Responsive image
博碩士論文 etd-0625114-105151 詳細資訊
Title page for etd-0625114-105151
論文名稱
Title
利用溶劑選擇性與摻混調控高分子量共聚合物薄膜之型態
Manipulation of Morphologies of High-Mw BCPs in Thin Film by Solvent Selectivity and Blending
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-15
繳交日期
Date of Submission
2014-07-28
關鍵字
Keywords
微相分離、嵌段共聚合物、自組裝、光子晶體、高分子
Polymer, Microphase Separation, Block Copolymer, Self-Assembly, Photonic Crystals
統計
Statistics
本論文已被瀏覽 5654 次,被下載 33
The thesis/dissertation has been browsed 5654 times, has been downloaded 33 times.
中文摘要
在本論文是選用超高分子量嵌段共聚合物PS-PI溶解在不同的溶劑,利用徒步選轉鑄造薄膜,藉由著控制溶劑的選擇性、揮發速率和摻混高分子,探討在薄膜底下經由自組裝形成的微相分離結構,例如層板、圓柱體、雙連續相和球體,由於在高分子量的共聚合物,鏈彼此之間有顯著糾纏和需要較長的鬆弛時間,因此微相分離形態和結構取向是強烈地依賴於所用溶劑的揮發速率。
選擇高蒸氣壓的溶劑toluene和methylcyclohexane,無序的蟲狀和微胞形態可以在初始薄膜狀態觀察到,這是由於溶劑的快速揮發所導致的,相反地,選擇非常低蒸氣壓且是PS選擇性的溶劑DVB,再經由徒步選轉鑄造在PS改質的基材上,高度對齊且平行於基材的層板結構可以觀察到。因此,這可以提供一種簡便的方法,以產生一維(1-D)的BCP薄膜光子晶體,且不必經由熱退火或溶劑退火,除此之外,引入溶劑蒸氣(例如toluene)滲入到薄膜內,該層狀PS-PI薄膜表現出溶致變色的反應,在光學的測量中,隨著蒸氣含量增加,反射的波長會有紅移的現象,相反地,溶劑的快速揮發後,反射的波長會有藍移的現象。因此,利用PS和PI鏈段有光交聯的特性,經由紫外光照射區域,在溶致變色的反應中表現出較低的紅移波長,是因為交聯導致薄膜澎潤下降。
三維(3D)雙連續相微結構可藉由著選擇PI溶劑丁酸丁酯獲得,在溶劑和熱退火結合的方式下,有序的雙連續相微結構可以觀察到,為了觀察到多樣的相分離形態,摻混高分子改變BCP介面曲率是常見的方法,隨著α值的控制(摻混高分子的分子量與相容共聚物的分子量比值),當 α≪1 ,隨著PS的體積分率增加,可以觀察到一連串的相轉換,例如層板、柱子和球體,當 α~0.5,因摻混的高分子難以完全融入相容的共聚物鏈段,造成部分在相容區塊中自成一相,導致共存的微相分離形態形成。為了增加1-D的BCP薄膜光子晶體反射能帶,且避免摻混的高分子產生相轉換,利用三元的混摻控制體積分率在層板區間,隨著摻混高分子含量增加,層板間距可以從83奈米增加至170奈米,在光譜中表現出反射的波長紅移。此外,多孔材料的雙連續相微結構可以藉由臭氧裂解PI鏈段獲得,總結,控制溶劑的揮發速率和溶劑的選擇性提供了快速且有效的方法製備各種維度的微相分離結構。
Abstract
In this study, the manipulation of microphase-separated structures with various dimensions such as lamella, cylinder, gyroid and sphere were carried out in high-Mw polystyrene-b-polymerisoprene (PS-PI) block copolymers (BCPs) thin films by control of solvent selectivity, evaporation of rate and homopolymer blends. Owing to long relaxation time and significant entanglement by the high-Mw polymer chains, the morphologies and microstructural orientations in the as-spun high-Mw PS-PI thin films are strongly dependent upon the evaporation rate of the solvent, i.e., vapor pressure, for spin casting. Utilizing high-vapor-pressure toluene (a neutral solvent with weak selectivity to PS) and methylcyclohexane (PI-selective solvent) for spin casting could respectively give the disordered worm-like and micellar morphologies in the as-spun high-Mw PS-PI thin films, due to the fast evaporation of the solvents. In contrast, the as-spun thin films from extremely low-vapor-pressure PS-selective DVB exhibited highly-aligned lamellar microstructures parallel to the PS-grafting substrate. This can thus provide a facile process to produce one-dimensional (1-D) BCP thin film photonic crystals without further applying thermal or solvent annealing. In-situ reflectivity measurements indicated that the lamellar PS-PI thin film exhibited stimulus-responsive optical properties of solvatochromism. After introducing solvent vapor (i.e., neutral solvent toluene, δtoluene =8.9) into the thin film at room temperature, various visible colors can be observed. Thus, the reflective colors with a red shift could be found with the increase of solvent exposure time. Inversely, the film displayed reflective colors with a blue shift due to the reduction of the long period during solvent evaporation. Taking advantage of the photo-crosslinked characteristics of the PS and PI blocks allowed the thin film photonic crystal to be responsive to UV irradiation for photopatterning. In contrast to the optical properties of the unexposed region, the exposed region could exhibit lower red-shift reflectivity or even unresponsive to the external stimulus, i.e., solvent, in the solvatochromic process by simply controlling exposure time of UV irradiation.
The three-dimensional (3D) bicontinuous microstructures can be obtained in the as-spun high-Mw PS-PI thin film from PI-selective butyl butyrate. Combining with solvent and thermal annealing methods in sequence could effectively drive the bicontinuous microstructure into gyroid phase. To diverse the BCP microphase-separated morphologies, PS-PI BCP blended with homopolymer PS (HPS) were conducted. With the control of α value (the ratio of the homopolymer Mw to the compatible block Mw, i.e., Mh/Mb), different morphologies including wet brush (solubilization) or dry brush (localization) can be found. As α≪1, the HPS uniformly disperses within the compatible block, namely, wet brush, leading to the phase transition to cylinder and sphere morphologies. As α~0.5, both dry (localization) and wet brushes (solubilization) may induce the formation of complex phase coexist such that such as HPL, cylinders and gyroid are obtained. To increase the long periods of the lamellar microstructures, the ternary mixtures composing of the PS-PI BCP, HPS (α~0.5) and HPI (α~0.5) were carried out. The domain spacing can be increase from 83 nm (neat) to 170 nm (blends) by TEM images. Also, the ternary-blended thin film exhibit longer-wavelength reflectance as compared with the neat one. By the ozonolysis of PI blocks, porous gyroid microstructures can be observed under scanning electron microscope. Consequently, control of evaporation rate of solvent can provide a rapid and effective method for manipulation of microphase-separated structures with various dimensions without solvent and thermal annealing.
目次 Table of Contents
誌謝 ii
Abstract iii
中文摘要 vi
Table of Contents viii
List of Tables xi
List of Figures xii
Chapter 1. Introduction 1
1.1 Self-Assembly 1
1.2 Block Copolymer (BCP) Self-Assembly 3
1.3 Photonic Crystals 6
1.3.1 Fabrication of Photonic Crystals from BCP Self-Assembly 8
1.3.2 Stimuli-Responded BCP Photonic Crystals 12
1.4 Control of Optical Reflectivity of BCP Photonic Crystals 15
1.5 Controlled Orientation of BCP Microphase Separation 18
1.5.1 Solvent-Evaporation-Induced Orientation 19
1.5.2 Substrate-Induced Orientation 20
1.5.3 Solvent-Annealing-Induced Orientation 21
1.5.4 Thermal-Annealing-Induced Orientation 22
Chapter 2 Objectives 24
Chapter 3 Materials and Experimental Methods 26
3.1 Materials 26
3.2 Sample Preparation 27
3.2.1 Bulks Samples Preparation 27
3.2.2 Thin Film Samples Preparation 28
3.2.3 PS-PI/Homopolymers Blending Systems 28
3.3 Substrate Modification 28
3.4 Microstructural Characterization 29
3.4.1 Transmission Electron Microscopy (TEM) 29
3.4.2 Scanning Electron Microscopy (SEM) 30
3.4.3 Ultra-small Angle X-ray Scattering (USAXS) 30
Chapter 4 Results and Discussion 31
4.1 Characterization of Ultra-High-Mw PS-PI BCPs in Bulk 31
4.2 Control of Morphologies and Orientations in BCP Thin Films 34
4.2.1 As-Spun Morphologies from High-Vapor-Pressure Solvents 34
4.2.2 Highly-Aligned Lamellar Microstructures from Extremely Low-Vapor-Pressure PS-Selective Solvent 36
4.2.3 Solvatochromism of 1-D BCP Photonic Crystals 42
4.2.4 Fabrication of 3-D Gyroid Microstructures in the High-Mw PS-PI BCP Thin Films 49
4.2.5 Nanoporous Materials from BCPs 60
4.3 Optical-Patterning 1-D BCP Thin Film Photonic Crystals 62
4.4 PS-PI/Homopolymers Blending Systems 67
4.4.1 Morphologies of PS-PI/PS Blends as α≪1 68
4.4.2 Morphologies of PS-PI/PS Blends as α~0.5 71
4.4.3 Tertiary PS-PI/PS/PI Blends 75
Chapter 5 Conclusions 79
Chapter 6 Referances 81
參考文獻 References
1. Lehn, J.-M. Science 1985, 227, 849.
2. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
3. Lehn, J.-M. Supramolecular Chemistry. Concepts and Perspectives (VCH, Weinheim, 1995).
4. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
5. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
6. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
7. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
8. Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
9. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
10. Muthukumar, M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
11. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
12. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 76410.
13. Lee, J. H.; Koh, C. Y.; Singer, J. P.; Jeon, S. J.; Maldovan, M.; Stein, O.; Thomas, E. L. Adv. Mater. 2014, 26, 532.
14. Kertesz, K.; Balint, Z.; Vertesy, Z.; Mark, G. I.; Lousse, V.; Vigneron, J. P.; Rassart, M.; Biro, L. P. Phys. Rev. E. 2006, 74, 021922.
15. Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.
16. Iohn, S. Phys. Rev. Lett. 1987, 58, 2486.
17. Vlasov, Y. A.; O'Boyle, M.; Harnann, H. F.; McNab, S. J. Nature 2005, 438, 65.
18. Bayindir, M.; Sorin, F.; Abouraddy, A. F.; Viens, J.; Hart, S. D.; Joannopoulos, J. D.; Fink, Y. Nature 2004, 431, 826.
19. Knight, J. C.; Birks, T. A.; Russell, P. S.; Atkin, D. M.; Opt. Lett. 1991, 21, 1547.
20. Krauss, T. F.; DeLaRue, R. M.; Brand, S.; Nature 1996, 383, 699.
21. Busch, K.; John, S. Phys. Rev. Lett. 1999, 83, 967.
22. Finkelmann, H.; Kim, S. T.; Munoz, A.; Palffy-Muhoray, P.; Taheri, B. Adv. Mater. 2001, 13, 1069.
23. Foulger, S. H.; Jiang, P.; Lattarn, A.; Smith, D. W.; Ballato, J.; Dausch, D. E.; Grego, S.; Stoner, B. R. Adv. Mater. 2003, 15, 685.
24. Lee, Y. J.; Braun, P. V. Adv. Mater. 2003, 15, 563.
25. Ozaki, R.; Matsui, T.; Ozaki, M.; Yoshino, K. Appl. Phys. Lett. 2003, 82, 3593.
26. Valkama, S.; Kosonen, H.; Ruokolainen, J.; Haatainen, T.; Torkkeli, M.; Serimaa, R.; Ten Brinke, G.; Ikkala, O. Nat. Mater. 2004, 3, 872.
27. Lawrence, J. R.; Shim, G. H.; Jiang, P.; Han, M. G; Ying, Y. R.; Foulger, S. H. Adv. Mater. 2005, 17, 2344.
28. Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, 1.; Wang, R. Z.; John, S.; Wiersma, D.; Ozin, G. A. Nat. Mater. 2006, 5, 179.
29. Takeoka, Y. J. Mater. Chem. 2012, 22, 23299.
30. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
31. Qi, M. H.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. Nature 2004, 429, 538.
32. Urbas, A.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Adv. Mater. 2000, 12, 812.
33. Deng, T.; Chen, C.; Honeker, C.; Thomas, E. L. Polymer 2003, 44, 6549.
34. Urbas, A. M.; Maldovan, M.; Derege, P.; Thomas, E. L. Adv. Mater. 2002, 14, 1850.
35. Yoon, J. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 2006.
36. Joannopoulos, J. D.; Meade, R. D.; Winn, J. N., Photonic Crystals: Molding the Flow of Light. Princeton University Press: Princeton, NJ, 1995.
37. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
38. Fukunaga, K.; Elbs, H.; Magerle, R.; Krausch, G. Macromolecules, 2000, 33, 947.
39. Keller, A.; Pedemonte, E.; Willmouth, F. M. Nature 1970, 225, 538.
40. Albalak, R. J.; Thomas, E. L.; J. Polym. Sci. Part B Polym. Phys. 1993, 32, 37.
41. Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Science 1996, 273, 931.
42. Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi,T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
43. Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. Science 1997, 275, 1458.
44. Huang, E.; Rockford, L.; Russell, T. P.; Hawker, C. J. Nature 1998, 395, 757.
45. Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. Macromolecules 1999, 32, 952.
46. Rockford, L.; Liu, Y.; Mansky, P.; Russell, T. P. Phys. Rev. Lett. 1999, 82, 2602.
47. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; dePablo, J. J.; Nealey, P. F. Nature, 2003, 424, 411.
48. Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Adv. Mater. 2001, 13, 1152.
49. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Appl. Phys. Lett. 2002, 81, 3657.
50. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
51. Ham, S.; Shin C.; Kim E.; Ryu, D. Y.; Jeong, U.; Russell, T. P.; Hawker C. J. Macromolecules 2008, 41, 6431.
52. Martin, T. M.; Young, D. M. Polymer 2003, 44, 4747.
53. Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; Russell, T. P. Adv. Mater. 2004, 16, 226.
54. Harrison, C.; Adamson, D. H. Science 2000, 290, 1558.
55. Liu, D.; Wang, T.; Keddoe, J. L. Langmuir 2009, 25, 4256.
56. Thurn-Albrecht, T.; DeRouchey, J.; Russell, T. P. Macromolecules 2000, 33, 3250.
57. Villar, N. A.; Rudeda, D. R.; Ania, F.; Thomas, E. L. Polymer 2002, 43, 5139.
58. Bodycomb, J.; Funaki, Y.; Kimishima, K.; Hashumoto, T. Macromolecules 1999, 32, 2075.
59. Drockenmuller, E.; Li, L.Y. T.; Ryu, D. Y.; Harth, E.; Russell, T. P.; Kim, H. C.; Hawker, C. J. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 1028.
60. Kim, S. H.; Misner, M. J.; Russell, T. P. Adv. Mater. 2008, 20, 4851.
61. Grozea, C. M.; Li, I. T. S.; Grozea, D.; Walker, G. C. Macromolecules 2011, 44, 3901.
62. Kim, S. H.; Misner, M. J.; Tang, L.; Gang, O.; Ocko, B. M.; Ruseell, T. P. Macromolecules 2006, 39, 8473.
63. Wang, C. H.; Coutandin, J.; Ehlich, D.; Sillescu, H. Macromolecules 1985, 18, 589.
64. Rudov, A. A.; Patyukova, E. S.; Neratova, I. V.; Khalatur, P. G.; Posselt, D.; Papadakis, C. M.; Potemkin, I. I. Macromolecules 2013, 46, 5786.
65. Hashimoto, T.; Shibayama, M.; Kawai, H. Macromolecules 1983, 16, 1093.
66. Osuji, C.; Chao, C.; Bita, I.; Ober, C. K.; Thomas, E. L. Adv. Funct. Mater. 2002, 12, 753.
67. Yoon, J.; Lee, W.; Thomas, E. L. Nano. Lett. 2006, 6, 2211.
68. Walish, J. J.; Kang, Y. J.; Mickiewicz, R.A.; Thomas, E. L. Adv. Mater. 2009, 21, 3078.
69. Kim, E.; Kang, C.; Baek, H.; Hwang, K.; Kwak, D.; Lee, E.; Kang, Y.; Thomas, E. L. Adv. Funct. Mater. 2010, 20, 1728.
70. Ge, J.; Yin, Y. Angew. Chem. Int. Ed. 2011, 50, 1492.
71. Chan, E. P.; Walish, J. J.; Thomas, E. L.; Stafford, C. M. Adv. Mater. 2011, 23, 4702.
72. Hwang, K.; Kwak, C.; Kang, C.; Kim, D.; Ahn, Y.; Kang, Y. Angew. Chem. Int. Ed. 2011, 50, 6311.
73. Lee, E.; Myung, J.; Kim, J.; Kang, Y. Macromol. Res. 2012, 20, 1219.
74. Kang, Y. Macromol. Res. 2012, 20, 1223.
75. Walish, J. J.; Fan, Y.; Centrone, A.; Thomas, E. L. Macromol. Rapid Commun. 2012, 33, 1504.
76. Ahn, Y.; Kim, E.; Hyon, J.; Kang, C.; Kang, Y. Adv. Mater. 2012, 24, OP127.
77. Ayyub, O. B.; Ibrahim, M. B.; Briber, R. M.; Kofinas, P. Biosens. Bioelectron. 2013, 46, 124.
78. Lu, Y.; Meng, C; Xia, H.; Zhang, G.; Wu, C. J. Mater. Chem. C. 2013, 1, 6107.
79. Jang, Y.; Chung, J.; Lee, S.; Lim, H.; Baek, H.; Kang, Y. Polym. Bull. 2013, 70, 593.
80. Lim, H. S.; Lee, J.; Walish, J. J.; Thomas, E. L. ACS Nano. 2012, 6, 8933.
81. Lo, T. Y.; Chao, C. C.; Ho, R. M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L. Macromolecules 2013, 46, 7513.
82. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
83. Lo, T. Y.; Ho, R. M.; Georgopanos, P.; Avgeropoulos, A.; Hashimoto, T. ACS Macro Lett. 2013, 2, 190.
84. Shi, L.; Zhang, Y.; Dong, B.; Zhan, T.; Liu, X.; Zi, J. Adv. Mater. 2013, 25, 5314.
85. Takeoka, Y. J. Mater. Chem. 2012, 22, 23299.
86. Bousquet, J. A.; Fouassier, J. P. Polym. Degrad. Stab. 1987, 18, 163.
87. Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Mark, T.; Hawker, C. J.; Russell, T. P.; Adv. Mater. 2000, 12, 787.
88. Rånby, B.; Rabek, J. F.; Photodegradation, Photo-Oxidation and Photostabilization of Polymers, Wiley, New York 1975.
89. Mekis, A.; Chen, J. C.; Kurland, I.; Fan, S.; Villeneuve, P. R.; Joannopoulos, J. D. Phys. Rev. Lett. 1996, 77, 3787.
90. Kim, S. H.; Misner, M. J.; Tang, L.; Gang, O.; Ocko, B. M.; Ruseell, T. P.; Macromolecules 2006, 39, 8473.
91. Hashimoto, T.; Hasegawa, H.; Tanaka, H. Macromolecules 1990, 23, 4378.
92. Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645.
93. Koizumi, S.; Hasegawa, H.; Hashimoto, T. Makromol. Chem. Macromol. Symp. 1992, 62, 75.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code