Responsive image
博碩士論文 etd-0625110-150621 詳細資訊
Title page for etd-0625110-150621
論文名稱
Title
奈米碳管吸附去除水中消毒副產物之研究
Removal of Disinfection By-products from Aqueous Solution by Using Carbon Nanotubes Adsorption
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-11
繳交日期
Date of Submission
2010-06-25
關鍵字
Keywords
原水、黃酸、消毒副產物、奈米碳管、吸附、河川
disinfection by-products, fulvic acids, carbon nanotube, river, raw water, adsorption
統計
Statistics
本論文已被瀏覽 5651 次,被下載 15
The thesis/dissertation has been browsed 5651 times, has been downloaded 15 times.
中文摘要
淨水程序中添加含氯消毒劑,具有確保水質安全衛生之功用。但消毒劑與存在於水中之有機物發生反應會生成消毒副產物(DBPs),如三鹵甲烷(THMs)、鹵化乙酸(HAAs)等,使飲用水的致癌風險明顯增加,最近對鹵化乙酸的致癌性研究逐漸增加。原水中有機酸常是淨水場加氯消毒形成消毒副產物之主要反應物,本研究利用單壁奈米碳管(Single-walled Carbon Nanotube, SWCNT) 吸附去除水中黃酸,探討奈米碳管吸附水中黃酸、鹵化乙酸潛勢(Haloacetic Acid Formation Potential, HAAFP)之平衡與吸附行為,最後再利用動力吸附模式及等溫吸附模式模擬並對吸附速率及平衡作模式預測,並計算其熱力學參數ΔG、ΔS及ΔH以便對奈米碳管吸附的機制有更深入的了解。
在黃酸濃度0.893至3.342mg TOC/L 下利用Langmuir Model 求出單壁奈米碳管其飽和吸附量為61.88mg /g,比商業用之粒狀活性碳有較佳的吸附量。(一般粒狀活性碳GAC之吸附量為10.69 mg/g)。奈米碳管吸附黃酸的量隨著溫度降低、水溶液pH下降而有增加的趨勢;在恆溫25℃狀態下,經過平衡吸附試驗後分析HAAFP,求得HAAFP去除效率可達到40.76%。動力吸附實驗結果以Modified Freundlich Equation、Pseudo-1st-order Equation、Pseudo-2nd-order Equation三模式套用,結果以Modified Freundlich Equation模擬最佳;由Intraparticle Diffusion Equation模式解析,顯示吸附過程由孔隙擴散所掌控;計算奈米碳管吸附黃酸反應的活化能,顯示膜擴散為反應速率控制因子,根據熱力學參數的求取顯示奈米碳管吸附黃酸的過程為自發、放熱反應。
奈米碳管在吸附容量和反應速率特性上均較活性碳佳,雖然奈米碳管目前售價仍相當昂貴,其作為吸附劑的應用是有潛力。若能結合奈米碳管技術與消毒技術用於家用處理設施或小型簡易淨水場之飲用水處理單元末端設計,有助於民眾飲用水安全技術與市場發展機會。
Abstract
Disinfectants, such as chlorine, are widely used in water treatment plants to ensure the safety and quality of drinking water. However, these disinfectants easily react with some natural or man-made organic compounds in raw water and form disinfection by-products (DBPs). For example, halogenated acetic acid (HAAs) and trihalomethanes (THMs) are two main components of DBPs. These DBPs contained in drinking water will increase the risk of cancer in human body. Therefore, researches on halogenated acetic acid’s potential of causing cancer have increased currently. Organic acids are usually the reactants which proceed in chlorination reaction into products of disinfection by-products in water treatment plant. The purpose of this study is to investigate adsorption characteristics in solution by using tests of kinetics and equilibrium adsorptions and kinetic model evaluations of selected fulvic acids (FA) extracted from raw water. Therefore, we use commercial single-walled carbon nanotube (SWCNT) for the adsorbents, and calculate thermodynamic parameters (ΔG, ΔS and ΔH) in order to further understand the adsorption mechanism of CNTs.
The maximum adsorbed amounts of FA onto SWCNTs was calculated by the Langmuir model at 25℃, reaching 61.88mg / g which were much higher than that onto commercially available granular activated carbon (10.69 mg/g). The adsorption capacity of FA onto CNTs increased with decreasing outer diameter of CNTs (dp), molecular weight of FA, trmperature and pH value in all texts. In the condition of constant temperature 25℃, we analyzed HAAFP after the test of equilibrium adsorption and that the removal efficiency of HAAFP could reach 40.76%. The best selection in kinetic models evaluation, fitting models such as Modified Freundlich equation, Pseudo-1st-order equation and Pesudo-2nd-oder equation, is Modified Freundlch equation model. In addition, intraparticle diffusion equation model was fitted well and showed adsorption process was controlled by pore diffusion. We calculated the activation energy of carbon nanotube adsorption of FA and found that film diffusion was the main factor for controlling reaction rate. According to results of thermodynamic parameters indicated that the adsorption was spontaneously and an exothermic reaction.
It is obvious that the adsorption capacity as well as the reaction rate of CNTs are superior to that of granular activated carbon in raw water. These results suggest that CNTs possess highly potential applications in environmental protection. In the future, if we can combine nanotube technology with disinfection technology and apply such technique on the end of processing unit for design of either the domestic treatment facilities or small simple water treatment in drinking water. Thus it will enhance the new treatment technology of drinking water and the safety of the public health. Another possibility will be to promote the opportunity of marketing development in drinking water.
目次 Table of Contents
謝誌........................................................................................ I
摘要......................................................................................... I
英文摘要............................................................................... III
目錄........................................................................................ V
表目錄.................................................................................... X
圖目錄....................................................................................XI
第一章 緒論........................................................................... 1
1.1 研究緣起......................................................................... 1
1.2 研究目的及內容............................................................. 3
第二章 文獻回顧................................................................... 5
2.1 水體中有機物之來源..................................................... 5
2.2 水中背景有機物之性質與結構分析............................. 6
2.2.1 腐植質...........................................................................6
2.2.2 非腐植質類.................................................................. 7
2.2.3 水中背景有機物之結構分析...................................... 8
2.3 有機物對淨水工程的影響........................................... 10
2.4 消毒副產物................................................................... 13
2.5 鹵化乙酸與鹵化乙酸生成潛勢................................... 17
2.5.1 鹵化乙酸的來源....................................................... 17
2.5.2 鹵化乙酸之分類....................................................... 17
2.5.3 鹵化乙酸生成因素................................................... 19
2.5.4 鹵化乙酸之法規管制標準....................................... 21
2.5.5 鹵化乙酸生成潛勢................................................... 22
2.6 奈米碳管的材料特性與應用....................................... 23
2.6.1 奈米碳管的特性與結構........................................... 23
2.6.2 奈米碳管的吸附能力............................................... 26
2.6.3 奈米碳管的界達電位............................................... 27
2.6.4 奈米碳管之應用....................................................... 29
2.7 吸附原理....................................................................... 31
2.8 影響吸附能力因子....................................................... 34
2.9 吸附模式....................................................................... 36
2.9.1 動力吸附模式........................................................... 36
2.9.2 等溫吸附模式........................................................... 38
2.10 熱力學模式................................................................ 41
第三章實驗方法與步驟..................................................... 42
3.1 實驗流程....................................................................... 42
3.2 實驗材料與設備........................................................... 43
3.2.1 實驗材料................................................................... 43
3.2.2 實驗設備................................................................... 44
3.2.3 實驗藥品................................................................... 45
3.3 黃酸製備及前置實驗................................................... 47
3.3.1 黃酸萃取前置實驗................................................... 47
3.3.2 黃酸製備方法........................................................... 49
3.3.3 定量分析................................................................... 51
3.3.4 定性分析................................................................... 52
3.4 鹵化乙酸分析方法....................................................... 54
3.4.1 HAAs 分析步驟........................................................ 55
3.4.2 採樣與保存............................................................... 58
3.4.3 氣相層析儀分析條件............................................... 59
3.4.4 檢量線之建立........................................................... 59
3.4.5 鹵化乙酸生成潛勢分析方法................................... 60
3.5 奈米碳管之特性分析.................................................. 61
3.5.1 掃描式電子顯微鏡(SEM)........................................ 61
3.5.2 比表面積分析儀(BET)............................................. 61
3.5.3 霍氏轉換紅外線光譜(FTIR) ................................... 62
3.5.4 熱重量分析儀(TGA) ................................................ 62
3.6 吸附實驗...................................................................... 64
3.6.1 實驗裝置................................................................... 64
3.6.2 吸附動力實驗........................................................... 64
3.6.3 等溫吸附平衡實驗................................................... 65
3.6.4 不同溫度之吸附平衡實驗....................................... 66
3.6.5 奈米碳管對不同黃酸初始濃度之HAAFP 去除量.. 67
第四章 結果與討論............................................................ 69
4.1 奈米碳管與粒狀活性碳(GAC)之特性分析................ 69
4.1.1 SEM 量測.................................................................. 69
4.1.2 孔隙結構................................................................... 71
4.1.3 霍氏轉換紅外線光譜(FTIR) ................................... 73
4.1.4 熱重分析(TGA) ........................................................ 75
4.1.5 能量散佈光譜(EDS)................................................ 75
4.2 奈米碳管吸附原水中黃酸之特性研究....................... 76
4.2.1 吸附平衡動力實驗................................................... 76
4.2.2 吸附動力實驗之探討............................................... 77
4.2.3 不同溫度之吸附平衡實驗....................................... 80
4.2.4 吸附熱力學之探討................................................... 82
4.3 奈米碳管與GAC 吸附黃酸效果之比較..................... 85
4.4 鹵化乙酸生成潛勢(HAAFP)之去除........................... 88
4.5 與文獻其它吸附劑之比較.......................................... 94
第五章 結論與建議............................................................ 96
5.1 結論............................................................................... 96
5.2 建議............................................................................... 97
參考文獻............................................................................. 98
附錄-口試委員意見回覆.................................................. 106
參考文獻 References
Aiken, G.R., McKnight, D.M., Wershaw, R.L.MacCarthy, P. (1985) Humic substances in soil, sediment and water: geochemistry, isolation, and characterization. John Wiley and Sons, New York.
Alarcon-Herrera, M.T., Bewtra, J.K.Biswas, N. (1994) Seasonal variations in humic substances and their reduction through water treatment processes. Canadian journal of civil engineering 21(2), 173-179.
Allen, S.J., McKay, G.Porter, J.F. (2004) Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science 280(2), 322-333.
Anna, S.Krystyna, P. (2007) Adsorption of heavy metal ions with carbon nanotubes. Separation and Purification Technology 58(1), 49-52.
Bank, J., Wilson, D. (2002) Low cost solution for trihalomethanes compliance. Journal of the Chartered e Institution of Water and Environmental Management 16(4), 264-269.
Bolto, B., G. Abbt-Braun, D. Dixon, R. Eldridge, F. Frimmel, S. Hesse, S. King and M. Toifl, (1999) Experimental Evaluation of Cationic Polyelectrolytes For Removing Natural Organic Matter from Water. Water Science and Technology, 40(9), 71-79.
Bull, R. J., Sanchez, I. M., Nelson, M. A., Larson, J. L., Lansing, A. J. (1990), Liver tumor induction in B6C3F1 mice by dichloroacetate and trichloroacetate. Toxicology, 63(3), 341-359.
Chen, J., LeBoeuf, E.J., Dai, S.Gu, B. (2003) Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere 50(5), 639-647.
Christman, R.F., Norwood, D.L., Millington, D.S., Johnson, J.D.Stevens, A.A. (1983) Identity and yields of major halogenated products of aquatic fulvic acid chlorination. Environmental Science and Technology, 17(10), 625-628.
Cicmanec, J. L., Condie, L. W.,Olson, G. R., Wang, S. R. (1991) 90-Day toxocoty study of dichloroacetate. Metabolism, 30(10), 1024-1039.
Cox, A. R., Mogford, R., Vincent, B. and Harley, S. (2001) The effect of polymer chain architecture on the adsorption properties of derivatised polyisobutylenes at the carbon:n-heptane interface, Colloids and Surfaces A:Physicochemical and Engineering, 181(1), 205-213.
Crozes, G., White, P., Marshall. (1995) Enhanced coagulation: its effect on NOM removal and chemical costs. Journal of American Water Works Association, 87 (1), 78-89.
Cuy, L. L., Frank, M. B., and Davud, T.W. (1997) Aone-year survey of halogenated disinfection by-products in the distribution system of treatment plants using three different disinfection processes. 34(11), 2301-2317.
Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Souza-Filho, A. G. and Saito R. (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 40(12), 2043-2061.
Dresselhaus, M.S., Jorio, A., Dresselhaus, G., Saito, R., Filho, A.G.S.Pimenta, M.A. (2002) Raman spectroscopy of nanoscale carbons and of an isolated carbon nanotube, [245]/221-[253]/229, Taylor and Francis Inc., Nagano, Japan.
Drikas, M. (1997) NOM-the Curse of the Water Industry. Water 24(5), 29-33.
Edwards, G.A.Amirtharajah, A. (1985) Removing color caused by humic acids. Journal American Water Works Association 77(3), 50-57.
Elkins, K.M.Nelson, D.J. (2002) Spectroscopic approaches to the study of the interaction of aluminum with humic substances. Coordination Chemistry Reviews 228(2), 205-225.
Gopal, K., Tripathy, S.S., Bersillon, J.L.Dubey, S.P. (2007) Chlorination byproducts, their toxicodynamics and removal from drinking water. Journal of Hazardous Materials 140(1-2), 1-6.
Hayes, K.F.Leckie, J.O. (1987) Modelling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. Journal of Colloid and Interface Science 115(2), 564-572.
Hayes, K.F.Leckie, J.O. (1988) Modeling Ionic strength effect on adsorption at hydrous oxides/ solution interface. Journal of Colloid Interface Science 125(1), 717-726.
Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature 354(6348), 56-56.
Ivancev, V.T., Dalmacijam, B., Tamas, Z.Karlovic, E. (1999) The effect of different drinking water treatment processes on the rate of chloroform formation in the reactions of natural organic matter with hypochlorite. Water Research 33(18), 3715-3722.
Jacangelo, J. G., Demarco, J., Owen, D. M., and Randtke, S. J. (1995) Selected Processes for Removing NOM: an Overview. Journal American Water Supply Work Association, 87(1), 64-77.
Johnson, P. D., Dawson, B. V., Goldberg, S. J. (1998) Cardiac teratogenicity of trichloroacetate on carbonhydrate metabolism in B6C3F1 mice. Toxicology, 130(1), 141-154.
Journet, C.Bernier, P. (1998) Production of carbon nanotubes. Applied Physics A: Materials Science and Processing 67(1), 1-9
Karge, H.G.Weitkamp, J. (2008) Adsorption and Diffusion 7.
Khan, E., R. W. Babcock, I. H. Suffet and M. K. Stenstorm, (1998), Biodegradable Dissolved Organic Carbon for Indicating Wastewater Reclaimation Plant Performance and Treated Wastewater Quality. Water Environmental Research, 70(5), 1033-1040.
Kilduff, J.E.Karanfil, T. (2002) Trichloroethylene adsorption by activated carbon preloaded with humic substances: effects of solution chemistry. Water Research 36(7), 1685-1698.
Ko, C.J., Lee, C.Y., Ko, F.H., Chen, H.L.Chu, T.C. (2004) Highly efficient microwave-assisted purification of multiwalled carbon nanotubes. Microelectronic Engineering 73-74(1), 570-577.
Krasner, S. W., Croue, J. P., Buffle, J., and Perdue, E. M. (1996) Three Approaches for Characterizing NOM. Journal of American Water Works Association, 88(6), 66-79 .
Krasner, S., McGuire, M., Jacangelo, J., Patania, N., Reagen, K. and Aieta, E. (1989) The occurrence of disinfection by-products in US drinking water. Journal of American Water Works Association, 81(8), 41-53.
Leenheer, J. A., G. K. Brown, P. Maccarthy and S. E. Cabaniss, (1998) Models of Metal Binding Structures in Fulvic Acid From the Suwannee River, Georgia. Environmental Science and Technology, 32(16), 2410-2416.
Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A.Wang, G. (1996) Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701-1703.
Li, Y., Di, H., Ding, Z., J, Wu, D., Luan, Z. and Zhu, Y. (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research 39(1), 605-609.
Li, Y., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z. and Wu, D. (2003) Adsorption of fluoride from water by aligned carbon nanotubes. Materials Research Bulletin, 38(3), 469-476.
Liang, Lin and Singer, Phillip C. (2003) Factors Influencing the Formation and Relative Distribution of Haloacetic Acids and Trihalomethanes in Drinking Water. Environmental Science and Technology, pgs. 2920-2928.
Long, Q. R. and Yang, R. T. (2001) Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society, 123(1), 2059.
Lu, C.S., Chung, Y.L.Chang, K.F. (2006) Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. Journal of Hazardous Materials 138(2), 304-310.
Lu, C.S.Su, F.S. (2007) Adsorption of natural organic matter by carbon nanotubes. Separation and Purification Technology 58(1), 113-121.
MacCarthy, P., Klusman, R.W., Cowling, S.W.Rice, J.A. (1995) Water analysis. Analytical Chemistry 67(12), 525-525.
Martin, M. B., Croue, J. P., Lefebvre, E. and Legube, B. (1997) Distribution and Characterization of Dissolved Organic Matter of Surface Waters, Water Research 31(3), 541-553.
Matthews, B.J.H., Jones, A.C., Theodorou, N.K.Tudhope, A.W. (1996) Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Marine Chemistry 55(3-4), 317-332.
Miller, J. H., Minard, K., Wind, R. A., Oener, G. A., Sasser, L. B., Bull, R. J. (2000). In vivo MRI measurements of tumor growth induced by dichloroacetate. Implications for mode of action. Toxicology, 145(2-3), 115-125.
Mobed, J.J., Hemmingsen, S.L., Autry, J.L.McGown, L.B. (1996) Fluorescence characterization of IHSS humic substances:Total luminescence spectra with absorbance correction. Environmental Science and Technology 30(10), 3061-3065.
Nikolaou A. D., Kostopoulou M. N. and Lekkas T. D. (1999) Organic by-products of drinking water chlorination: a review. Global Nest: Int J.; 1(3), 143-156.
Noblet, J., Schweitzer, L., Ibrahim, E., Stolzenbach, K.D., Zhou, L.Suffet, I.H. (1999) Evaluation of a taste and odor incident on the ohio river, Elsevier Ltd, Paris, France 185-193.
Parrish, J. M., Austin, E. W., Stevens, D. K., Kinder, D. H., Bull, R. J. (1996) Haloacetate-induced oxidative damage to DNA in the liver of maleB6C3F1 mice. Toxicology, 110(1-3), 103-111.
Pempkowial, J., J. Kozuch and H. Grzegowska, (1999) Biological vs. Chemical Properties of Natural Organic Matter Isolated From Selected Norwegian Lakes. Environment International, 25(2/3), 357-366.
Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B. and Jia, Z. (2003) Adsorption of 1,2- dichlorobenzene from water to carbon nanotubes. Chemical Physics Letters, 376(1), 154–158.
Poots, V.J.P., McKay, G.Healy, J.J. (1976) The removal of acid dye from effluent using natural adsorbents--II Wood. Water Research 10(12), 1067-1070.
Richard, Q. L. and Ralph, T. Y. (2001) Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society, 123(1), 2058.
Sawyer, C.N., Perry L. McCartyGene F. Parkin (1994) Chemistry for environmental engineering. McGraw-Hill.
Schnitzer, M.Khan, S.U. (1972) Humic Substances in the Environment. Marel Dekker, New York, 279.
Schnitzer, W. (1976) The chemistry of humic substances. Environmental Biogeochemistry, J. O.Nriague ed.Ann Arbor Science, Ann Arobr, MI 1.
Siddiqui, M. S., G. L. Amy and B. D. Murrhy, (1997), Ozone enhanced removal of natural organic matter from drinking water sources. Water Research 31(12), 3098-3106.
Singer, P. (1994) Control of disinfection by-products in drinking water. Journal of environment Engineering 120(4), 727-774.
Stevens, A.A., Moore, L.A., Miltner, R.J. (1989), Formation and control of non trihalomethane disinfection by-products. Journal of American Water Works Association, 81(8), 54-59.
Stevenson, F.J. (1994) John Wiley and Sons, New York. Humus chemistry., September/October, 29–33.
Tatár, E., Csintalan, E., Mihucz, V.G., Tompa, K., Pöppl, L.Záray, G. (2002) Determination of fulvic acids in water samples of Hungarian caverns. Microchemical Journal 73(1-2), 11-18.
Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E.Smalley, R.E. (1996) Crystalline Ropes of Metallic Carbon Nanotubes. Science 273(5274), 483-487.
Thurman, E.M. (1985) Organic Geochemistry of Nature Water, Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht,the Netherlands, 15-17
Thurman, E.M.Malcolm, R.L. (1983) Structural study of humic substances: New approaches and methods. In Aquatic and Terrestrial Humic Material. Ann Arbor Science, Ann Anbor, MI, 1-23.
Tsai, C.L.Chen, C.F. (2003) Characterization of bias-controlled carbon nanotubes. Diamond and Related Materials 12(9), 1615-1620.
Urbansky, E.T. and Magnuson, M. L. (2002) Analyzing drinking water for disinfection byproducts. Analytical Chemistry 5(1), 261-267.
Wang, S.G., Gong, W.X., Liu, X.W., Gao, B.Y., Yue, Q.Y.Zhang, D.H. (2006) Removal of fulvic acids from aqueous solutions via surfactant modified zeolite. Chemical Research in Chinese Universities 22(5), 566-570.
Wang, S.G., Liu, X.W., Gong, W.X., Nie, W., Gao, B.Y.Yue, Q.Y. (2007) Adsorption of fulvic acids from aqueous solutions by carbon nanotubes. Journal of Chemical Technology and Biotechnology 82(8), 698-704.
Wang, S.G., Sun, X.F., Liu, X.W., Gong, W.X., Gao, B.Y.Bao, N. (2008) Chitosan hydrogel beads for fulvic acid adsorption: Behaviors and mechanisms. Chemical Engineering Journal 142(3), 239-247.
Williams, D., LeBel, G.L., Benoit, F. (1997) Disinfection by-products in Canadian drinking water. J. Chemosphere 34(29), 299-316.
Xie, Y. F. (2004). Disinfection by-products in drinking water: formation, analysis and control. Lewish Publishers. USA.
Yang, Q. H., Hou, P. X., Bai, S., Wang, M. Z. and Cheng, H. M. (2001) Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes. Chem Phys Lett, 345, 18-24.
Yang, K.Xing, B. (2009) Adsorption of fulvic acid by carbon nanotubes from water. Environmental Pollution 157(4), 1095-1100.
張慧??(2004),「台灣地區飲用水中含鹵乙酸之分析與流佈調查」,國立台灣大學公共衛生學院環境衛生研究所碩士論文。
陳靜生(1992),「水環境化學」,曉園出版社,台北。
曾如玲(2006) ,玉米穗軸以KOH 化學活化法製備高表面積活性碳及其應用, 台灣大學環境工程學研究所博士論文
蕭蘊華,傅崇德,許鼎居譯(1999),環境工程化學(下冊),第四版,台北市:希爾國際股份有限公司,635-639 頁。譯Clair N. Sawyer, Perry L. McCarty.
黃韋翔(2009),「奈米碳管對於原水中黃酸吸附特性之研究」,國立中山大學環境工程研究所碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.144.69
論文開放下載的時間是 校外不公開

Your IP address is 18.118.144.69
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code