論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available
論文名稱 Title |
FlexRay車載網路實體層之傳接器與時脈產生器 Transceiver and Clock Generator for FlexRay-based Automobile Communication Systems |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
82 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2008-06-20 |
繳交日期 Date of Submission |
2008-06-25 |
關鍵字 Keywords |
車載網路、傳接器、時脈產生器 Clock generator, FlexRay, Transceiver |
||
統計 Statistics |
本論文已被瀏覽 5670 次,被下載 0 次 The thesis/dissertation has been browsed 5670 times, has been downloaded 0 times. |
中文摘要 |
由於近年來汽車電子產品的蓬勃發展,使得車用電子產品的數量不斷上升。為了將這些車用電子產品有效的連接,車載網路的重要性日益漸增。本篇論文主要為設計及開發新一代車載網路規格(FlexRay)之實體層系統晶片所需之傳接器與時脈產生器。 本篇論文首先提出一個類低電壓差動訊號(LVDS-like)的傳送電路架構用以驅動車載網路實體層之匯流排。另外,提出一個使用三個比較器架構的接收電路,用以接收匯流排上之資料以及狀態的辨認。 其次,車用網路所需之時脈產生器為系統安全所必備,本論文提出一個具有抗製程、電壓、及溫度飄移的20 MHz時脈產生電路,一個小飄移的1 MHz震盪器,以及一個溫度偵測電路。 為符合系統晶片整合設計的精神,所有提出的設計僅使用0.18 um製程,具有與數位控制電路高度整合之特性。另外,所提出的傳送接收電路設計經過相當完全的測試,包含溫度環境測試及與真實車載網路交互通信整合測試。最後,此傳送接收電路最高可達到40 Mbps之傳送接收速度。 |
Abstract |
Thanks to the booming of car electronics in recent years, more car electronics devices are installed in ve-hicles. These devices are connected by in-vehicle communication networks. In this thesis, we present the tran-sceiver and clock generator design for the physical layer of a FlexRay-based in-vehicle communication protocol. Regarding the transceiver design, a LVDS-like transmitter is proposed to drive the twisted pair of the bus. By contrast, a 3-comparator scheme is used to carry out the required bit-slicing and state recognition at the re-ceiver end. The reliability and safety are the priority design factors for electronics. A robust 20 MHz clock generator with process, supply voltage, and temperature compensation, a sub-1 MHz oscillator, and a temperature detector are included in our clock generator design. All of these designs are implemented by using a typical 0.18 um single-poly six-metal CMOS process. The proposed prototypical transceiver has been tested by a thermo chamber to justify its operation in the required temperature rage, i.e., -40°C to 125°C. Moreover, the compatibility of our design is also verified in a real FlexRay-based network. The maximum throughput of the proposed prototypical transceiver can reach 40 Mbps. |
目次 Table of Contents |
致謝 i 摘要 iii Abstract iv Contents v List of Figures vii List of Tables ix CHATPER 1 INTRODUCTION 1 1.1 Introduction to FlexRay Communication Systems 1 1.2 Motivation 3 1.3 Literature Review 9 1.2.1 The transceiver design for FlexRay communication systems 9 1.2.2 Clock generators in FlexRay communication systems 9 1.4 Thesis Overview 10 Chatper 2 THE TRANSCEIVER DESIGN FOR FLEXRAY SYSTEMS 11 2.1 Introduction 11 2.2 Transceiver Design 12 2.2.1 Transmitter architecture 14 2.2.2 Receiver architecture 18 2.2.3 Voltage regulator architecture 23 2.3 Simulation 25 2.3.1. Simulation of transmitter 25 2.3.2. Simulation of receiver 28 2.3.3. Simulation of regulator 29 2.3.4. Layout view 30 2.4 Measurements 31 2.4.1 Timing verification and temperature measurement 31 2.4.2 Compatibility verification 34 2.4.3 Die photo 36 2.5 Summary 37 CHATPER 3 CLOCK GENERATORS IN FLEXRAY SYSTEMS 38 3.1 Introduction 38 3.2 Circuit Design 39 3.2.1 20 MHz clock generator with PVT-compensation 39 3.2.2 Sub-1 MHz oscillator with small fluctuation 46 3.2.3 Temperature detector 49 3.3 Simulation 50 3.3.1 Simulation of 20 MHz clock generator 50 3.3.2 Simulation of sub-1 MHz oscillator 52 3.3.3 Simulation of temperature detector 52 3.3.4 Layout view 53 3.4 Measurements 55 3.4.1 Sub-1 MHz oscillator measurement results 55 3.4.2 Temperature detector measurement results 56 3.4.3 Die photo 58 3.5 Summary 58 Chatper 4 CONCLUSION & FUTURE WORKS 60 Reference 62 Appendix 66 |
參考文獻 References |
[1]D. K. Ward, H. L. Fields, “A vision of the future automotive Electronics,” SAE Paper 2000-0101358. [2]H. Kopetz, “Automotive electronics,” in Proc. Euromicro Conf. Real-Time Syst. (EMRTS), pp. 132-140, Jun. 1999. [3]N. Navet, Y. Song, F. Simno-Lion, and C. Wilwert, “Trend in automotive communication systems,” in Proc. of the IEEE, vol. 93, no.6, pp. 1204-1223, June 2005. [4]B. D. Emaus, “Current vehicle network architectures trends – 2000,” SAE Paper 200-01-0152. [5]H. Schopp, and D. Teichner, “Video and audio applications in vehicles enabled by networked systems,” in Proc. Int. Conf. Consumer Electronics (ICCE), pp. 218-219, Jun. 1999. [6]FlexRay - EPL-Specification - V2.1, May 2005. [7]FlexRay - Protocol Specification - V2.1.rev A, Mar. 2006. [8]FlexRay Communications System - BG Specification - V2.0, Jun. 2004. [9]F. Baronti, P. D’Abramo, M. Knaipp, R. Minixhofer, R. Roncella, R. Saletti, M. Schrems, R. Serventi, and V. Vescoli, “ FlexRay transceirver in a 0.35um CMOS high-voltage technology,” in Proc. Design, Automation Test Europe, (DATE), vol. 2, no. 6-10, pp. 1-5, Mar. 2006. [10]A. Techmer, and P. Leteinturier, “Implementing FlexRay on silicon,” in Proc. Int. Conf. Networking, Int. Conf. Syst. Int. Conf. Mobile Communications Learning Technologies (ICN/ ICONS/ MCL), pp. 23-29, Apr. 2006. [11]P. M. Szecowka, and M. A. Swiderski, “On hardware implementation of Flexray bus guardian module,” 14th Int. Conf. Mixed Design Integrated Circuits and Syst. (MIXDES), pp. 309-312, Jun. 2007. [12]K. Kurita, T. Hotta, T.Nakano, and N. Kitamura, “PLL-based BiCMOS on-chip clock generator for very high speed microprocessor,” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 585-589, Apr. 1991. [13]K. Sato, T. Sase, H.Sato, I. Ikushima, and S. Kojima, “A low power 128-MHz VCO for monolithic PLLs,” IEEE J. Solid-State Circuits, vol. 23, no. 4, pp. 474-479, Apr. 1988. [14]B. L. Baranco, A. R. Vazquez, E.S. Sinencio, and J. L. Huertas, “Frequency tuning loop for VCOs,” in Proc. IEEE Int. Symp. Circuit Syst. (ISCAS), pp. 2617-2620, May 1999. [15]H. Chen, E. Lee, and R. Geiger, “A 2 GHz VCO with process and temperature compensation,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 569-572, May 1999. [16]Y.-S Shyu, and J.-C Wu, “A process and temperature compensated ring oscillator,” in Proc. Asia Pacific Conf. (ASICs), pp. 283-286, Aug. 1999. [17]J. Routama, K. Koli, and K. Halonen, “A novel ring-oscillator with a very small process and temperature variation,” in Proc. IEEE Int. Symp. Circuit Syst. (ISCAS), pp. 181-184, Jun. 1998. [18]A. E. Buck, C.L. McDonald, S.H. Lewis, and T.R. Viswanathan, “A CMOS bandgap reference without resistors,” IEEE J. Solid-State Circuits, vol. 37, no. 1, pp. 81-83, Jan. 2002. [19]C.-C. Wang, Y.-L. Tseng, T.-J. Lee, and R. Hu, “Low-variation 1.0 MHz clock generator with temperature compensation bias,” in Proc. 2003 Workshop Consumer Electronics (WCE), pp. 133 (CD-ROM version), Nov. 2003. [20]K. Sundaresan, P. E. Allen, F. Ayazi, “Process and temperature compensation in a 7-MHz CMOS clock oscillator,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 433-442, Feb. 2006. [21]A. Vilas Boas, and A. Olmos, “A temperature compensated digitally trimmable on-chip IC oscillator with low voltage inhibit capability,” in Proc. IEEE Int. Symp. Circuit Syst. (ISCAS), pp. 501-504, May 2004. [22]A. Olmos, “A temperature compensated fully trimmable on-chip IC oscillator,” in Proc. Symp. Integrated Circuits Syst. Design (SBCCI), pp 181-186, Sep. 2003. [23]S.-S. Lee, T.-G. Kim, J.-T. Yoo, and S.-W. Kim, “Process and temperature compensated CMOS voltage-controlled oscillator for clock generators,” Electronics Letters, vol. 39, no. 21, pp. 1484-1485, Oct. 2003. [24]G. de Vita, F. Marraccini, and G. Iannaccone, “Low-voltage low-power CMOS oscillator with low temperature and process sensitivity,” in Proc. IEEE Int. Symp. Circuit Syst. (ISCAS), pp. 2152-2155, May 2007. [25]S. R. Boyle, and R. A. Heald, “A CMOS circuit for real-time chip temperature measurement,” in Proc. 39th IEEE Computer Society Int. Conf. (COMPCON), pp. 286-291, Mar. 1994. [26]M. Tuthill, “A switched-current, switched-capacitor temperature sensor in 0.6-μm CMOS,” IEEE J. Solid-State Circuits, vol. 33, no.7, pp. 1117-1122, Jul. 1998. [27]Y. Zhai, S.B. Prakash, M.H. Cohen, and P. A. Abshire, “Detection of on-chip temperature gradient using a 1.5V low power CMOS temperature sensor,” in Proc. IEEE Int. Symp. Circuit Syst. (ISCAS), pp. 1171-1174, May 2006. [28]H.-C. Chow, and W.-W. Sheen, “Low power LVDS circuit for serial data communications,” in Proc. Int. Symp. Intelligent Signal Processing Communication Syst. (ISPACS), pp. 293-296, Dec. 2005. [29]C.-C. Wang and J.-M. Huang, “1.0 Gbps LVDS transceiver design using a common mode DC biasing,” 2004 The 15th VLSI Design/CAD Symp., B3-1, pp. 14, CD-ROM version, Aug. 2004. [30]A. Boni, A. Pierazzi, and D. Vecchi, “LVDS I/O interface for Gb/s-per-pin operation in 0.35-μm CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 706-711, Apr. 2001. [31]R. F. Pierret, Semiconductor Device Fundamentals. Reading, MA: Addison-Wesley, 1996. [32]P. E. Allen and D. Holberg, “CMOS Analog Circuit Design 2nd” New York; Oxford Univ. Press, ISBN 0-19-511644-5, 2002. [33]R. Jacob Baker, Herry W. Li, and David E. Boyce, “CMOS Circuit Design, Layout, and Simulation,” IEEE Press, ISBN 0-7803-3416-7, 1998. [34]C.-C Wang, G.-N. Sung, P.-C. Chen, “A transceiver design for ECU nodes in FlexRay-based automotive communication systems,” in Proc. Int. Conf. Consumer Electronics (ICCE), pp. 311-312, Jan. 2008. [35]J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723-1732, Nov. 1996. [36]A. Maxim, R. K. Poorfard, R. A. Johnson, P. J. Crawley, J. T. Kao, Z. Dong, M. Chennam, T. Nutt, and D. Trager, “A fully integrated 0.13- μm CMOS digital low-IF DBS satellite tuner using a ring oscillator-based frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 967-982, May 2007. [37]C. Hu et al., BSIM 3.3.2 User’s Manual. Berkeley, CA: Univ. California, 1999. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外均不公開 not available 開放時間 Available: 校內 Campus:永不公開 not available 校外 Off-campus:永不公開 not available 您的 IP(校外) 位址是 3.239.76.211 論文開放下載的時間是 校外不公開 Your IP address is 3.239.76.211 This thesis will be available to you on Indicate off-campus access is not available. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |