Responsive image
博碩士論文 etd-0625113-145218 詳細資訊
Title page for etd-0625113-145218
論文名稱
Title
利用鏈狀式整合電致光吸收調變器與半導體光放大器達成寬頻、低編碼相依之頻擾控制調變
Broadband and low-pattern-dependence pre-chirp optical modulation by cascaded integration of electroabsorption modulator and semiconductor optical amplifier
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-17
繳交日期
Date of Submission
2013-07-25
關鍵字
Keywords
電致光吸收調變器、2R訊號重製、編碼效應、頻擾、半導體光放大器、光電元件
2R regeneration, pattern effect, frequency chirp, optoelectronic devices, semiconductor optical amplifier (SOA), electroabsorption modulator (EAM)
統計
Statistics
本論文已被瀏覽 5697 次,被下載 256
The thesis/dissertation has been browsed 5697 times, has been downloaded 256 times.
中文摘要
為了達成下一世代高速資料傳輸,高速與高效率光調變器在光連結中為主要關鍵技術,因此本論文重點將著重於光調變器之研究,本論文提出一鏈狀式結構整合電致光吸收調變器(EAM)、半導體光放大器(SOA)與高阻抗傳輸線(HITL)同時達成寬頻、高效率之優點並實現頻擾控制之訊號處理。
隨著調變頻率不斷的提高,當微波波長接近元件長度時,此微波訊號於波導上傳遞之行為將深深的影響光電之交互作用,此分佈式效應在元件設計上略顯重要。有別於傳統光電響應,微波損耗、阻抗不匹配、光電速度不匹配和由於阻抗不匹配所造成駐波特性與相位失真等問題造成元件設計之頻寬與效率之相互制衡。在鏈狀式結構中結合低阻抗之EAM與HITL將可對相位與阻抗匹配之分佈光電作用進行設計,使得元件頻寬達到微波損耗之物理極限,且在鏈狀式結構中,整合EAM與SOA於單一晶片上並達成光增益之特性。本文中實驗與理論驗證鏈狀式元件有效的改善傳統EAM之特性,其光電響應之頻寬達47GHz、微波反射從直流到65GHz皆低於-10dB、13.5dB光增益與15dB/V之高調變效率,並驗證達成高速40Gb/s之資料傳輸。
在整合SOA中,利用其自我相位調變(SPM)之非線性特性於系統傳輸中將可達成頻擾補償之光調變訊號,在電場驅動之EAM中,頻擾可藉由其工作偏壓控制,且並可利用EAM與SOA之相反的載子動態行為補償為了利用SOA控制頻擾所造成之非線性編碼失真之問題。實驗中,負頻擾達到-6.2GHz,其中-2.6GHz是由SOA補償所產生,由於低編碼相依之訊號處理,訊雜比從8.8改善到10.8,最後利用10Gb/s之訊號驗證43km之資料傳輸。
此外,編碼相依補償之技術並推廣到訊號重製技術中,於全光訊號放大與整形技術發展中克服材料速度之極限,利用非線性S型轉換曲線改善訊號之訊雜比,並驗證於40Gb/s之資料傳輸系統,說明此技術適用於高速全光網路。
Abstract
High-speed high-efficiency optical modulation has become one of the key technologies in enabling next-generation optical data transmission, motivating fundamental research into optical modulators. In this dissertation, a cascaded integration (CI) of electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) with a by-passing high-impedance transmission line (HITL) is developed for broadband, high-efficiency, and pre-chirp optical processing.
As the modulation frequency is increased to the point that the microwave wavelength is of the order of the length of the device, the effect of the propagation of an electrical wave on the electrical-to-optical (EO) interaction will become significant, so designing to take into account the its distributive effect on optical modulation is important. Unlike the conventional EO response of a point-like structure design, wave interactions, such as propagation loss, phase mismatch, and wave reflection that is induced by impedance mismatch at boundaries require that a design trade-off be made between modulation speed and efficiency. An impedance mismatch between the intrinsic waveguide structure (typically ~20Ω) and the 50Ω loaded impedance can result in the high field standing wave effect and strong phase distortion, limiting the properties of the modulator. In the CI structure, the series integration of EAM and HITL supports phase and impedance matching in the distributive EO interaction. Therefore, the EO bandwidth can be pushed to the limit for microwaves, i.e. propagation loss. Also the CI structure allows segmental SOAs to be monolithically integrated with segmental EAMs and performs optical gain processing. Experimental and theoretical results have demonstrated a flat EO response in the form of a -3dB drop at 47GHz, a -10dB microwave reflection from DC to 65 GHz, an optical gain of 13.5dB, all of which represent a large improvement over the conventional EAM. Such a design yields a high modulation efficiency of over 15dB/V and a modulation of 40Gb/s can be obtained without sacrificing the speed.
With the integration of SOA into EAM, the nonlinear effect of SOA, self-phase modulation, can be exploited for transmit data, allowing pattern control and pre-chirp optical modulation. In a field-driven EAM, the frequency chirp can be controlled by setting the bias points of the EAM, and the inherently contrary sweeping dynamic in the EAM can balance the carrier-recombination limit in a current driving SOA. A total negative chirp of 6.2GHz is obtained from the EAM and the SOA, and a -2.6GHz frequency shift from SOA is observed. The low-pattern-effect signal process improves the SNR from 8.8 to 10.8. Finally, a 10Gb/s non-return-to-zero with a 43 km error-free data transmission is demonstrated.
The signal process of the eliminated pattern effect is used in signal regeneration. All-optical reamplification and reshaping (2R) regeneration is developed, and the limitation on the material speed from carrier dynamic in this field can be eliminated. An S-sharp transfer function to improve SNR and a 40Gb/s data transmission is demonstrated, revealing that the method is suitable for use in a high-speed all-optical network.
目次 Table of Contents
Acknowledgements i
Abstract ii
Publication v
1. Introduction
1.1 Background: optical interfaces and optical modulators 1
1.2 Various types of modulators and their functions 4
1.3 Bandwidth and efficiency limitation of electroabsorption modulator 6
1.4 Limiting transmission distance and frequency chirp 8
1.5 Proposed Cascaded Integration (CI) structure 10
1.6 Dissertation outline 12
References 13
2. High-speed characteristics of cascaded integration of EAM and SOA with by-bass HITL
2.1 Microwave characteristics and circuit models 19
2.2 Electrical-field distribution engineering 26
2.3 Phase evolution and velocity matching 32
2.4 Characteristics of CI structure 39
2.5 Summary 42
References 42
3. Characteristics of material use in pre-chirp modulation
3.1 Frequency Chirp and wave propagation in fiber 44
3.2 Free carrier effects and Kramer-Kronig relations 47
3.3 Models of gain and absorption 50
3.4 Optical absorption in QW EAM 53
3.5 Optical gain in QW SOA 58
3.6 Carrier dynamics and low-pattern-effect signal process 66
3.7 Summary 69
References 69
4. Fabrication and Measurement
4.1 Device fabrication 72
4.2 Measurements for DC optical characterization 75
4.3 High-speed Measurements 78
Summary 84
5. Data transmission for metropolitan area network
5.1 Characteristics of saturation behavior 85
5.2 Chirp measurement 87
5.3 Pattern-effect analysis 92
5.4 Data transmission 93
5.5 Summary 96
References 96
6. Application: all-optical 2R regeneration
6.1 Introduction 97
6.2 Experiment 100
6.3 Summary 108
References 108
7. Conclusion and further work
7.1 Conclusion 111
7.2 Further work 112
References 114
參考文獻 References
Chapter 1:
[1] Extreme Networks White Paper: 40 and 100 Gigabit Ethernet Overview.
[2] Brocade White Paper: 40 gigabit and 100 gigabit Ethernet are here
[3] C. Lim, A. Nirmalathas, M. Bakaul, K.-L. Lee, D. Novak, and R. Waterhouse, “Mitigation strategy for transmission impairments in millimeter-wave radio-over-fiber networks,” J. of Opt. Net., vol. 8, no. 2, pp. 201-214, Feb. 2009
[4] O. Ishida, “40/100GbE technologies and related activities of IEEE standardization,” in FOC, 2009
[5] S. Trowbridge and A. Lucent, “Applications for the next generation of Ethernet,” IEEE 802.3 Higher Speed Study Group –Tutorial, 2007
[6] Y. Mochida, N. Yamaguchi, and G. Ishikawa, “Technology-Oriented review and vision of 40-Gb/s-based optical transport networks,” J. Lightwave Technol., vol. 20, no.12, pp. 2272-2281, Dec. 2002.
[7] O. Ishida and M. Teshima, “40 Gb/s and 100 Gb/s Ethernet transport technologies and applications,” in OECC, 2011, pp. 397-398.
[8] R. DeSalvo, A. G. Wilson, J. Rollman, D. F. Schneider, L. M. Lunardi, S. Lumish, N. Agrawal, A. H. Steinbach, W. Baun, T. Wall, R. Ben-Michael, M. A. Itzler, A. Fejzuli, R. A. Chipman, G. T. Kiehne, and K. M. Kissa, “Advanced components and sub-system solutions for 40 Gb/s transmission,” J. Lightwave Technol., vol. 20, no. 12, pp. 2154-2181, Dec. 2002.
[9] G. P. Agrawal, “Effect of frequency chirping on the performance of optical communication systems,” Opt. Let., vol.11, no.5, pp. 318-320, May 1986.
[10] Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers,” IEEE J. of Sel. Top. in Quantum Electron., vol. 15, no. 3, pp. 704-715, May/Jun. 2009.
[11] R. R. Patel, S. W. Bond, M. D. Pocha, M. C. Larson, H. E. Garrett, R. F. Drayton, H. E. Petersen, D. M. Krol, R. J. Deri, and M. E. Lowry, “Multiwavelength parallel optical interconnects for massively parallel processing,” IEEE J. of Sel. Top. in Quantum Electron., vol. 9, no. 2, pp. 657-666, Mar./Apr. 2003.
[12] J. K. Kim, D. U. Kim, B. H. Lee, and K. Oh, “Arrayed multimode fiber to VCSEL coupling,” IEEE Photon. Technol. Lett., vol. 19, no. 13, pp. 951-953, Jul. 2007.
[13] J. M. Tang and K. A. Shore, “30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation,” J. Lightwave Technol., vol. 26, no. 6, pp.2318-2327, Jun. 2006.
[14] T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85℃,” IEEE Photon. Technol. Lett., vol. 21, no. 16, pp. 1154-1157, Aug. 2009.
[15] K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3- m InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1436-1438, Aug. 2009.
[16] I. F. Lealman, D. M. Cooper, S. D. Perrin and M. J. Harlow, “Effect of Zn doping on differential gain and damping of 1.55μm InGaAs/lnGaAsP MQW lasers,” Electron Lett., vol. 28, no. 11, pp. 1032-1034, May 1992.
[17] N. Choudhury and N. K. Dutta, “Modulation doped InGaAsP quantum well laser emitting at 1.55 μm,” J. Appl. Phys., vol. 9, no. 1, pp. 38-42, Jul. 2001.
[18] Y.-J. Chiu, H.-F. Chou, Vo. Kaman, P. Abraham, and J. E. Bowers, “High extinction ratio and saturation power traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 14, no. 6, pp. 792-794, Jun. 2002.
[19] S. Zhnag, “Traveling-wave electroabsorption modulators,” Ph.D dissertation, University of California Santa Barbara, Aug. 1999.
[20] K. Wakita, “Semiconducor optical modulator,” Kluwer Acadmetic Publishers, 1998
[21] K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol., vol. 16, no. 4, pp. 615-619, Apr. 1998.
[22] R. J. Elliot, “Intensity of optical absorption by excitons,” Phys. Rev., vol. 108, no. 6, pp. 1384-1389, Apr. 1957.
[23] J. D. Dow and D. Redfield, “Electroabsorption in semiconductors: The excitonic absorption edge,” Phys. Rev. B, vol. 1, no. 8, pp. 3358-3371, Apr. 1970.
[24] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B, vol. 32, no. 2, pp. 1043-1060, Jul. 1985.
[25] D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: the quantum-confined Franz-Keldysh effect,” Phys. Rev. B, vol. 33, no. 10, pp. 6976-6982, May 1986
[26] H.-F. Chou and J. E. Bowers, “High-speed OTDM and WDM networks using traveling-wave electroabsorption modulators,” IEEE J. of Sel. Top. in Quantum Electron., vol. 13, no. 1, pp. 58-69, Jan./Feb. 2007.
[27] F.-Z. Lin, Y.-J. Chiu, and T.-H. Wu, “Cladding layer impedance reduction to improve microwave propagation properties in p-i-n waveguides,” IEEE Photon. Technol. Lett., vol. 19, no. 5, pp. 276-278, Mar. 2007.
[28] H. Fukano, Y. Akage, Y. Kawaguchi, Y. Suzaki, K. Kishi, T. Yamanaka, Y. Kondo, and H. Yasaka, “Low chirp operation of 40 Gbit/s electroabsorption modulator integrated DFB Laser module with low driving voltage,” IEEE J. of Sel. Top. in Quantum Electron., vol. 13, no. 5, pp. 1129-1134, Sep./Oct. 2007.
[29] G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Tran. on Microwave Theory and Techniques, vol. 47, no. 7, pp. 1177-1183, Jul. 1999.
[30] R. Lewen, S. Irmscher, U. Westergren, L. Thylen, and U. Eriksson, “Segmented transmission-line electroabsorption modulators,” J. Lightwave Technol., vol. 22, no. 1, pp. 172-179, Jan. 2004.
[31] F.-Z. Lin, T.-H. Wu, and Y.-J. Chiu, “Novel monolithic integration scheme for high-speed electroabsorption modulators and semiconductor optical amplifiers using cascaded structure,” Opt. Express, vol. 17, no. 12, pp. 10378-10384, Jun. 2009.
[32] J.-P. Wu, R.-R. Chen, and Y.-J. Chiu, “Broadband multiple-cascaded integration of electroabsorption modulators and high impedance transmission lines by lowering standing-wave effect,” Opt. Express, vol. 20, no. 8, pp. 9328-9334, Apr. 2012.
[33] J.-P. Wu, H.-J. Yan, T.-H. Wu, and Y.-J. Chiu, “Velocity-matching enhancement in cascaded integration of EAMs and SOAs using bypass high impedance transmission lines,” IEEE Photon. Technol. Lett., vol. 23, no. 17, pp. 1186-1188, Sep. 2011.
[34] H.-F. Chou, Y.-J. Chiu, and J. E. Bowers, “Standing-wave enhanced electroabsorption modulator for 40-GHz optical pulse generation,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 215-217, Feb.2003.
[35] J. Lim, M. Shin, J. Kim, J. S. Kim, K. E. Pyun, and S. Hong, “Velocity-mismatching effect on extinction characteristics of traveling wave electroabsorption modulator,” Jpn. J. Appl. Phys., vol. 40, no. 4B, pp. 2735-2737, Apr. 2001.
[36] H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, “Very-low-driving-voltage electroabsorption modulators operating at 40 Gb/s,” J. Lightwave Technol., vol. 24, no. 5, pp.2219-2224 May 2006.
[37] T. Uesugi, T. Hamaguchi, S. Nanjou, K. Shibuya, K. Yamagishi, G. Sakaino, T. Takiguchi, S. Shirai, K. Mochizuki, H. Aruga, and A. Sugitatsu, “25 Gbps direct modulation of a III-V semiconductor laser integrated on a silicon waveguide platform,” in OECC, 2011, pp.462-463.
[38] M. Chacinski, U. Westergren, B. Stoltz, L. Thylen, R. Schatz, and S. Hammerfeldt, “Monolithically integrated 100 GHz DFB-TWEAM,” J. Lightwave Technol., vol. 27, no. 16, pp. 3410-3415, Aug. 2009.
[39] L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “Velocity-matched distributed photodetectors with high-saturation power and large bandwidth,” IEEE Photon. Technol. Lett., vol. 8, no. 10, pp. 1376-1378, Oct. 1996.
[40] F.-Z. Lin, Y.-J. Chiu, S.-A. Tsai, and T.-H. Wu, “Laterally tapered undercut active waveguide fabricated by simple wet etching method for vertical waveguide directional coupler,” Opt. Express, vol. 16, no. 11, pp. 7588-7594, May 2008.
[41] J. E. Johnson, L. J.-P. Ketelsen, J. A. Grenko, S. K. Sputz, J. Vandenberg, M.W. Focht, D. V. Stampone, L. J. Peticolas, L. E. Smith, K. G. Glogovsky, G. J. Przybylek, S. N. G. Chu, J. L. Lentz, N. N. Tzafaras, L. C. Luther, T. L. Pernell, F. S. Walters, D. M. Romero, J. M. Freund, C. L. Reynolds, L. A. Gruezke, R. People, and M. A. Alam, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input,” IEEE J. of Sel. Top. in Quantum Electron., vol. 6, no. 1, pp. 19-25, Jan./Feb. 2000.
[42] H. Takahashi, T. Shimamura, T. Sugiyama, M. Kubota, and K. Nakamura, “High-power 25-Gb/s electroabsorption modulator integrated with a laser diode,” IEEE Photon. Technol. Lett., vol. 21, no. 10, pp. 633-635, May 2009.
[43] N. Henmi, T. Saito, and T. Ishida, “Prechirp technique as a linear dispersion Compensation for Ultrahigh-Speed Long-Span Intensity Modulation directed detection optical communication systems,” J. Lightwave Technol., vol. 12, no. 10, pp. 1706-1719,Oct. 1994.
[44] T. Watanabe, N. Sakaida, H. Yasaka, F. Kano, and M. Koga, “Transmission performance of chirp-controlled signal by using semiconductor optical Amplifier,” J. Lightwave Technol., vol. 18, no. 8, pp. 1069-1077, Aug. 2000.
[45] J. Marti, F. Ramos, and J. Herrera, “Experimental reduction of dispersion-induced effects in microwave optical links employing SOA boosters,” IEEE Photon. Technol. Lett., vol. 13, no. 9, pp. 999-1001, Sep. 2001.
[46] K.E. Zoiros, C. O’Riordan, and M.J. Connelly, “Semiconductor optical amplifier pattern effect suppression using Lyot filter,” Electron. Lett., vol.45, np. 23, Nov. 2009.
[47] Jui-Pin Wu, Wei-Zun Ding, and Yi-Jen Chiu, “EAM Integrated SOA for low-pattern dependence and chirp compensation,” in IEEE PHOTONICS ANNUAL MEETING, , 2012

Chapter 2:
[1] S. Zhnag, “Traveling-wave electroabsorption modulators,” Ph.D dissertation, University of California Santa Barbara, Aug. 1999.
[2] Y. J. Chiu, V. Kaman, S. Z. Zhang, and J. E. Bowers, “Distributed effects model for cascaded traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 791-793, Aug. 2001.
[3] F.-Z. Lin, “Monolithic integration of optical spot-size converter and high-speed electroabsorption modulator using laterally tapered undercut waveguide,” Ph.D dissertation, National Sun Yat-sen University of Taiwan, Jul. 2009.
[4] D. M. Pozar, Microwave engineering, 3rd Ed., New York: Wiley, 2004.
[5] R. K. Hoffmann, Handbook of Microwave Integrated Circuits. Boston: Artech House, Inc., 1987.
[6] T.H. Wu, Y.-J. Chiu, and F.-Z. Lin, “High-speed (60 GHz) and low-voltage-driving electroabsorption modulatorusing two- consecutive-steps selective-undercut-wet- etching waveguide,” IEEE Photon. Technol. Lett., vol. 20, no. 14, pp. 1261-1263, Jul. 2008.
[7] F.-Z. Lin, Y.-J. Chiu, and T.-H. Wu, “Cladding layer impedance reduction to improve microwave propagation properties in p-i-n waveguides,” IEEE Photon. Technol. Lett., vol. 19, no. 5, pp. 276-278, Mar. 2007.
[8] G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Tran. on Microwave Theory and Techniques, vol. 47, no. 7, pp. 1177-1183, Jul. 1999.

Chapter 3:
[1] G. P. Agrawal, “Fiber-optic communication systems,” Third edition
[2] G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” J. Lightwave Technol., vol. 25, no. 11, pp. 2297-2306,Nov. 1989.
[3] K. Wakita, “Semiconducor optical modulator,” Kluwer Acadmetic Publishers, 1998
[4] J. G. Mendoaz-Alvarez, F. D. Nunes, and N. B. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys., no. 51, vol. 8, pp. 4365-4367, Aug. 1980
[5] G. Livescu, D. A. B. Miller, D. S. Chemla, M. Ramaswamy, T. Y. Chang, N. Sauer, A. C. Gossard, and J. H. English, “Free carrier an many-body effects in absorption spectra of modulation-doped quantum wells,” IEEE J. of Quantum Electron., vol. 24, no. 8, pp. 1667-1689, Aug. 1998.
[6] B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. of Quantum Electron., vol. 26, no. 1, pp. 113-122, Jan. 1990.
[7] L. A. Coldern and S. W. Corzine, “Diode lasers and photonic integrated circuits,” John Wiley and Sons Inc. 1995
[8] S. Hojfeldt and J. Mork, “Modeling of carrier dynamics in quantum-well electroabsorption modulators,” IEEE J. of Sel. Top. in Quantum Electron., vol. 8, no. 6, pp. 1265-1276, Nov./Dec. 2002.
[9] S. L. Chuang, “Physics of optoelectronic devices,” New York: Wiley, 1995.
[10] P. Bhattacharya, “Semiconductor optoelectronic devices,” Prentice Hall PTR, 1997
[11] R. J. Elliot, “Intensity of optical absorption by excitons,” Phys. Rev., vol. 108, no. 6, pp. 1384-1389, Apr. 1957.
[12] J. D. Dow and D. Redfield, “Electroabsorption in semiconductors: The excitonic absorption edge,” Phys. Rev. B, vol. 1, no. 8, pp. 3358-3371, Apr. 1970.
[13] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B, vol. 32, no. 2, pp. 1043-1060, Jul. 1985.
[14] D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: the quantum-confined Franz-Keldysh effect,” Phys. Rev. B, vol. 33, no. 10, pp. 6976-6982, May 1986
[15] T.-H. Wu, “All-optical wavelength converter by field-driven quantum well device integrated with vertical waveguide directional coupler,” Ph.D dissertation, National Sun Yat-sen University of Taiwan, May. 2011.
[16] T. B. Norris, “Tunneling escape time of electrons from a quantum well under the influence of an electric field,” Appl. Phys. Lett., vol. 54, no. 1, pp. 60-62, Jan. 1989.
[17] A. Mark Fox, David A. B. Miller, Gabriela Livescu, J. E. Cunningham, and William Y. Jan, “Quantum Well Carrier Sweep Out: Relation to Electroabsorption and Exciton Saturation,” IEEE of quantum electronics, vol. 27, no. 10, pp. 2281-2295, Oct. 1991.
[18] J. A. Cavailles D. A. B. Miller, and J. E. Cunningham, “Simultaneous measurement of electron and hole escape times from biased single quantum wells,” Appl. Phys. Lett., vol. 61, no. 4, pp. 426-429, Jul. 1992.
[19] T. Watanabe, N. Sakaida, H. Yasaka, and F. Kano, M. Koga, “Transmission performance of chirp-controlled signal by using semiconductor optical amplifier,” J. Lightwave Technol., vol. 18, no. 8, pp. 1069-1077, Aug. 2000.
[20] P. J. Annetts, M. Asghari, and I. H. White, “The effect of carrier transport on the dynamic performance of gain-saturation wavelength conversion in MQW semiconductor optical amplifiers,” IEEE J. of Sel. Top. in Quantum Electron., vol. 3, no. 2, pp. 320-329, Apr. 1997.
[21] A. Mecozzi and J. Mork, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B, vol. 14, no. 4, pp. 761-770, Apr. 1997.
[22] J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern Effect Removal Technique for Semiconductor-Optical-Amplifier-Based Wavelength Conversion,” IEEE Photon. Technol. Lett., vol. 19, no. 24, pp. 1955-1957, Dec. 2007.

Chapter 5:
[1] M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of SOAs measured with an optical bandpass filter,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 2001-2003, Aug. 2008.
[2] K. Sato, S. Kuwahara, and Y. Miyamoto, “Chirp characteristics of 40-Gb/s directly modulated distributed-feedback laser diodes,” J. Lightwave Technol., vol. 23, no. 11, pp.3790-3797, Jun. 2005.

Chapter 6:
[1] M. Y. Jeon, Z. Pan, J. Cao, Y. Bansal, J. Taylor, Z. Wang, V. Akella, K. Okamoto, S. Kamei, J. Pan, and S. J. Ben Yoo, “Demonstration of all-optical packet switching routers with optical label swapping and 2R regeneration for scalable optical label switching network applications,” J. Lightwave Technol., vol. 21, no. 11, pp. 2723-2733, Nov. 2003.
[2] O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol., vol. 21, no. 11, pp. 2779-2790, Nov. 2003.
[3] R. Hainberger, T. Hoshida, S. Watanabe, and Hiroshi Onaka, “BER estimation in optical fiber transmission systems employing all-optical 2R regenerators,” J. Lightwave Technol., vol. 22, no. 4, pp. 746-754, Mar. 2004.
[4] P. Ohlen and E. Berglind, “Noise accumulation and BER estimates in concatenated nonlinear optoelectronic repeaters,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 1011-1013, Jul. 1997.
[5] P. Ohlen, L. Thylen, and E. Berglind, “Dispersion limits in 10-Gb/s standard fiber systems using nonlinear optoelectronic repeaters,” IEEE Photon. Technol. Lett., vol. 9, no. 8, pp. 1155-1157, Aug. 1997.
[6] M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, ,and B. J. Eggleton, “2R Optical regeneration: an all-optical solution for BER improvement,” IEEE J. of Sel. Top. in Quantum Electron., vol. 12, no. 4, pp. 736-744, Jul./Aug. 2006.
[7] T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, J.-C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express, vol. 14, no. 5, pp. 1737-1747, Mar. 2006.
[8] L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express, vol. 5, no. 8, pp. 5100-5113, Apr. 2007.
[9] H. Takeda and H. Uenohara, “Investigation of the input power dynamic range for a cross gain modulation type wavelength-converter-cascaded optical regenerator,” Electronics and Communications in Japan, vol. 88, no. 12, 2005
[10] A. D’Errico, G. Contestabile, R. Proietti, M. Presi, E. Ciaramella, L. Bramerie, M. Gay, S. Lobo, M. Joindot, J. C. Simon, D. Massoubre, H. Trung Nguyen, and J.-L. Oudar, “2R optical regeneration combining XGC in a SOA and a saturable absorber,” in OFC, 2008
[11] Y.-O. Kim, J.-H. Lee, J.-M. Kang and S.-K. Han, “2R limiter circuit with gain clamped SOA for XGM wavelength converter,” IEE Proc.-Optoelectron., vol. 152, no. 1, Febr. 2005
[12] P. S. Cho, D. Mahgerefteh, and J. Goldhar, “All-optical 2R regeneration and wavelength conversion at 20 Gb/s using an electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1662-1664, Dec. 1999.
[13] L. Huo, Y. Yang, Y. Nan, C. Lou, and Y. Gao, “A study on the wavelength conversion and all-optical 3R regeneration using cross-absorption modulation in a bulk electroabsorption modulator,” J. Lightwave Technol., vol. 24, no. 8, pp. 3035-3044, Aug. 2006.
[14] S. Hojfeldt, S. Bischoff, and J. Mork, “All-optical wavelength conversion and signal regeneration using an electroabsorption modulator,” J. Lightwave Technol., vol. 18, no. 8, pp. 1121-1127, Aug. 2000.
[15] F. Ohman, R. Kjær, L. J. Christiansen, K. Yvind, and J. Mork, “Steep and adjustable transfer functions of monolithic SOA-EA 2R regenerators,” IEEE Photon. Technol. Lett., vol. 18, no. 9, pp. 1067-1069, Mar. 2006.
[16] D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, “40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett., vol. 12, no. 3, pp. 332-334, Mar. 2000.
[17] S. Hojfeldt and J. Mork, “Modeling of carrier dynamics in quantum-well electroabsorption modulators,” IEEE J. of Sel. Top. in Quantum Electron., vol. 8, no. 6, pp. 1265-1276, Nov./Dec. 2002.
[18] T.-H. Wu, J.-P. Wu, and Y.-J. Chiu, “Field-driven all-optical wavelength converter using novel InGaAsP/InAlGaAs quantum wells,” Opt. Express, vol. 19, no. 27, pp. 26645-26650, 2011.
[19] P. J. Annetts, M. Asghari, and I. H. White, “The effect of carrier transport on the dynamic performance of gain-saturation wavelength conversion in MQW semiconductor optical amplifiers,” IEEE J. of Sel. Top. in Quantum Electron., vol. 3, no. 2, pp. 320-329, Apr. 1997.
[20] L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett., vol. 8, no. 22, pp. 2323-2325, Nov. 2006.

Chapter 7:
[1] M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, D. J. Blumenthal, , and L. A. Coldren, “A single regrowth integration platform for photonic circuits incorporating tunable SGDBR lasers and quantum-well EAMs,” IEEE Photon. Technol. Lett., vol. 18, no. 15, pp. 1630-1632, Oct. 2006.
[2] H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Murai, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-GHz bandwidth,” IEEE Photon. Technol. Lett., vol. 13, no. 9, pp. 954-956, Oct. 2001.
[3] W. Kobayashi, T. Yamanaka, M. Arai, N. Fujiwara, T. Fujisawa, K. Tsuzuki, T. Ito, T. Tadokoro, and F. Kano, “Wide temperature range operation of a 1.55-µm 40-Gb/s electroabsorption modulator integrated DFB laser for very short-reach applications,” IEEE Photon. Technol. Lett., vol. 21, no. 18, pp. 1317-1319, Oct. 2001.
[4] Y.-H. Kwon, J.-S. Choe, J.-S. Sim, S.-B. Kim, H. Yun, K.-S. Choi, B.-S. Choi, and E.-S. Nam, “40 Gb/s traveling-wave electroabsorption modulator-integrated DFB lasers fabricated using selective area growth,” ETRI Journal, vol. 31,no. 6, Dec. 2009.
[5] S. R. Jain,1, M. N. Sysak, G. Kurczveil, and J. E. Bowers, “Integrated hybrid silicon DFB laser-EAM array using quantum well intermixing,” Opt. Express, vol. 19, no. 14, pp. 13692-13699, Jul. 2011.
[6] C. S. Park, Y. Guo, L. C. Ong, Y. K. Yeo, Y. Wang, M. T. Zhou, and H. Harada, “Application of an electroabsorption modulator in radio-over-fiber networks,” J. Opt. Net., vol. 8, no. 2, pp. 146-155, Feb. 2009.
[7] B. Schrenk, S. Dris, P. Bakopoulos, I. Lazarou, K. Voigt, L. Zimmermann, and H. Avramopoulos, “Flexible quadrature amplitude modulation with semiconductor optical amplifier and electroabsorption modulator,” Opt. Lett., vol. 37, no. 15, pp. 3222-3224, Aug.. 2012.
[8] D.-Zu Hsu, C.-C. Wei, H.-Y. Chen, J. Chen, M. C. Yuang, S.-H. Lin, and W.-Yuan Li, “21 Gb/s after 100 km OFDM long-reach PON transmission using a cost-effective electro-absorption modulator,” Opt. Express, vol. 18, no. 26, pp. 27758-27763, Dec. 2010.
[9] J. M. Dailey, R. P. Webb, and R. J. Manning, “Generation of 21.3 Gbaud 8PSK signal using an SOA-based all-optical phase modulator,” Opt. Express, vol. 19, no. 26, pp. B12-V17, Dec. 2011.
[10] P. Ossieur, C. Antony, A. M. Clarke, A. Naughton, H.-G. Krimmel, Y. Chang, C. Ford, A. Borghesani, D. G. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “A 135-km 8192-split carrier distributed DWDM-TDMA PON with 2x32x10 Gb/s Capacity,” J. Lightwave Technol., vol. 29, no. 4, pp. 463-474, Feb. 2011.
[11] I. Kang, “Phase-shift-keying and on-off-keying with improved performances using electroabsorption modulators with interferometric effects,” Opt. Express, vol. 15, no. 4, pp. 1467-1473, Feb. 2007.
[12] S. P. Jung, Y. Takushima, and Y. C. Chung, “Transmission of 1.25-Gb/s PSK signal generated by using RSOA in 110-km coherent WDM PON,” Opt. Express, vol. 18, no. 14, pp. 14871-14877, Jul. 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code