Responsive image
博碩士論文 etd-0625116-124540 詳細資訊
Title page for etd-0625116-124540
論文名稱
Title
雙邊傾斜裂縫鈦合金/碳纖維/聚醚醚酮複材積層板之疲勞破壞與殘留 壽命探討
Fatigue Fracture and Residual Life of Inclined double-edge-cracked Ti/APC-2 Hybrid Composite Laminates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-28
繳交日期
Date of Submission
2016-07-25
關鍵字
Keywords
雙邊傾角裂縫、碳纖維/聚醚醚酮(APC-2)、鈦合金、拉伸、疲勞
APC-2, Double-Edged Crack, Mechanical Properties, Titanium, Fatigue
統計
Statistics
本論文已被瀏覽 5666 次,被下載 397
The thesis/dissertation has been browsed 5666 times, has been downloaded 397 times.
中文摘要
本論文主要是透過拉伸及疲勞試驗探討鈦合金/碳纖維/聚醚醚酮積層板於同裂縫長度但不同角度的對稱及反對稱雙邊裂縫傾角下的機械性質。複合材料積層板是由外側各一層0.5 mm厚的鈦合金以及中間一層約0.55 mm厚的碳纖維/聚醚醚酮(APC-2)預浸布所夾成的三明治結構,其中碳纖維/聚醚醚酮(APC-2)是根據[0/90]s十字疊疊序堆疊而成。首先對鈦合金板進行鉻酸陽極處理,增加其與碳纖維/聚醚醚酮(APC-2)之間的黏結力,再利用隔膜成形法進行熱壓,製成鈦合金/碳纖維/聚醚醚酮(Ti/APC-2)十字疊複材積層板。複材積層板試片完成後,使用放電加工線切割雙邊裂縫,裂縫長度固定為1.5 mm,左邊裂縫傾角之角度定義為α、右邊裂縫傾角角度為β,以此安排了角度α=0°、30°、45°、60°、75°,以及β=0°、±30°、±45°、±60°、±75°的對稱及反對稱雙邊裂縫積層板的組合。
透過靜態拉伸試驗中可以獲得的拉伸數據,且從拉伸試驗獲得的實驗數據,繪製出各個雙邊傾角裂縫組合的負載與位移關係圖。在疲勞實驗中,採用疲勞負載為拉伸-拉伸,頻率5Hz、應力比為0.1,從實驗中可得到積層板之疲勞數據,再將疲勞數據與所施加的負載繪出複合材料積層板在不同雙邊裂縫傾角組合的負載與疲勞振次關係圖。
整合所有拉伸與疲勞實驗結果,可以獲得以下幾點結果:第一,ΚI值會隨著角度增大而減小,KII則是在角度45°時最大,對稱與反對稱裂縫皆如此;第二,雙邊裂縫影響KI修正係數隨角度增加而減小,而KII修正係數在反對稱角度60°時最大,但影響相對都不大,第三;極限強度在α=β=75°與α=-β=75°時為最大,同角度下對稱與反對稱角度試片強度相近;第四,對稱角度時得疲勞壽命衰退幅度相仿,反對稱角度時疲勞壽命隨角度增加而衰退幅度越大。
Abstract
This thesis aims to investigate the mechanical properties and fatigue characteristics of double-edge-cracked Ti/APC-2 hybrid composite laminates due to the tensile tests and fatigue tests. We fabricated the Ti/APC-2 hybrid composite laminates and made double-edged cracks of sets of left inclination α and right inclination β with the crack length fixed. The dimensions and geometry of samples are L W t = 250 25 1.55 mm3 with stacking sequence [Ti/0/90]s. The double-edged cracks cut by electrical discharge machine are a fixed length of 1.5 mm with two inclined angles α and β of 0°,±30°, ±45°, ±60°, ±75° symmetrically and anti-symmetrically.
From the static tensile tests, the mechanical properties of hybrid composite laminates were obtained from the load-displacement diagrams of different sets of double-edged cracks specimens. In fatigue tests, we adopted the constant stress amplitude tension-tension cyclic tests, and the load control mode at a sinusoidal loading wave with frequency of 5Hz and stress ratio R=0.1. We obtained the fatigue resistance and the S-N diagrams.
From the empirical data, we can summarize the important results as follows. First, the value of KI is decreased with the increasing of crack angles in symmetry and antisymmetry samples. And when the inclined angle is 45°, the value of KII is a maximum. Second, the correction factor of KI is increased with the increase of inclined angles. Correction factor of KII is maximal as the crack angles are α=-β=60°. Third, the ultimate load is maximal at α=β=75° and α=-β=75°, and both values are close. Finally, the fatigue residue life of larger inclined angle is less than that of smaller crack angle in anti-symmetric samples.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
摘要 iii
英文摘要 iv
目錄 v
符號說明 xiv
1 第一章 緒論 1
1-1 前言 1
1-2 複合材料概述 2
1-3 研究方向 2
1-4 文獻回顧 2
2 第二章 研製與實驗 4
2-1 實驗材料介紹 4
2-1-1 鈦合金 4
2-1-2 碳纖維/聚醚醚酮預浸布APC-2(AS-4/PEEK) 4
2-2 儀器設備介紹 5
2-3 鈦合金/碳纖維/聚醚醚酮(Ti/APC-2)複材積層板之製程 6
2-3-1 鈦合金前處理 6
2-3-2 APC-2前處理 7
2-3-3 高溫高壓製程 7
2-3-4 試片裁切 9
2-3-5 傾斜雙邊裂縫切割 9
2-4 靜態拉伸與疲勞試驗 9
2-4-1 靜態拉伸試驗 9
2-4-2 疲勞試驗 10
3 第三章 靜態拉伸實驗 15
3-1 靜態拉伸方法 15
3-2 靜態拉伸結果 15
4 第四章 疲勞實驗結果 28
4-1 疲勞試驗方法 28
4-2 疲勞試驗結果 28
5 第五章 分析與討論 45
5-1 Ti/APC-2複材積層機械性能與板混和理論探 45
5-1-1 混合理論 45
5-1-2 極限強度實驗值與混合理論比較 45
5-2 Ti/APC-2複材積層板破壞韌性K之探討 46
5-2-1 破壞力學理論K值 46
5-2-2 兩裂縫間相互影響之K值修正 47
5-3 破壞模式之探討 48
5-3-1 拉伸破壞 48
5-3-2 疲勞破壞 49
5-4 極限強度之探討 51
5-4-1 雙邊裂縫角度對於極限負載之影響 52
5-4-2 對稱與反對稱角度雙邊裂縫對於極限負載之影響 52
5-5 抗疲勞性之探討 54
5-5-1 對稱角度裂縫與抗疲勞性的探討 54
5-5-2 反對稱角度裂縫與抗疲勞性的探討 55
6 第六章 結論 69
附錄一 材料性質表 74
附錄二 儀器設備 77
附錄三 無單邊裂縫a=0 mm(平板) 負載與疲勞振次表 81
參考文獻 References
[1] Erdogan, F. and Sih, G. C., “On the Crack Extension in Plates Under Plane Loading and Transverse Shear,” Transactions of the ASME, Journal of Basic Engineering, Vol. 85, pp. 519-527, 1963.
[2] Wu, H. C., “Dual Failure Criterion for Plane Concrete” Journal of Engineering Mechanics Division, Vol. 100, pp.1167-1181, 1974.
[3] Maiti, S.K., ‘‘Unstable Edge Crack Extensions During Shearing of Bars,’’ PhD Thesis, Indian Institute of Technology, Bombay, 1979.
[4] Maiti, S.K., “Prediction of the Path of Unstable Extension of Internal and Edge Cracks”, Journal of Strain Analysis, Vol. 15, pp. 183-194, 1980.
[5] Chang, K. J., “On the Maximum Strain Criterion-A New Approach to the Angled Crack Problem,” Engineering Fracture Mechanics, Vol. 14, pp.107-124, 1981.
[6] Sih, G. C., “Some Basic Problems in Fracture Mechanics and New Concepts” Engineering Fracture Mechanics, Vol. 5, pp.365-377, 1973.
[7] Nuismer, R. J., ‘‘An Energy Release Rate Criterion for Mixed Mode Fracture,’’ International Journal of Fracture, Vol. 11, pp.245-250, 1975.
[8] Palaniswamy, K. and Knauss, W. G., “Propagation of a Crack under General In-Plane Tension” International Journal of Fracture, Vol. 8, pp.114-117, 1972.
[9] Hussain, M. A., Pu, S. L., and Underwood, J., “Strain Energy Release Rate for a Crack under Combined Mode I and II,” Fracture Analysis, ASTM STP, 560, p. 2, 1974.
[10] Packman, P.F., ‘‘The Role of Interferometry in Fracture Studies,’’ Experimental Techniques in Fracture Mechanics, Vol. 2 A.S. Kobayashi, ed., Society for Experimental Stress Analysis Monograph, No. 2, pp.59-87, 1975.
[11] Smith, C.W., ‘‘Use of Three-Dimensional Photoelasticity and Progress in Related Areas,’’ Experimental Techniques in Fracture Mechanics, Vol. 2 A.S. Kobayashi, ed., Society for Experimental Stress Analysis Monograph No.2, pp.3-58, 1975.
[12] Krishnakumar, S., “Fiber metal laminates: the synthesis of metals and composites”, Materials and Manufacturing Processes, Vol. 9, pp.295-354, 1994.
[13] Cortés, P. and Cantwell, W.J., “Fracture properties of a fiber-metal laminates based on magnesium alloy”, Journal of Materials Science, Vol. 39, pp. 1081-1083, 2004.
[14] Marissen, R., ‘‘Flight Simulation Behavior of Aramid Reinforced Aluminum Laminates (ARALL)’’, Engineering Fracture Mechanics, Vol. 19, No. 2, pp.261-277, 1984.
[15] Marissen, R., “Fatigue Mechanisms in ARALL, A Fatigue Resistant Hybrid Aluminum Aramid Composite Material,” Fatigue 87, Proc. 3rd Int. Conf. on Fatigue and Fatigue thresholds (Edited by R. O. Ritchie and E. A. Starke), Vol. 3, EMAS Ltd. Warley, U.K., pp.1271-1279, 1987.
[16] Marissen, R., Trautmann, K. H., Foth, J. and Nowack, H. ‘‘Micocrack Growth in Aramid Reinforced Aluminum Laminates (ARALL)’’, Fatigue 84, Proc. 2nd Int. Conf. On Fatigue and Fatigue thresholds (edited by C. J. Beevers), Vol. II, EMAS Ltd. Warley, U.K., pp.1081-1089, 1984.
[17] Vlot, A. Historical overview. In: Fibre metal laminates; an introduction. Dordrecht: Kluwer Academic Publishers, 2001.
[18] Ritchie, R. O., Yu, W. and Bucci, R. J., “Fatigue Crack Propagation in ARALL Laminates: Measurement of the Effect of Crack-tip Shielding from Crack Bridging,” Engineering Fracture Mechanics, Vol.32, No. 3, pp.361-377, 1989.
[19] Reyes, G., “Processing and characterization of the mechanical properties of novel fiber-metal laminates”, PhD thesis, University of Liverpool, 2002.
[20] 李秉原,鎂合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性能探討,國立中山大學機械所碩士論文,2006。
[21] 劉俊吾,鈦合金/碳纖維/聚醚醚酮複材積層板之研製與機械性值探討,國立中山大學機械與機電工程研究所碩士論文,2009。
[22] 林柏全,單邊裂縫鈦合金/碳纖維/聚醚醚酮奈米複材積層板之疲勞破壞及殘留性質探討,國立中山大學機械與機電工程研究所碩士論文,2012。
[23] 蔡豐懋,穿透式雙邊傾斜裂縫之實驗與數值分析,國立中山大學機械所碩士論文,1995。
[24] 廖偉翔,含缺口碳纖維/聚醚醚酮複合材料積之疲勞破壞層板探討,國立中山大學機械與機電工程研究所碩士論文,2002。
[25] 張哲愷,鈦合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性值探討,國立中山大學機械與機電工程研究所碩士論文,2010。
[26] 黃韋翔,鈦合金/碳纖維/聚醚醚酮複材積層板含單邊裂縫之疲勞破壞與殘留壽命之探討,國立中山大學機械與機電工程研究所碩士論文,2013。
[27] 周惠琪,鈦合金/碳纖維/聚醚醚酮複材積層板含單邊傾斜裂縫之疲勞破壞與殘留壽命之探討,國立中山大學機械與機電工程研究所碩士論文,2015
[28] T.L Anderson. Fracture Mechanics: Fundamentals and Applications. 3th ed. CRC Press, LLC, Boca Raton, FL, USA. 2005.
[29] Gross D, Seelig T. Fracture Mechanics: With an Introduction to Micromechanics. Mechanical Engineering. Springer-Verlag, New York. 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code