Responsive image
博碩士論文 etd-0625109-155237 詳細資訊
Title page for etd-0625109-155237
論文名稱
Title
低溫複晶矽薄膜電晶體之電性分析與可靠度劣化之研究
Investigation on Electrical Analysis & Reliability Degradation of Low Temperature Poly-Si Thin-Film Transistors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-13
繳交日期
Date of Submission
2009-06-25
關鍵字
Keywords
低溫複晶矽
LTPS
統計
Statistics
本論文已被瀏覽 5701 次,被下載 6
The thesis/dissertation has been browsed 5701 times, has been downloaded 6 times.
中文摘要
在此論文中,我們將研究P通道低溫複晶矽薄膜電晶體(LTPS TFTs)經過靜態及動態stress後的劣化機制。樣品為奇美公司所提供。
在靜態stress方面,將研究P通道LTPS TFTs在暗態及照光環境下的負偏壓溫度不穩定性 (NBTI)。在不同的NBTI stress環境下,實驗結果顯示出介面缺陷能態密度 (Nit) 產生量是沒有變化。然而,晶界缺陷能態密度 (Ntrap) 的產生量在照光環境下stress後明顯比在暗態環境下stress還要來的多。這個現象主要是因為照光後產生的額外電洞所造成的影響。
在動態stress方面,我們發現Nit與Ntrap的劣化與stress頻率有關,且隨著頻率增加而減少。結果指出此劣化機制與poly-Si bulk上的主要載子反應有關。另外,Ntrap產生量與閘極端stress波形的rising time有正相關。Nit產生量則不會隨著波形的rising time和falling time調變而改變。此外,在低頻 (<10Hz) 下作stress時,Ntrap的產生量在照光下明顯比暗態多,而在高頻 (>10Hz) 下則沒有差異。
樣品經過機械應力彎曲後,sample對光的敏感度會產生變化,n-type部分由於bending後的tail state較少,載子藉由光源的能量跳出淺缺陷形成漏電流的機率變小,因此光敏感度變差。而p-type則沒有明顯差異。此外,將p-type TFT bending後的sample經過DC以及AC NBTI stress,發現Nit和Ntrap的產生量明顯比在平坦下作stress的產生量還要來的多。這個現象主要是因為sample在經過bending後反轉層內的載子數目增加,在stress過程中有更多的電洞參與NBTI effect發生,導致產生更多的劣化出現。
Abstract
In this thesis, we will investigate the mechanism of the degradation on the p-channel Low Temperature Polycrystalline Silicon thin film transistors (LTPS TFTs) under the static and dynamic stresses. The devices are offer by Chi Mei Optoelectronics.
On the static stress, the negative bias temperature instability (NBTI) in the p-channel LTPS TFTs under darkened and illuminated environments was investigated. Experimental results reveal that the generation of Nit showed no change between the different NBTI stresses. However, the generation of Ntrap under illumination was more significant than that in the darkened environment. This phenomenon is mainly caused by the extra number of holes generated during the illuminated NBTI stress.
On the dynamic stress, we found that the degradation of Nit and Ntrap were dependent the stress frequency and the degradation were decreased with the frequency increasing. The results indicated that the mechanism of the degradation was the relation with the response of the major carrier on the poly-Si bulk. In addition, the generation of Ntrap was strongly relation with the rising time of gate-pulse. The Nit revealed no change under the different rising and falling times when gate was applied the dynamic signal. Besides, the generation of Ntrap under illuminated stress was more significant than that in the darkened environment at low stress frequency (<10Hz), but it was no difference at high stress frequency (>10Hz).
Under the mechanical bending, the photosensitive was significantly changed. In n-type TFTs, the quantity of tail state was less in bending condition then in flat condition. The light-induced electrons was trapped by shallow trap and decreasing the photosensitive. However, the phenomenon was no distinct in p-type TFTs. In addition, the generation of the traps and holes in the inversion layer due to mechanical bending was assisted the degradation of the device. The generation of Nit and Ntrap were more serious in bending condition then in flat condition in p-type under the static and the dynamic NBTI stress.
目次 Table of Contents
致謝 2
中文摘要 3
English Abstract 5
Figure Captions 9
Chapter 1 - Introduction 14
1-1. Overview 14
1-2. Motivation 18
1-3. Introduction of Negative Bias Temperature Instability 19
Chapter 2 – Device fabrication and electrical characterization 23
2-1. Device Fabrication 23
2-1-1. Technology of ELA Crystallization 23
2-1-2. Fabrication Processes of LTPS Poly-Si Device 24
2-2. Defects in polycrystalline-silicon film 25
2-3. Basic characterization of the LTPS TFT 27
2-3-1. The I-V transfer characteristics 27
2-3-2. The C-V transfer characteristics 29
2-4. Introduction of Seto’s model 30
Chapter 3 – Instruments and device parameter extraction 35
3-1. Instruments and measurement setup 35
3-1-1.Instruments 35
3-1-2.Set up instruments for I-V 36
3-2. Methods of Device Parameter Extraction 36
3-2-1 Determination of the threshold voltage 36
3-2-2 Determination of the field-effect mobility 38
3-2-3 Determination of on/off current ratio 39
3-2-4 Determination of the subthreshold swing 39
3-2-5 Determination of the trap density 40
3-2-6 Determination of the active energy 41
3-2-7 Determination of density of state 42
Chapter 4 – Results and Discussion 44
4-1. The influence of DC NBTI stress on LTPS TFTs 44
4-1-1 The Degradation of P-channel TFT under DC NBTI 44
4-1-2 The illuminated effect 46
4-2. The influence of AC NBTI stress in LTPS TFTs 48
4-2-1 The Degradation of P-channel TFT under AC NBTI 48
4-2-2 The Degradation of Pulse Rising and Falling time 49
4-3. The influence of mechanical bending 50
4-3-1 The photosensitive in LTPS TFTs 50
4-3-2 The NBTI effect 51
Chapter 5 - Conclusion 52
Reference 53
Figure 63
參考文獻 References
Chapter1
[1.1] W. E. Howard, “Thin Film Transistors,” edited by C. R. Kagan and P. Andry (Dekker, New York, 2003), pp.1.
[1.2] H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., 157, 1989
[1.3] S. Zhang, C. Zhu, J. K. O. Sin, J. N. Li, and P. K. T. Mok, “Ultra-Thin Elevated Channel Poly-Si TFT Technology for Fully-Integrated AMLCD System on Glass,” IEEE Trans. Electron Devices, Vol. 47, No. 3, pp. 569–575, March 2000.
[1.4] Z. Meng, M. Wang, and M. Wong, “High Performance Low Temperature Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin Film Transistors for System-on-Panel Applications,” IEEE Trans. Electron Devices, Vol. 47, No. 2, pp. 404–409, February 2000.
[1.5] S. D. S. Malhi, H. Shichijo, S. K. Banerjee, R. Sundaresan, M. Elahy, G. P. Pollack, W. F. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K. Chatterjee, and H. W. Lam, “Characteristics and Three-Dimensional Integration of MOSFET’s in Small-Grain LPCVD Polycrystalline Silicon, ”IEEE Solid-State Circuits, Vol.SC-20, No.1, pp.178-201, Feb. 1985.
[1.6] H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., p.38, 1992
[1.7] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313,1995.
[1.8] Shunji Seki, Osamu Kogure, and Bunjiro Tsujiyama, “Effects of Crystallization on trap State Densities at Grain Boundaries in Polycrystalline Silicon”, IEEE Electron Device Lett., vol.8, pp.368-370, August 1987.
[1.9] T. W. Little, K. I. Takahara, H. Koike, et al, “Low Temperature Poly-Si TFTs Using Solid Phase Crystallization of Very Thin Films and an Electron Cyclotron Resonance Chemical vapor deposition gate insulator”, Jpn. J. Appl., Phys., vol.30, no.12B, pp.3724-3728,December 1991.
[1.10] Hiroyuki Kuriyama, Seiichi Kiyama, Shigeru Nouguchi, et al, “Enlargement of poly-Si Film Grain Size by Excimer Laser Annealing and its Application to High-Performance Poly-Si Thin Film Transistor”, Jpn. J. Appl. Phys., vol.30, no.12B, pp.3700-3703, December 1991.
[1.11] S. W. Lee and S.K. Joo, “Low Temperature Poly-Si Thin Film Transistors Fabrication by Metal-Induced Lateral Crystallization”, IEEE Electron Device Lett., vol.17, no4,pp.160-162, April 1996.
[1.12] J. B. Boyce and P. Mei, “Laser crystallization for polycrystalline silicon device applications,” in Technology and Application of Amorphous Silicon, R. A. Street, Ed. New York: Springer-Verlag, pp.94-146, 2000.
[1.13] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982.
[1.14] P. Migliorato, C. Reita, G. Tallarida, M. Quinn and G. Fortunato,”Anomalous Off-Current Mechanisms in N-Channel Poly-Si Thin Film Transistors.” Solid-State-Electronics, Vol.38, No.12, pp.2075-2079, 1995.
[1.15] M. Hack, I-W. Wu, T. J. King and A. G. Lewis, “Analysis of Leakage Currents in Poly-silicon Thin Film Transistors,”IEDM Tech Dig., Vol. 93, pp.385-388,December 1993.
[1.16] K. Ono, T. Aoyama, N. Konishi, and K. Miyata, “Analysis of Current-Voltage Characteristics of Low-Temperature-Processed Polysilicon Thin-Film Transistors,” IEEE Trans. Electron Devices, Vol. 39, No. 4, pp. 792-802, April 1992.
[1.17] A. Rodriguez, E. G. Moreno, H. Pattyn, J. F. Nijs, and R. P. Mertens, “Model for the Anomalous Off-Current of Polysilicon Thin-Film Transistors and Diodes” IEEE Trans. Electron Devices, Vol. 40, No. 5, pp.938-943, May 1993.
[1.18] K. Y. Choi and M. K. Han, “A Novel Gate-Overlapped LDD Poly-Si Thin-Film Transistor,” IEEE Electron Device Lett., Vol. 17, No. 12, pp. 566-568, December 1996.
[1.19] M. Valdinoci, L. Colalongo, G. Baccarani, G. Foutunato, A. Pecora, and I. Policicchio, “Floating body effects in polysilicon thin-film transistors,” IEEE Trans. Electron Devices, Vol.44, pp.2234-2241, 1997.
[1.20] T. I. Kamins and Marcoux, “Hydrogenation of Transistors Fabricated in Polycrystalline-Silicon Films,” IEEE Electron Devices Lett., Vol. EDL-1, No. 8, pp. 159-161, August 1980.
[1.21] B. A. Khan and R. Pandya, “Activation Energy of Source-Drain Current in Hydrogenated and Unhydrogenated Polysilicon Thin-Film Transistors,” IEEE Trans. Electron Devices, Vol. 37, No. 7, pp.1727-1734, July 1990.
[1.22] K. Baert, H. Murai, K. Kobayashi, H. Namizaki, and M. Nunoshita, “Hydrogen Passivation of Polysilicon Thin-Film Transistors by Electron-Cyclotron-Resonance Plasma,” Jpn. J. Appl. Phys., Vol. 32, No. 6A, pp. 2601-2606, June 1993.
[1.23] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, Tech. Dig. - Int. Electron Devices Meeting, 1991, 563.
[1.24] K. Yoneda, R. Yokoyama, and T. Yamada, “Development trends of LTPS TFT LCDs for mobile applications,” in Proc. Symp. VLSI Circuits, pp. 85–90 (2001).
[1.25] H. Tokioka, M. Agari, M. Inoue, T. Yamamoto, H. Murai, and H. Nagata, “Low power consumption TFT-LCD with dynamic memory embedded in pixels,” in Proc. SID, pp. 280–283 (2001).
[1.26] C. Y. Chen, J. W. Lee, M. W. Ma, W. C. Chen, H. Y. Lin, K. L. Yeh, S. D. Wang, and T. F. Lei, “Bias temperature instabilities for low-temperature polycrystalline silicon complementary thin-film transistors,” J. Electrochem. Soc., 154, H704-707, 2007
[1.27] S. Maeda, S. Maegawa, T. Ipposhi, H. Nishimura, T. Ichiki, J. Mitsuhashi, M. Ashida, T. Muragishi, Y. Lnoue, and T. Nishimura, “Structural, optical, and electrical properties of epitaxial chalcopyrite CuIn3Se5 films,” J. Appl. Phys., 76, 15 (1994).
[1.28] J. -C. Liao, Y. -K. Fang, C. -H. Kao, and C. -Y. Cheng,” Dynamic Negative Bias Temperature Instability (NBTI) of Low-Temperature Polycrystalline Silicon (LTPS) Thin-Film Transistors,” IEEE Electron Device Lett., 29, 477 (2008). [Inspec].
[1.29] C. -Y. Huang, T. -H. Teng, C. -J. Yang, C. -H. Tseng, and H. -C. Cheng, “Effect of Temperature and Illumination on the Instability of a-Si:H Thin-Film Transistors under AC Gate Bias Stress,” Jpn. J. Appl. Phys., Part 2, 40, L316 (2001).
[1.30] T. Yamanaka, T. Hashimoto, N. Hashimoto, T. Nishida, A. Shimizu, K. Ishibashi, Y. Sakai, K. Shimohigashi,and E. Takeda,”A 25-u,new poly-Si PMOS load(PPL) SRAM cell having excellent soft error immunity,” in IEDM Tech. Dig.,1988,p.48.
[1.31] E. H. Nicollian and J. R. Brews,MOS Physics and Technology(Wiley-Interscience,New York,1982),pp.794-798.
[1.32] B. E. Deal,M. Sklar,A. S. Grove,and E. H. Snow,J. Electrochem.Soc.114,267(1967).
[1.33]A.Goetzberger, A. D. Lopez, and R. J. Strain, J. Electrochem.Soc.120,90(1973).
[1.34] M. Nakagiri,Jpn. J. Appl. Phys. 13,1619(1974).
[1.35] K. O. Jeppson and C. M. Svensson, J. Appl. Phys.48,2004(1977).
[1.36] A. K. Sinha and T. E. Smith,J. Electrochem. Soc.125,743(1978).
[1.37] L. Risch, in Insulating Films on Semiconductors, edited by M. Schulz and G. Pensl(Springer,Berlin,1981),p.39.
[1.38] S. Maeda, S. Maegawa, T. Ipposhi, H. Nishimura, T. Ichiki, J. Mitsuhashi, M. Ashida, T. Muragishi, and T. Nishimura,”Negative-bias temperature instability in poly-Si TFT’s,” in Tech. Dig. Symp. VLSI Technol.,1993,p.29.
[1.39] S. Maeda, S. Maegawa, T. Ipposhi, H. Nishimura, T. Ichiki, J. Mitsuhashi, M. Ashida, T. Muragishi, Y. Inoue,and T. Nishimura,”Mechanism of negative-bias temperature instability in polycrystalline-silicon thin-film transistors,”J. Appl. Phys.,vol. 76,p.8160,1994.
[1.40] M. Makabe, T. Kubota, and T. Kitano, IEEE Int. Reliability Phys. Symp.38,205(2000).
[1.41] V. Reddy,A. T. Krishnan,A. Marshall,J. Rodriguez,S. Natarajan,T. Rost,and S. Krishnan,IEEE Int. Rel. Symp. 40, 248 (2002).
[1.42] C. Y. Chen, J. W. Lee, S. D. Wang, M. S. Shieh, P. H. Lee, W. C. Chen, H. Y. Lin, K. L. Yeh, and T. F. Lei, “Negative Bias Temperature Instability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Electron Devices, Vol. 53, No. 12, pp. 2993–3000, December 2006.
[1.43] I. W. Wu, W. B. Jackson, T. Y. Huang, A. G. Lewis, and A. Chiang, “Mechanism of Device Degradation in n- and p-Channel Polysilicon TFT’s by Electrical Stressing,” IEEE Electron Device Lett., Vol. 11, No. 4, pp. 167–170, April 1990.
[1.44] C. E. Blat, E. H. Nicollian, and E. H. Poindexter, “Mechanism of Negative Bias-Temperature Instability,” J. Appl. Phys., Vol. 69, No. 3, pp. 1712–1720, February 1991.
Chapter2
[2.1] C. Prat, D. Zahorski, Y. Helen, T. M. Brahim, and O. Bonnaud. “Excimer laser annealing system for AMLCDs: a long laser pulse for high performance, uniform and stable TFT.” SPIE Proceedings, Vol.4295,p. 33 (2001). [1.2]H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., 157, 1989.
[2.2] G.-Y. Yang, S,-H. Hur, and C.-H Han, “A Physical-Based Analytical Turn-On Model of Polysilicon Thin-Film Transistors for Circuie Simulation,” IEEE Trans. Electron Devices, 46(1), 165-172 (1999).
[2.3] Ted Kamins, “Polycrystalline silicon for integrated circuits and displays”,second edition.
[2.4] H. Chern, C. Lee, and T. Lei, “Correlation of polysilicon thin filmtransistor characteristics to defect states via thermal annealing,” IEEE Trans. Electron Devices, vol. 41, p. 460, 1994.
[2.5] N. Lifshitz and S. Luryi, “Enhanced channel mobility in polysiliconthin film transistors,” IEEE Electron Device Lett., vol. 15, p. 274,1994.
[2.6] D. K. Schroder, “Semiconductor Material and Device Characterization, 2nd ed, New York: Wiley, 1998.
[2.7] G.-Y. Yang, S,-H. Hur, and C.-H Han, “A Physical-Based Analytical Turn-On Model of Polysilicon Thin-Film Transistors for Circuie Simulation,” IEEE Trans. Electron Devices, 46(1), 165-172 (1999).
[2.8] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982
[2.9] P. Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato,40 “Anomalous off-current mechanisms in n-channel poly-Si thin film transistors.” Solid-State-Electronics, Vol.38, pp.2075-2079, 1995
[2.10] M. Hack, I-W. Wu, T. H. King and A. G. Lewis, “Analysis of Leakage Currents in Poly-silicon Thin Film Transistors,” IEDM Tech. Dig., vol. 93, pp. 385-387, 1993
[2.11] N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki,“Characteristics of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, Vol.41, pp. 1876-1879, 1994.
[2.12] Kwon-Young Choi and Min-Koo Han, “A novel gate-overlapped LDD poly-Si thin-film transistor,” IEEE Electron Device Lett., Vol. 17, pp.566-568, 1996.
[2.13] N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French,“The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices,Vol. 43, No. 11, pp. 1930-1936, 1996.
[2.14] R. K. Watts and J. T. C. Lee, “Tenth-Micron Polysilicon Thin-film Transistors,” IEEE Electron Device Lett., Vol. 14, pp.515-517, 1993.
[2.15] Ted Kamins “Polycrystalline silicon for integrated circuits and displays”, second edition, pp.200-210.
[2.16] H. J. Kim and J. S. Im: Appl. Phys. Lett. 68 (1996) 1513.
[3.1] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors, ”J. Appl. Phys., vol. 53, no. 2,pp.1193-1202,Feb. 1982.
[3.2] R. E. Proano, R. S. Misage, and D. G. Ast, “Development and electrical properties of undoped polycrystalline silicon thin-film transistor,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1915-1922, Sep. 1989.
[3.3] G. Fortunato and P. Migliorato, “Determination of gap state density in polycrystalline silicon by field-effect conductance,” Appl. Phys. Lett. 49(16), 20 October 1986.
[4.1] T.-J. King, M. G. Hack, and I.-W. Wu, “Effective density-of-states distributions for accurate modeling of polycrystalline-silicon thin-film transistors,” J. Appl. Phys.,vol.
75,no. 2,pp. 908-913, 1994.
[4.2] Chih-Yang Chen, Jam-Wem Lee, Shen-De Wang, Ming-Shan Shieh, Po-Hao Lee, Wei-Cheng Chen, Hsiao-Yi Lin, Kuan-Lin Yeh, and Tan-Fu Lei, “Negative Bias Temperature Instability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors,” From IEEE Trans. Elec. Dev., vol. 53, no. 12, December 2006.
[4.3] Chia-Sheng Lin, Ying-Chung Chen, Ting-Chang Chang, Wei-Che Hsu, Shih-Ching Chen, Hung-Wei Li, Kuan-Jen Tu, Fu-Yen Jian, and Te-Chih Chen, “Illumination-Assisted Negative Bias Temperature Instability Degradation in Low Temperature Polycrystalline Silicon Thin-Film Transistors,” From Electrochemical and Solid-State Letters, 12(6), 2009.
[4.4] J. C. Liao, Y. K. Fang, C. H. Kao, and C. Y. Cheng, “Dynamic Negative Bias Temperature Instability (NBTI) of Low-Temperature Polycrystalline Silicon (LTPS) Thin-Film Transistors,” IEEE Electron Device Letters, Vol. 29, No. 5, 2008.
[4.5] Yukiharu URAOKA, Hiroshi YANO, Tomoaki HATAYAMA and Takashi FUYUKI, “Hot Carrier Effect in Low-Temperature poly-Si p-ch Thin-Film Transistors under Dynamic Stress,” Jpn.
J. Appl. Phys. Vol. 41 (2002) pp. L13-L16.
[4.6] Kunihiro Suzuki, Fumiyo Takeuchi Ebiko, Mitsuru Chida, and Nobuo Sasaki “Analytical Photo Leak Current Model of Low-Temperature CW Laser Lateral Crystallization (CLC) Poly-Si TFTs,” Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International.
[4.7] Ya-Hsiang Tai, Yan-Fu Kuo, and Yun-Hsiang Lee “Dependence of Photosensitive Effect on the Defects Created by DC Stress for LTPS TFTs,” IEEE Elec. Dev. Lett., Vol. 29, No. 12, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.140.185.123
論文開放下載的時間是 校外不公開

Your IP address is 3.140.185.123
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code