica- tions for screening in older Americans. Cancer. 1995 Feb 1; 75(3):775-81.

Corleta HE, Capp E, Corleta OC. Insulin receptor tyrosine kinase activity in colon carcinoma. Braz J Med Biol Res. 1996 Dec;29(12):1593-7.

Cox CJ, Dutta K, Petri ET, Hwang WC, Lin Y, Pascal SM, Basavappa R. The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are natively unfolded. FEBS Lett. 2002 Sep 11;527(1-3):303-8.
Cucino C, Buchner AM, Sonnenberg A. Continued rightward shift of colorectal cancer. Dis Colon Rectum. 2002 Aug;45(8):1035-40.

Davies RJ, Miller R, Coleman N. Colorectal cancer screening: prospects for molecular stool analysis. Nat Rev Cancer. 2005 Mar;5(3):199-209.

Denko CW, Malemud CJ. Serum growth hormone and insulin but not insulin- like growth factor-1 levels are elevated in patients with fibromyalgia syndrome. Rheumatol Int. 2005 Mar;25(2):146-51.

Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharma- cokinet. 1989 Apr;16(4):215-37.

Dominguez A, Ramos-Morales F, Romero F, Rios RM, Dreyfus F, Tortolero M, Pintor-Toro JA. hpttg, a human homologue of rat pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hPTTG. Oncogene. 1998 Oct 29;17(17):2187-93.

Durai R, Yang W, Gupta S, Seifalian AM, Winslet MC. The role of the insulin- like growth factor system in colorectal cancer: review of current knowledge. Int J Colorectal Dis. 2005 May;20(3):203-20.

Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759-67.

Fernandez-Suarez A, Cordero Fernandez C, Garcia Lozano R, Pizarro A, Garzon M, Nunez Roldan A. Clinical and ethical implications of genetic counselling in familial adenomatous polyposis. Rev Esp Enferm Dig. 2005 Sep;97(9): 654-65.

Figer A, Irmin L, Geva R, Flex D, Sulkes A, Friedman E. Genetic analysis of the APC gene regions involved in attenuated APC phenotype in Israeli patients with early onset and familial colorectal cancer. Br J Cancer. 2001 Aug 17; 85(4):523-6.

Finch RE, Bending MR, Lant AF. Plasma levels of 5-fluorouracil after oral and intravenous administration in cancer patients. Br J Clin Pharmacol. 1979 Jun; 7(6):613-7.

Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993 Dec 3;75(5):1027-38.

Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, Goldfine ID, Belfiore A, Vigneri R. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999 May;19(5):3278-88.

Fujita T, Washio K, Takabatake D, Takahashi H, Yoshitomi S, Tsukuda K, Ishibe Y, Ogasawara Y, Doihara H, Shimizu N. Proteasome inhibitors can alter the signaling pathways and attenuate the P-glycoprotein-mediated multidrug resistance.Int J Cancer. 2005 Nov 20;117(4): 670-82.

Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endo- thelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem. 2002 Oct 11;277(41):38205-11.

Giovannucci E. Insulin and colon cancer. Cancer Causes Control. 1995 Mar;6(2): 164-79.

Giovannucci E. Insulin, insulin-like growth factors and colon cancer: a review of the evidence. J Nutr. 2001 Nov;131(11 Suppl):3109S-20S.

Glazer RI, Lloyd LS. Association of cell lethality with incorporation of 5-fluoro- uracil and 5-fluorouridine into nuclear RNA in human colon carcinoma cells in culture. Mol Pharmacol. 1982 Mar;21(2):468-73.

Gloeckler Ries LA, Reichman ME, Lewis DR, Hankey BF, Edwards BK. Cancer survival and incidence from the Surveillance, Epidemiology, and End Results (SEER) program. Oncologist. 2003;8(6):541-52.

Goyle S, Maraveyas A. Chemotherapy for colorectal cancer. Dig Surg. 2005; 22(6):401-14.

Greene FL, Page DL, Fleming ID, et al. (eds). AJCC Cancer Staging Manual. 6th Ed. New York, NY: Springer; 2002.

Grimberg A, Cohen P. Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J Cell Physiol. 2000 Apr; 183(1):1-9.

Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991 Aug 9;66(3):589-600.

Hamid T, Kakar SS. PTTG and cancer. Histol Histopathol. 2003 Jan;18(1): 245-51.

Hamid T, Kakar SS. PTTG/securin activates expression of p53 and modulates its function. Mol Cancer. 2004 Jul 8;3:18.

Hamid T, Malik MT, Kakar SS. Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells. Mol Cancer. 2005 Jan 13; 4(1):3.

Hayne D, Brown RS, McCormack M, Quinn MJ, Payne HA, Babb P. Current trends in colorectal cancer: site, incidence, mortality and survival in England and Wales. Clin Oncol (R Coll Radiol). 2001; 13(6):448-52.

Health and Vital Statistic, Republic of China, 2000. 2001 April 27. Department of Health Executive Yuan, Taiwan, ROC. http://www.doh.gov.tw/statistic/ index. htm

Health and Vital Statistic, Republic of China, 2004. 2005 April 27. Department of Health Executive Yuan, Taiwan, ROC. http://www.doh.gov.tw/statistic/ index.htm

Heaney AP, Melmed S. Pituitary tumour transforming gene: a novel factor in pituitary tumour formation. Baillieres Best Pract Res Clin Endocrinol Metab. 1999 Oct;13(3):367-80.

Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S. Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med. 1999a Nov;5(11): 1317-21.

Heaney AP, Singson R, McCabe CJ, Nelson V, Nakashima M, Melmed S. Expression of pituitary-tumour transforming gene in colorectal tumours. Lancet. 2000 Feb 26;355(9205):716-9.
Heaney AP, Nelson V, Fernando M, Horwitz G. Transforming events in thyroid tumorigenesis and their association with follicular lesions. J Clin Endocrinol Metab. 2001 Oct;86(10):5025-32.

Heaney AP, Fernando M, Melmed S. Functional role of estrogen in pituitary tumor pathogenesis. J Clin Invest. 2002 Jan;109(2):277-83.

Heaney AP, Fernando M, Melmed S. PPAR-gamma receptor ligands: novel therapy for pituitary adenomas. J Clin Invest. 2003 May;111(9):1381-8.

Hill MJ, Morson BC, Bussey HJ. Aetiology of adenoma-carcinoma sequence in large bowel. Lancet. 1978 Feb 4;1(8058):245-7.

Honda S, Hayashi M, Kobayashi Y, Ishikawa Y, Nakagawa K, Tsuchiya E. A role for the pituitary tumor-transforming gene in the genesis and progression of non-small cell lung carcinomas. Anticancer Res. 2003 Sep-Oct;23(5A): 3775-82.

Horwitz GA, Miklovsky I, Heaney AP, Ren SG, Melmed S. Human pituitary tumor-transforming gene (PTTG1) motif suppresses prolactin expression. Mol Endocrinol. 2003 Apr;17(4):600-9.

Houghton JA, Tillman DM, Harwood FG. Ratio of 2'-deoxyadenosine- 5'-triphosphate/thymidine-5'-triphosphate influences the commitment of human colon carcinoma cells to thymineless death. Clin Cancer Res. 1995 Jul; 1(7):723-30.

Hsieh CH, Liang CL, King TM, Wang JH, Chien LC. Colorectal Mucinous Carcinoma. JS CRS ROC. 2000;11(1):12-17

Ishikawa H, Heaney AP, Yu R, Horwitz GA, Melmed S. Human pituitary tumor- transforming gene induces angiogenesis. J Clin Endocrinol Metab. 2001 Feb; 86(2):867-74.

Jaiswal AS, Balusu R, Narayan S. Involvement of adenomatous polyposis coli in colorectal tumorigenesis. Front Biosci. 2005 May 1;10:1118-34.

Jallepalli PV, Waizenegger IC, Bunz F, Langer S, Speicher MR, Peters JM, Kinzler KW, Vogelstein B, Lengauer C. Securin is required for chromosomal stability in human cells. Cell. 2001 May 18;105(4): 445-57.

Jeter JM, Kohlmann W, Gruber SB. Genetics of colorectal cancer. Oncology (Williston Park). 2006 Mar;20(3):269-76.
Johnston PG, Kaye S. Capecitabine: a novel agent for the treatment of solid tumors. Anticancer Drugs. 2001 Sep;12(8):639-46.

Joshi SS, Jackson JD, Sharp JG. Comparison of the growth and metastasis of four human intestinal tumor cell line xenografts. Tumour Biol. 1989;10(3): 117-25.

Kaaks R, Toniolo P, Akhmedkhanov A, Lukanova A, Biessy C, Dechaud H, Rinaldi S, Zeleniuch-Jacquotte A, Shore RE, Riboli E. Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. J Natl Cancer Inst. 2000 Oct 4;92(19):1592-600.

Kakar SS. Assignment of the human tumor transforming gene TUTR1 to chromosome band 5q35.1 by fluorescence in situ hybridization. Cytogenet Cell Genet. 1998;83(1-2):93-5.

Kakar SS. Molecular cloning, genomic organization, and identification of the promoter for the human pituitary tumor transforming gene (PTTG). Gene. 1999 Nov 29;240(2):317-24.

Kakar SS, Jennes L. Molecular cloning and characterization of the tumor trans- forming gene (TUTR1): a novel gene in human tumorigenesis. Cytogenet Cell Genet. 1999a;84(3-4):211-6.

Kakar SS, Chen L, Puri R, Flynn SE, Jennes L. Characterization of a polyclonal antibody to human pituitary tumor transforming gene 1 (PTTG1) protein. J Histochem Cytochem. 2001 Dec;49(12):1537-46.

Kanakis D, Kirches E, Mawrin C, Dietzmann K. Promoter mutations are no major cause of PTTG overexpression in pituitary adenomas. Clin Endocrinol (Oxf). 2003 Feb;58(2):151-5.

Kho PS, Wang Z, Zhuang L, Li Y, Chew JL, Ng HH, Liu ET, Yu Q. p53- regulated transcriptional program associated with genotoxic stress-induced apoptosis. J Biol Chem. 2004 May 14;279(20):21183-92. Epub 2004 Mar 11.

Kim D, Pemberton H, Stratford AL, Buelaert K, Watkinson JC, Lopes V, Franklyn JA, McCabe CJ. Pituitary tumour transforming gene (PTTG) induces genetic instability in thyroid cells. Oncogene. 2005 Jul 14; 24(30): 4861-6.

Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996 Oct 18;87(2):159-70.

Kinzler KW, Vogelstein B. Landscaping the cancer terrain. Science. 1998 May 15;280(5366):1036-7.

Kiunga GA, Raju J, Sabljic N, Bajaj G, Good CK, Bird RP. Elevated insulin receptor protein expression in experimentally induced colonic tumors. Cancer Lett. 2004 Aug 10;211(2):145-53.

Knutson VP. Cellular trafficking and processing of the insulin receptor. FASEB J. 1991 May;5(8):2130-8.

Kosaki A, Webster NJ. Effect of dexamethasone on the alternative splicing of the insulin receptor mRNA and insulin action in HepG2 hepatoma cells. J Biol Chem. 1993 Oct 15;268(29):21990-6.

Kozuka S, Nogaki M, Ozeki T, Masumori S. Premalignancy of the mucosal polyp in the large intestine: II. Estimation of the periods required for malignant transformation of mucosal polyps. Dis Colon Rectum. 1975 Sep; 18(6):494-500.

Kudo S, Hirota S, Nakajima T, Hosobe S, Kusaka H, Kobayashi T, Himori M, Yagyuu A. Colorectal tumours and pit pattern. J Clin Pathol. 1994 Oct;47(10): 880-5.

Kudo S, Kashida H, Tamura T. Early colorectal cancer: flat or depressed type. J Gastroenterol Hepatol. 2000 Mar;15 Suppl:D66-70.

Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomaki P, Sistonen P, Aaltonen LA, Nystrom-
Lahti M. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993 Dec 17;75(6): 1215- 25.

Lee MY, Huang HW. Proteomic analysis of differentially expressed proteins in colorectal cancer. Master Thesis of National Sun Yat-Sen University. 2005 Jul.

Lee PD, Giudice LC, Conover CA, Powell DR. Insulin-like growth factor binding protein-1: recent findings and new directions. Proc Soc Exp Biol Med. 1997 Dec;216(3):319-57.

Lieber MR. The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells. 1999 Feb;4(2):77-85.

Lindahl T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3649-53.

Longley DB, Allen WL, McDermott U, Wilson TR, Latif T, Boyer J, Lynch M, Johnston PG. The roles of thymidylate synthase and p53 in regulating Fas-mediated apoptosis in response to antimetabolites. Clin Cancer Res. 2004 May 15;10(10):3562-71.

Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003 May;3(5):330-8.

Ma J, Giovannucci E, Pollak M, Leavitt A, Tao Y, Gaziano JM, Stampfer MJ. A prospective study of plasma C-peptide and colorectal cancer risk in men. J Natl Cancer Inst. 2004 Apr 7;96(7):546-53.

MacMillan WE, Wolberg WH, Welling PG. Pharmacokinetics of fluoro- uracil in humans. Cancer Res. 1978 Oct;38(10):3479-82.

Mans DR, Grivicich I, Peters GJ, Schwartsmann G. Sequence-dependent growth inhibition and DNA damage formation by the irinotecan- 5-fluorouracil com- bination in human colon carcinoma cell lines. Eur J Cancer. 1999 Dec; 35(13):1851-61.

McCabe C. Genetic targets for the treatment of pituitary adenomas: focus on the pituitary tumor transforming gene. Curr Opin Pharmacol. 2001 Dec;1(6): 620-5.

McCabe CJ, Boelaert K, Tannahill LA, Heaney AP, Stratford AL, Khaira JS, Hussain S, Sheppard MC, Franklyn JA, Gittoes NJ. Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab. 2002 Sep;87(9):4238-44.

McCabe CJ, Khaira JS, Boelaert K, Heaney AP, Tannahill LA, Hussain S, Mitchell R, Olliff J, Sheppard MC, Franklyn JA, Gittoes NJ. Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas: relationships to clinical tumour behaviour. Clin Endocrinol (Oxf). 2003 Feb;58(2):141-50.

Mamazza J, Gordon PH. The changing distribution of large intestinal cancer. Dis Colon Rectum. 1982 Sep;25(6):558-62.
Marra G, Boland CR. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J Natl Cancer Inst. 1995 Aug 2;87(15): 1114-25.

McCallion K, Mitchell RM, Wilson RH, Kee F, Watson RG, Collins JS, Gardiner KR. Flexible sigmoidoscopy and the changing distribution of colorectal cancer: implications for screening. Gut. 2001 Apr;48(4): 522-5.

Melmed S. Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest. 2003 Dec;112(11):1603-18.
Mishra L, Bass B, Ooi BS, Sidawy A, Korman L. Role of insulin-like growth factor-I (IGF-I) receptor, IGF-I, and IGF binding protein-2 in human colo- rectal cancers. Growth Horm IGF Res. 1998 Dec;8(6): 473-9.

Moller DE, Yokota A, Caro JF, Flier JS. Tissue-specific expression of two alter- natively spliced insulin receptor mRNAs in man. Mol Endocrinol. 1989 Aug;3(8):1263-9.

Morson BC. Evolution of cancer of the colon and rectum. Cancer. 1974 Sep; 34(3):suppl:845-9.

Moss SF, Liu TC, Petrotos A, Hsu TM, Gold LI, Holt PR. Inward growth of colonic adenomatous polyps. Gastroenterology. 1996 Dec;111(6):1425-32.

Mosthaf L, Grako K, Dull TJ, Coussens L, Ullrich A, McClain DA. Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J. 1990 Aug;9(8):2409-13.

Mountjoy KG, Holdaway IM, Finlay GJ. Insulin receptor regulation in cultured human tumor cells. Cancer Res. 1983 Oct;43(10):4537-42.

Mountjoy KG, Finlay GJ, Holdaway IM. Abnormal insulin-receptor down regulation and dissociation of down regulation from insulin biological action in cultured human tumor cells. Cancer Res. 1987 Dec 15;47(24 Pt 1):6500-4.

Mukherjee S, Tessema M, Wandinger-Ness A. Vesicular trafficking of tyrosine kinase receptors and associated proteins in the regulation of signaling and vascular function. Circ Res. 2006 Mar 31;98(6):743-56.

Muto T, Bussey HJ, Morson BC. The evolution of cancer of the colon and rectum. Cancer. 1975 Dec;36(6):2251-70.

Nagao K, Adachi Y, Yanagida M. Separase-mediated cleavage of cohesin at interphase is required for DNA repair.
Nature. 2004 Aug 26; 430(7003): 1044-8.

Nakae J, Kido Y, Accili D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev. 2001 Dec;22(6):818-35.

Nakanishi N, Shiraishi T, Wada M. Association between C-reactive protein and insulin resistance in a Japanese population: the Minoh Study.Intern Med. 2005 Jun;44(6):542-7.

Nam SY, Lee EJ, Kim KR, Cha BS, Song YD, Lim SK, Lee HC, Huh KB. Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone. Int J Obes Relat Metab Disord. 1997 May;21(5):355-9.

Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K, Utsunomiya J, Baba S, Hedge P. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991 Aug 9; 253(5020):665-9.

Nasmyth K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet. 2001; 35:673-745.

O’brien RM, Streeper RS, Ayala JE, Stadelmaier BT, Hornbuckle LA. Insulin- regulated gene expression. Biochem. Soc. Trans. 29 2001; 552–558.

O'Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst. 2004 Oct 6;96(19):1420-5.

O'Connor PM, Nieves-Neira W, Kerrigan D, Bertrand R, Goldman J, Kohn KW, Pommier Y. S-phase population analysis does not correlate with the cytotoxicity of camptothecin and 10,11-methylenedioxy- camptothecin in human colon carcinoma HT-29 cells. Cancer Commun. 1991 Aug;3(8):233- 40.

Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. 2001 Sep; 2(9):533-43.

Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005 Mar-Apr;55(2):74-108.

Pei L, Melmed S. Isolation and characterization of a pituitary tumor- transforming gene (PTTG). Mol Endocrinol. 1997 Apr;11(4):433-41.

Pei L. Pituitary tumor-transforming gene protein associates with ribosomal protein S10 and a novel human homologue of DnaJ in testicular cells. J Biol Chem. 1999 Jan 29;274(5):3151-8.

Pei L. Activation of mitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene transactivation function. J Biol Chem. 2000 Oct 6;275(40):31191-8.

Pei L. Identification of c-myc as a down-stream target for pituitary tumor- transforming gene. J Biol Chem. 2001 Mar 16;276(11):8484-91.

Pinguet F, Mavel S, Galtier C, Gueiffier A. Synthesis and cytotoxicity of novel pyrido[1,2-e]purines on multidrug resistant human MCF7 cells. Pharmazie. 1999 Dec;54(12):876-8.

Powell DR, Suwanichkul A, Cubbage ML, DePaolis LA, Snuggs MB, Lee PD. Insulin inhibits transcription of the human gene for insulin-like growth factor-binding protein-1. J Biol Chem. 1991 Oct 5;266(28):18868-76.

Prezant TR, Kadioglu P, Melmed S. An intronless homolog of human proto- oncogene hPTTG is expressed in pituitary tumors: evidence for hPTTG family. J Clin Endocrinol Metab. 1999 Mar;84(3):1149-52.

Puri R, Tousson A, Chen L, Kakar SS. Molecular cloning of pituitary tumor transforming gene 1 from ovarian tumors and its expression in tumors. Cancer Lett. 2001 Feb 10;163(1):131-9.

Rabeneck L, Davila JA, El-Serag HB. Is there a true "shift" to the right colon in the incidence of colorectal cancer? Am J Gastroenterol. 2003 Jun;98(6): 1400-9.

Ramos-Morales F, Dominguez A, Romero F, Luna R, Multon MC, Pintor-Toro JA, Tortolero M. Cell cycle regulated expression and phosphorylation of hpttg proto-oncogene product. Oncogene. 2000 Jan 20;19(3):403-9.

Ravizza R, Gariboldi MB, Passarelli L, Monti E. Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin. BMC Cancer. 2004 Dec 15;4:92.

Reinmuth N, Fan F, Liu W, Parikh AA, Stoeltzing O, Jung YD, Bucana CD, Radinsky R, Gallick GE, Ellis LM. Impact of insulin-like growth factor receptor-I function on angiogenesis, growth, and metastasis of colon cancer. Lab Invest. 2002 Oct;82(10):1377-89.

Reinmuth N, Liu W, Fan F, Jung YD, Ahmad SA, Stoeltzing O, Bucana CD, Radinsky R, Ellis LM. Blockade of insulin-like growth factor I receptor function inhibits growth and angiogenesis of colon cancer. Clin Cancer Res. 2002a Oct;8(10):3259-69.

Renehan AG, Shalet SM. Diabetes, insulin therapy, and colorectal cancer: Evidence indicates a modest increase in risk of bowel cancer among people with type 2 diabetes. BMJ. 2005 Mar 12; 330(7491): 551-552.

Romero F, Multon MC, Ramos-Morales F, Dominguez A, Bernal JA, Pintor- Toro JA, Tortolero M. Human securin, hPTTG, is associated with Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase. Nucleic Acids Res. 2001 Mar 15;29(6):1300-7.

Romero F, Gil-Bernabe AM, Saez C, Japon MA, Pintor-Toro JA, Tortolero M. Securin is a target of the UV response pathway in mammalian cells. Mol Cell Biol. 2004 Apr;24(7):2720-33.

Rosenfeld RG. Insulin-like growth factors and the basis of growth. N Engl J Med. 2003 Dec 4;349(23):2184-6.

Rutman RJ, Cantarow A, Paschkis KE. Studies in 2-acetylaminofluorene carcinogenesis. III. The utilization of uracil-2-C14 by preneoplastic rat liver and rat hepatoma. Cancer Res. 1954 Feb;14(2):119-23.

Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001 Dec 13;414(6865):799-806.

Samson SL, Wong NC. Role of Sp1 in insulin regulation of gene expression. J Mol Endocrinol. 2002 Dec;29(3):265-79.

Sanchez Y, Bachant J, Wang H, Hu F, Liu D, Tetzlaff M, Elledge SJ. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science. 1999 Nov 5;286(5442): 1166-71.

Sanchez-Puig N, Veprintsev DB, Fersht AR. Human full-length Securin is a natively unfolded protein. Protein Sci. 2005 Jun;14(6):1410-8.

Sandhu MS, Dunger DB, Giovannucci EL. Insulin, insulin-like growth factor-I (IGF-I), IGF binding proteins, their biologic interactions, and colorectal cancer. J Natl Cancer Inst. 2002 Jul 3;94(13):972-80.

Santi DV, McHenry CS, Sommer H. Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry. 1974 Jan 29;13(3): 471-81.

Saez C, Pereda T, Borrero JJ, Espina A, Romero F, Tortolero M, Pintor-Toro JA, Segura DI, Japon MA. Expression of hpttg proto- oncogene in lymphoid neoplasias. Oncogene. 2002 Nov 21;21(53): 8173-7.

Sekharam M, Nasir A, Kaiser HE, Coppola D. Insulin-like growth factor 1 receptor activates c-SRC and modifies transformation and motility of colon cancer in vitro. Anticancer Res. 2003 Mar-Apr;23(2B):1517-24.

Shimizu M, Deguchi A, Hara Y, Moriwaki H, Weinstein IB. EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells. Biochem Biophys Res Commun. 2005 Sep 2;334(3):947-53.

Singh P, Rubin N. Insulinlike growth factors and binding proteins in colon cancer. Gastroenterology. 1993 Oct;105(4):1218-37.

Smith GC, Jackson SP. The DNA-dependent protein kinase. Genes Dev. 1999 Apr 15;13(8):916-34.
Smith GD, Gunnell D, Holly J. Cancer and insulin-like growth factor-I. A potential mechanism linking the environment with cancer risk. BMJ. 2000 Oct 7;321(7265):847-8.

Solbach C, Roller M, Fellbaum C, Nicoletti M, Kaufmann M. PTTG mRNA expression in primary breast cancer: a prognostic marker for lymph node invasion and tumor recurrence. Breast. 2004 Feb;13(1):80-1.

Sommer H, Santi DV. Purification and amino acid analysis of an active site peptide from thymidylate synthetase containing covalently bound 5-fluoro- 2'-deoxyuridylate and methylenetetrahydrofolate. Biochem Biophys Res Commun. 1974 Apr 8;57(3):689-95.

Sonne O. Receptor-mediated degradation and internalization of insulin in the adenocarcinoma cell line HT-29 from human colon. Mol Cell Endocrinol. 1985 Jan;39(1):39-48.
Stoika R, Melmed S. Expression and function of pituitary tumour transforming gene for T-lymphocyte activation. Br J
Haematol. 2002 Dec;119(4):1070-4.

Strand M, Prolla TA, Liskay RM, Petes TD. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 1993 Sep 16;365(6443):274-6.

Strasser-Vogel B, Blum WF, Past R, Kessler U, Hoeflich A, Meiler B, Kiess W. Insulin-like growth factor (IGF)-I and -II and IGF-binding proteins-1, -2, and -3 in children and adolescents with diabetes mellitus: correlation with metabolic control and height attainment. J Clin Endocrinol Metab. 1995 Apr; 80(4):1207-13.

Stratford AL, Boelaert K, Tannahill LA, Kim DS, Warfield A, Eggo MC, Gittoes NJ, Young LS, Franklyn JA, McCabe CJ. Pituitary tumor transforming gene binding factor: a novel transforming gene in thyroid tumorigenesis. J Clin Endocrinol Metab. 2005 Jul;90(7):4341-9.

Strausberg RL, Dahl CA, Klausner RD. New opportunities for uncovering the molecular basis of cancer. Nat Genet. 1997 Apr;15 Spec No:415-6.
Svec J. Chemoprevention of colorectal cancer. Bratisl Lek Listy. 2005;106(6-7): 238-9.

Schwartz EL, Baptiste N, Wadler S, Makower D. Thymidine phosphorylase mediates the sensitivity of human colon carcinoma cells to 5-fluorouracil. J Biol Chem. 1995 Aug 11;270(32):19073-7.

Tfelt-Hansen J, Schwarz P, Terwilliger EF, Brown EM, Chattopadhyay N. Calcium-sensing receptor induces messenger ribonucleic acid of human securin, pituitary tumor transforming gene, in rat testicular cancer. Endo- crinology. 2003 Dec;144(12):5188-93.

Tfelt-Hansen J, Yano S, Bandyopadhyay S, Carroll R, Brown EM, Chatto- padhyay N. Expression of pituitary tumor transforming gene (PTTG) and its binding protein in human astrocytes and astrocytoma cells: function and regulation of PTTG in U87 astrocytoma cells. Endocrinology. 2004 Sep; 145(9):4222-31.

Thompson AD 3rd, Kakar SS. Insulin and IGF-1 regulate the expression of the pituitary tumor transforming gene (PTTG) in breast tumor cells. FEBS Lett. 2005 Jun 6;579(14):3195-200.

Thornton DE, Theil K, Payson R, Balcerzak SP, Chiu IM. Characterization of the 5q-breakpoint in an acute nonlymphocytic leukemia patient using pulsed- field gel electrophoresis. Am J Med Genet 1991, 41:557-65.

Tinker-Kulberg RL, Morgan DO. Pds1 and Esp1 control both anaphase and mitotic exit in normal cells and after DNA damage. Genes Dev. 1999 Aug 1; 13(15):1936-49.

Tripkovic I, Tripkovic A, Ivanisevic Z, Capkun V, Zekan L. Insulin increase in colon cancerogenesis: a case-control study. Arch Med Res. 2004 May-Jun; 35(3):215-9.

Tsai SJ, Lin SJ, Cheng YM, Chen HM, Wing LY. Expression and functional analysis of pituitary tumor transforming growth factor-1 in uterine leiomy- omas. J Clin Endocrinol Metab. 2005 Jun;90(6): 3715-23.

Wang Z, Melmed S. Pituitary tumor transforming gene (PTTG) transforming and transactivation activity. J Biol Chem. 2000 Mar 17; 275(11):7459-61.

Wang Z, Melmed S. Characterization of the murine pituitary tumor transforming gene (PTTG) and its promoter. Endocrinology. 2000a Feb; 141(2):763-71.

Wang H, Liu D, Wang Y, Qin J, Elledge SJ. Pds1 phosphorylation in response to DNA damage is essential for its DNA damage checkpoint function. Genes Dev. 2001 Jun 1;15(11):1361-72.

Werner H, Le Roith D. The insulin-like growth factor-I receptor signaling pathways are important for tumorigenesis and inhibition of apoptosis. Crit Rev Oncog. 1997;8(1):71-92.

Werner H, Le Roith D. New concepts in regulation and function of the insulin- like growth factors: implications for understanding normal growth and neoplasia. Cell Mol Life Sci. 2000 Jun;57(6):932-42.

White MF. Insulin signaling in health and disease. Science. 2003 Dec 5; 302 (5651):1710-1.

Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005 May; 26(2): 19-39.

Wohlhueter RM, McIvor RS, Plagemann PG. Facilitated transport of uracil and 5-fluorouracil, and permeation of orotic acid into cultured mammalian cells. J Cell Physiol. 1980 Sep;104(3):309-19.

Wu Y, Yakar S, Zhao L, Hennighausen L, LeRoith D. Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res. 2002 Feb 15;62(4):1030-5.

Yamamoto A, Guacci V, Koshland D. Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J Cell Biol. 1996 Apr;133(1):99-110.

Yang YX, Hennessy S, Lewis JD. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients. Gastroenterology. 2004 Oct;127(4): 1044-50.

Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, Schreiber SL. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell. 1994 Mar 11;76(5):933-45.

Yu R, Heaney AP, Lu W, Chen J, Melmed S. Pituitary tumor transforming gene causes aneuploidy and p53-dependent and p53-independent apoptosis. J Biol Chem. 2000 Nov 24;275(47):36502-5.

Yu R, Ren SG, Horwitz GA, Wang Z, Melmed S. Pituitary tumor transforming gene (PTTG) regulates placental JEG-3 cell division and survival: evidence from live cell imaging. Mol Endocrinol. 2000a Aug;14(8):1137-46.

Yu R, Lu W, Chen J, McCabe CJ, Melmed S. Overexpressed pituitary tumor- transforming gene causes aneuploidy in live human cells. Endocrinology. 2003 Nov;144(11):4991-8.

Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD, Melmed S. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab. 1999 Feb;84(2):761-7.

Zhang X, Horwitz GA, Prezant TR, Valentini A, Nakashima M, Bronstein MD, Melmed S. Structure, expression, and function of human pituitary tumor- transforming gene (PTTG). Mol Endocrinol. 1999a Jan;13(1): 156-66.

Zhou Y, Mehta KR, Choi AP, Scolavino S, Zhang X. DNA damage-induced inhibition of securin expression is mediated by p53. J Biol Chem. 2003 Jan 3;278(1):462-70.

Zhou C, Liu S, Zhou X, Xue L, Quan L, Lu N, Zhang G, Bai J, Wang Y, Liu Z, Zhan Q, Zhu H, Xu N. Overexpression of human pituitary tumor transforming gene (hPTTG), is regulated by beta-catenin/TCF pathway in human esopha- geal squamous cell carcinoma. Int J Cancer. 2005 Mar 1;113(6):891-8.

Zou H, McGarry TJ, Bernal T, Kirschner MW. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumori- genesis. Science. 1999 Jul 16;285(5426): 418-22.

Zur A, Brandeis M. Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. EMBO J. 2001 Feb 15;20(4):792-801.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code